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Reinforcement learning for cooling rate control during quenching

Abstract
In the process of quenching heat treatment, it is critical to establish the optimal process pa-

rameters producing the least residual stress magnitudes and related distortions and/or cracking,
to reduce the cost of manufacturing high-quality components with intricate and durable designs
and meet the stringent requirements of a broad range of high-performance industries. Because
such e�ects occur as the result of uneven cooling in di�erent regions of the quenched part, a feasi-
ble control objective is thus to enhance the spatial uniformity of heat removal, to prevent spatial
gradients of irreversible strains typically originating from heterogeneous plastic deformation. For
decades this process has been largely driven by trial and error, intuition and experience. In this
study, a single-step Deep Reinforcement Learning (DRL) algorithm is used to provide the best
possible cooling rate in industrial quenching processes governed by coupled pseudo-compressible
Navier–Stokes and heat equations, along with latent heat formulation. The numerical reward fed to
the neural network is computed with an in-house stabilized finite elements environment combining
variational multi-scale (VMS) modeling of the governing equations, immerse volume method, and
multi-component anisotropic mesh adaptation. A case of Rayleigh–Bénard convection in a high-
aspect ratio, closed cavity is used first as testbed for the proposed methodology. In a second phase,
we tackle several quenching numerical experiments aiming at improving temperature homogeneity
within two-dimensional components in various shapes, whose results showcase the potential of DRL
to produce unanticipated solutions by learning the e�ect of highly unsteady boiling flow physics
on the temperature distribution.

Keywords: Deep Reinforcement Learning; Quenching; Computational Fluid Dynamics; Thermal
Control, Multiphase Boiling

1. Introduction1

Quenching is a heat treatment process used to modify the mechanical properties of steel mate-2

rials. It consists in heating a part to achieve specific microstructure and material properties (e.g.,3

hardness, strength), after which the part is quickly cooled through the austenitizing temperature4

of a liquid quenchant that can be water, oil or brine, depending on the material and the desired5

properties. High cooling rates in the quenching process suppress the di�usion-controlled phase6

transformations and promote non-di�usional phase transformations to form martensite, one of the7

desired phases in quenched steel [1]. Although probably the oldest heat treatment process used8

by man to harden and strengthen steel, quenching remains vital as a safety procedure, to improve9

product durability and performance in various heavy industries with tight tolerances and high10

process repeatability requirements. Typical examples include the energy sector (e.g., to manufac-11

ture seamless rolled rings), the automotive and aerospace industries (rings, gears, shafts and other12

transmission parts) or the construction industry (to avoid distortions in rods and bars).13

Quenching e�ectiveness hinges in large measure on the ability of the quenchant to achieve14

maximal cooling without heating up. Meanwhile, in the absence of a systematic approach to select15

optimal process parameters, steel materials with varying compositions can respond di�erently to16

the hardening treatment, resulting in defects, rejections, reworks and added costs [2]. It is widely17

accepted that thermal expansions caused by large temperature gradients (which the present study18

focuses on), volumetric expansions caused by martensitic transformations, or the combination of19

both produce high residual stresses, contributing to distortions, cracking and fractures that all20

negatively impact the microstructure of the part and lead to reduced fatigue strength [3]. Despite21

a large body of literature on this topic contributing to advancements in manufacturing processes,22

failures persist in the quenching process, with heavy or intricately shaped components having23
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the highest rejection percentages [4]. In the present context of tackling climate change while24

ensuring sustainable growth, the capability of optimally controlling the outcome of quenching is25

more relevant than ever, to deliver durable, high-quality parts at manageable costs while minimizing26

the many types of waste that can occur during manufacturing [5].27

Quenching involves heating the component at temperatures of the order of 1000¶C. The initial28

temperature across any given geometry is constant [1], and the temperature distribution during29

cooling depends solely upon the outward heat flux from the component, and thereby upon highly30

localized heat transfer coe�cients. The complexity of the quenching process is related to the boiling31

heat transfer and phase transformations occurring on the surface of the immersed part (mostly32

the nucleation phase), that makes is very sensitive to small variations in process parameters.33

For instance, for a part to have uniform heat transfer, any vapor pockets must be minimized34

for the quenching medium to wrap perfectly around its surface. This requires identify relevant35

process parameters, a real challenge that requires a perfect balance in the choice of (among many36

other factors) the austenitizing temperature, the immersion rate and the orientation of the treated37

component, and the temperature, volume and agitation of the quenching medium. Actually, this38

must be repeated for each particular geometry, as even the slightest asymmetry in the shapes,39

combined with tiny variations in process parameters, can add to the lack of uniformity and cause40

the appearance of unwanted residual stresses associated with diminished mechanical properties [6].41

For decades, process parameters have been essentially adjusted through intuition, trial and42

error, and professional experience. The premise of this research is that this highly complicated43

task can be rationally and e�ciently solved using reinforcement learning (RL), a machine learning44

method for solving sequential decision-making problems. While RL has long been limited to low45

dimensional problems, several major obstacles have been lifted using the feature extraction capabil-46

ities of deep neural networks and their ability to handle high-dimensional state spaces, giving rise to47

Deep Reinforcement Learning (Deep RL or DRL). This has yielded unprecedented e�ciency after48

short training spans in many domains such as robotics [7], language processing [8] or games [9, 10],49

but DRL is also used in many industrial applications, including autonomous cars [11], or data50

center cooling [12]. The potential application fluid mechanics is also highly promising, for which51

e�orts are ongoing thanks to the sustained commitment from the machine learning community.52

A few dozen studies provided insight into the performance improvements to be delivered, with53

particular focus on shape optimization and flow control applied to drag reduction; see [13, 14] for54

recent reviews. Meanwhile, the literature on thermal control is scarce, with (at time of writing)55

only a handful of studies applying DRL-based approaches to control natural [15–17] and forced56

convection [16, 18, 19], although DRL has become a quickly emerging topic in a wide range of57

thermal applications, from the shape optimization of heat exchangers [20] to the implementation58

of thermal digital twins [21], including energy e�ciency in civil engineering [22] and the estimation59

of e�ective statistical properties in complex media [23].60

This work aims at introducing DRL into the field of quenching control. It stands as a follow-up61

of our previous work on DRL-based control of forced convection [16, 18], and combines DRL with62

advanced immersed methods for the simulation of liquid-vapor phase change, to extend the scope to63

boiling and increase the complexity of the targeted applications. The proposed framework leverages64

the capacity of neural networks to accurately approximate the mapping function between input65

and output spaces, as well as the dynamic programming inherent in the reinforcement learning66

algorithm. There is no similar study in the literature, to the best of our knowledge, for which67

a possible explanation is the lack of tried and tested computational solvers capable of reliably68

simulating the quenching of solid parts. In this context, to act as DRL agent, we use the single-69

step Proximal Policy Optimization (single-step PPO) algorithm introduced in [24, 25], intended70

for optimization and open-loop control problems whose optimal policy to be learnt by the agent71

is state-independent (in which case it su�ces to update the neural network parameters only once72

per episode). The reward function used to train our PPO agent is computed by an in-house, high-73

fidelity computational framework that predicts accurately the boiling heat transfer behavior of a74

liquid in the near field of a heated immersed solid, while taking into account the gas-liquid phase75

changes, the vapor formation and their dynamics, and ultimately, the cooling of the solid [26, 27].76

The e�ectiveness of the DRL-CFD approach is demonstrated by evaluating the homogeneity of the77

cooling e�ect on various systems comprising a 2-D part with controlled orientation in a liquid tank.78

Of note, this is a proof of concept study to lay the groundwork for future research in the field,79
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not a comparable study demonstrating the competitiveness of DRL-CFD by benchmarking the80

performance against generic models available o�-the-shelf. We therefore focus on positioning the81

method as an e�cient and theoretically well-founded tool to find the best process parameters and82

achieve the desired final characteristics, and exchange views on the main challenges that should be83

considered to realize its potential for application in real-world manufacturing environments.84

With these considerations in mind, the paper is structured as follows: in section 2, we outline85

the main features of the finite element CFD environment used to simulate the quenching process86

and compute the numerical reward fed to the DRL agent.while taking into account liquid-vapor-87

solid interactions with boiling heat transfer and liquid-vapor transformations. Section 3 breaks88

down the baseline principles of DRL and PPO, together with the specifics of the single-step PPO89

algorithm. Section 4 provides the particulars of DRL experiments and implementation, and revisits90

a Rayleigh–Bénard convection case adapted from [16] for the purpose of validation and assessment91

part of the method capabilities. In, section 5, DRL is used to improve the temperature homogeneity92

within various parts immersed in a liquid tank, whose geometrical complexity ranges from the93

simplest rectangular brick shape to intricate, irregular shapes of engineering interest. Conclusion94

and strategies for future works in this area are presented in section 6.95

2. Computational fluid dynamics and phase change solver96

This section breaks down the main ingredients of the adaptive Eulerian framework for the97

simulation of both boiling and evaporation phenomena occurring at the interface of a heated 2-D98

solid immersed in a liquid tank. Exhaustive derivation and implementation details are provided in99

Ref. [27], to which the interested reader is referred for further deepening. Su�ce it to say here that100

a pseudo-compressible model accounting for mass transfer at the liquid-vapor interface is solved101

with the Immerse Volume Method [28, 29], which allows to compute the heat transfer between the102

solid and the (liquid) quenchant from the individual material properties on either side of it. This103

in turn obviates the need to compute a heat transfer coe�cient, which would have been a limiting104

issue from the present numerical experiments where varying the shape and orientation of the solid105

is integral to the optimization process.106

2.1. Interface capturing method107

The level set method is employed as an interface capturing technique to identify and monitor108

the evolution of the liquid-phase interface using the zero iso-value of a smooth level set function.109

This function distributes the corresponding physical properties in space according to a mixing110

law. Let � represent the entire domain, and �l and �v denote the liquid and vapor domains,111

respectively. The level set function is a signed distance function from the interface � = �l fl �v,112

defined at each node X as follows:113

„ =

Y
_]

_[

≠dist(X, �) if X œ �l ,

0 if X œ � ,

dist(X, �) if X œ �v ,

(1)

with the convention that „ > 0 in the vapor domain. In the absence of mass transfer between the114

liquid and vapor phases, the evolution of the level set is governed by the transport equation.115

ˆt„ + u · Ò„ = 0 , (2)

with u a velocity. The level set, defined as a distance function, satisfies ||Ò„|| = 1. However, it can116

lose this property during the convection process, in which case it requires reinitialization to pre-117

vent numerical instabilities. A common method for reinitialization is solving the Hamilton–Jacobi118

equation119

ˆ· „ + s(„)(||Ò„|| ≠ 1) = 0 , (3)

where · is a pseudo time-step and s(„) is the sign function of „.120
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Figure 1: Examples of anisotropic meshes used to simulate the boiling phenomenon.

Once the level set function is computed, the individual physical properties (for example fll and121

fll, respectively the liquid and vapor densities) are distributed using a mixing law according to122

fl = fll(1 ≠ H‘(„)) + flvH‘(„) , (4)

where H‘ is the smoothed Heaviside function defined as123

H‘(„) =

Y
_]

_[

0 if „ < ≠‘ ,
1
2(1 + „

‘
+ 1

fi
sin(fi „

‘
)) if |„| Æ ‘ ,

1 if „ > ‘ ,
(5)

and ‘ = 2hŒ is a regularization parameter set here to twice the mesh size in the normal direction124

to the interface.125

2.2. Anisotropic mesh adaptation126

Di�culties may arise in an immersed multiphase framework due to the discontinuities in mate-127

rial properties between the solid and fluid regions. These discontinuities are particularly challenging128

when they intersect the mesh elements arbitrarily, potentially compromising the accuracy of the129

solution or causing it to fail entirely. To address this, we employ the anisotropic mesh adaptation130

technique described in [30]. This approach generates highly stretched, well-oriented elements and131

distributes the fluid properties as accurately and smoothly as possible over a minimal thickness132

around the interface. This allows for the e�ective capture of sharp gradients at a low computational133

cost, ensuring consistency between the solution anisotropy and the mesh. This is achieved by cal-134

culating modified distances from a metric, a symmetric positive-definite tensor whose eigenvectors135

define preferential directions along which mesh sizes are determined based on the corresponding136

eigenvalues. This metric is isotropic far from the interface, with the mesh size set to hŒ in all137

directions. However, near the interface, the metric becomes anisotropic, with the mesh size set to138

h‹ in the direction normal to the liquid/vapor interface and to hŒ in the other directions. For a139

desired thickness ”, this can be expressed as follows:140

M = K(„)n ¢ n + 1
h2

Œ
I with K(„) =

Y
]

[

0 if |„| Ø ”/2 ,
1

h
2
‹

≠ 1
h2

Œ
if |„| < ”/2 , (6)

where n = Ò„/||Ò„|| is the normal to the interface deduced from the gradient of the level set.141

An a posteriori anisotropic error estimator is then used to minimize the interpolation error while142

maintaining a fixed number of edges in the mesh. This is done using multi-component error vectors143

taking into account the gradients of multiple scalar and/or vector fields [30–33]. In the following144

numerical experiments, adaptivity combines velocity components and magnitude, temperature and145

level set, all normalized by their respective global maximum to ensure that a field much larger in146

magnitude does not dominate the error estimator. Examples of the adapted meshes generated147

in this study are shown in figure 1. These examples illustrate the appropriate refinement and148

deformation of mesh elements, which are extremely fine and elongated near the interfaces between149

the solid, liquid, and vapor, but coarse and uniform away from the interfaces.150
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2.3. Phase change model151

The multiphase framework used to simulate phase change problems relies on pseudo-compressible152

mass and momentum conservation written in the form of modified Navier–Stokes equations153

Ò · u = ṁ

3
1
flv

≠ 1
fll

4
|Ò„|”‘(„) , (7)

fl(ˆtu + u · Òu) ≠ Ò · (2µ"(u)) + Òp = f“ + flg . (8)

Here, fl represents the density, µ the dynamic viscosity, u the velocity, p the pressure, ‘(u) the rate154

of deformation tensor, g the gravity acceleration, and we note that the velocity is not divergence-155

free, since the continuity equation is forced by a surface mass transfer rate, denoted as ṁ , that156

measures the exchange of mass occurring at the liquid/vapor interface. Additionally, ”‘ is the Dirac157

function158

”‘(„) =

Y
]

[

1
2‘

3
1 + cos

3
fi

„

‘

44
if |„| Æ ‘ ,

0 if |„| > ‘ ,

(9)

locating the interface and smoothed with the same regularization parameter ‘ as the Heaviside159

function (5). Lastly, f“ is a body force representing the impact of surface tension, formulated160

within the framework of the Continuum Surface Force [34] as161

f“ = ≠“Ÿ”‘(„)n , (10)

where “ is the surface tension coe�cient and Ÿ = Ò · n is the mean interface curvature. Likewise,162

energy conservation is expressed in the form of a modified heat equation163

flcp(ˆtT + u · ÒT ) = Ò · (⁄ÒT ) ≠
!
L + (cpv ≠ cpl)(T ≠ Tsat)

"
ṁ”‘(„)|Ò„| fl

2

fllflv
. (11)

Here, T denotes the temperature, Tsat the saturation temperature, L the liquid latent heat of164

vaporization, cp the specific heat, cpl (resp. cpv) the specific heat in the liquid (and vapor) phases165

respectively, and k the thermal conductivity. Due to mass transfer, the level set equation (1) is166

consequently modified into167

ˆt„ +
3
u ≠ fl

fllflv
ṁ

Ò„

|Ò„|

4
· Ò„ = 0 , (12)

for the interface to be convected not only by the Navier–Stokes velocity, but also the velocity of168

the vapor front. The mass transfer rate ṁ in the aforementioned general formulation is computed169

based on the balance of fluxes at the interface, hence170

ṁ =
s

�i
”‘(„)(≠kvÒTv + klÒTl) · nd�is

�i
”‘(„)d�i

, (13)

where we sum over all elementary volumes �i intersected by the interface.171

2.4. Variational multiscale modeling172

All equations are solved using equal-order linear approximations for the velocity and pressure173

variables, for which we employ stabilized weak forms cast in the Variational Multiscale (VMS)174

framework. This approach enhances the stability of the Galerkin method by introducing addi-175

tional integrals over the element interior. It e�ectively mitigates the node-to-node oscillations176

that typically arise when discretization schemes violate the Babuska–Brezzi condition. The fun-177

damental concept involves decomposing all quantities into large and small-scale components, rep-178

resenting di�erent levels of resolution. The e�ect of the unresolved small-scale details, beyond the179

finite element mesh resolution, is approximated on the large scale through consistently derived180

residual-based terms. Extensive validation and verification of this numerical framework accuracy181

and reliability are detailed in [27]. Interested readers are encouraged to consult this reference for182

comprehensive information on the VMS formulations, stabilization parameters, and discretization183

schemes applied to the phase-change model.184
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Figure 2: Sketch of the present single-step PPO action-loop.The quenching CFD environment with phase change

and the DRL agent are coupled two-way through actions and rewards.At each episode, the same input state s0 is

provided to the agent, which in turn provides n actions to n parallel environments. The latter return n rewards,

that evaluate the quality of each action taken. Once all the rewards are collected, an update of the agent parameters

is made using the PPO loss (14).

3. Deep reinforcement learning and single-step proximal policy optimization185

In the following, quenching processes are optimized by solving a decision-making problem with186

reinforcement learning (RL), a method by which an agent learns to maximize rewards through187

trial-and-error interactions with its environment. At each step, the agent observes the state st of188

the environment and takes an action at, which leads to a reward rt and a transition to the next189

state st+1. This repeats until a termination state is reached, the primary goal of the agent being190

to learn a sequence of actions that maximizes its cumulative reward over an episode (which is the191

reference unit for agent update). In the present context, the environment is a CFD simulation with192

phase change, that uses the stabilized finite element framework described above. The agent is a193

RL-trained neural network coupled two-way with the environment, as illustrated in Fig. 2: on the194

one hand, the actions sampled by the agent are used to generate the workpieces meshes immersed195

in the CFD simulation. On the other hand, the reward function needed by the agent to learn (here,196

a measure of cooling homogeneity) is obtained by post-processing of the CFD data.197

3.1. Single-step deep reinforcement learning198

In deep reinforcement learning (DRL), the agent is implemented as a neural network, most199

often structured into a series of fully connected layers, with information flowing from the input200

layer to the output layer through hidden layers, each of which acts as a function from Rm to201

Rn. The neural network learns the relationship between input (action) and output (reward) data202

by iteratively adjusting the weights and biases through a process known as back-propagation,203

which moves from the output layer back through the hidden layers and to the input layer. This204

training process enables the network to refine its predictions and improve performance over time.205

In classical DRL, network updates are performed after multi-step episodes for the agent to learn the206

set of actions a
ı yielding the highest possible reward. The present approach is conversely cast in the207

single-step deep reinforcement learning framework, an approach that has emerged from the premise208

that network updates can be performed after one-step episodes (of single-step episodes, hence by209

extension, single-step DRL) if the optimal behavior to be learned is independent of state. A single-210

step DRL agent learns instead the optimal mapping f◊ı such that a
ı = f◊ı(s0), where s0 is an211

input state, usually a constant vector, repeatedly passed to the agent (hence the stateless moniker).212

A significant advantage of single-step DRL is that it allows to use much smaller networks compared213

to the typical architectures used in traditional DRL approaches. This is because the agent does214

not need to learn a complex state-action relationship but only the transformation from a constant215

input state to a specific action.216

3.2. Single-step proximal policy optimization217

In the following, a neural network is trained with single-step Proximal Policy Optimization, the218

single-step variant of the ubiquitous PPO RL algorithm introduced in Ref. [24, 25] and shown in219

Ref. [16] to hold potential as a reliable, go-to black-box optimizer for natural and forced convection220
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heat transfer enhancement. In short, one neural network outputs the mean and variance of a d-221

dimensional multivariate normal distribution (with d the dimension of the action required by the222

environment). All variables are assumed to have equal variance and to be uncorrelated, meaning223

that the covariance matrix is identity, thereby establishing an isotropic sampling region for the224

upcoming episode. Actions drawn in [≠1, 1]d are then mapped into relevant physical ranges, a step225

deferred to the environment as being problem-specific. Just like PPO, the algorithm computes226

adaptive learning rates for each policy parameter based on the gradient of the loss function227

Ea≥fi◊

5
min

3
fi◊(a)

fi◊old(a) , 1 + ‘ sgn ( ‚Afi◊ (a))
4

‚Afi◊ (a)
6

, (14)

where ‚Afi◊ serves as a biased estimator of the advantage function A
fi◊ , quantifying the convenience228

of taking action a compared to the average value (normalized to zero mean and unit variance).229

The ‘ parameter defines a clipping range that limits how much the new policy can deviate from the230

old policy. A negative (positive) advantage decreases (increases) the likelihood of taking action a,231

but always within a proportion smaller than ‘. If this threshold is exceeded, the policy change is232

constrained by a ceiling of 1+‘ (or a floor of 1≠‘), enforced by the minimization operation in Eq. (1)233

and its corresponding argument. This cautious approach inherited from the parent algorithm [35]234

ensures that the current and updated policies exhibit similar behavior, which prevents the agent235

from making abrupt policy changes that could lead to significant performance deterioration. A236

nuanced distinction between PPO and its single-step variant that is worth mentioning is that PPO237

operates as an actor-critic framework, where an actor network learns the policy and a critic network238

estimates advantages. In contrast, single-step PPO does not rely on critic evaluations (thus not239

following the actor-critic paradigm), as it involves only a single state-action pair trajectory. Setting240

the discount factor “ = 1 adjusts the balance between immediate and future rewards, simplifying241

the advantage to the whitened reward, as further explained in Ref. [25].242

Figure 3: Benchmark minimization problems for the (a) two- and (b) five-dimensional Rosenbrock functions,

and (c) the two-dimensional Branin function, using the present single-step PPO algorithm and reference (µ-⁄)-ES

and CMA-ES evolutionary algorithms.

For context, the convergence properties are illustrated in figure 3 for minimization test cases243

of two- and five-dimensional Rosenbrock functions, whose global minimum is notoriously di�cult244

to catch, and two-dimensional Branin function, that has two identical global minima. Single-245

step PPO is benchmarked against classical (µ ≠ ⁄)-ES and CMA-ES evolutionary methods, all246

implemented in in-house production codes. The initial parameters and starting points are identical247

for all methods to ensure a fair comparison. All runs are a�orded the same budget, namely 500248

evaluations for Rosenbrock (20 episodes with 5 parallel environments per episode in PPO vs. 20249

generations with 5 individuals per generation in ES algorithms) and 50 evaluations for Branin (10250

episodes with 5 parallel environments per episode in PPO vs. 10 generations with 5 individuals per251

generation in ES). A large initial standard deviation is used by default, to ensure a good exploration252

of the optimization domain. Finally, in order to emphasize flexibility and generalizability, all PPO253

runs are tackled without fine-tuning of the algorithm, so all runs use the same meta-parameters,254

namely two steps mini-batches to update the network for 32 epochs, with learning rate set to255
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Figure 4: Schematic of the 2-D di�erentially heated cavity set-up. The gray shade indicates the insulated walls.

0.005 and PPO loss clipping range to ‘ = 0.2. Performances are averaged over 10 runs, with256

standard deviations shown as the light shade around. Unsurprisingly, CMA-ES performs best,257

which reflects the improvement of e�ciently elongating the research area to suit the shape of the258

cost function. Among isotropic exploration methods, single-step PPO achieves final cost levels259

similar to (µ ≠ ⁄)-ES, with faster convergence and better performance at intermediate stages (the260

final performance level ultimately saturates for the Rosenbrock function because the minimum is261

in a long, narrow valley, and PPO and (µ ≠ ⁄)-ES use isotropically sampled approximations of the262

descent direction. The general conclusion is that 1. single-step PPO exhibits strong performance263

compared to methods relying on similar isotropic search distributions, and 2. it is imperative to264

utilise anisotropic search distributions to outperform more advanced methods on a consistent basis,265

an issue that is being addressed in current research e�orts by the authors [36].266

4. Control of Rayleigh–Bénard convection267

4.1. Case description268

In order to assess the method’s capability compared to data available in the literature, this269

section tackles the control of Rayleigh–Bénard (natural) convection in the two-dimensional dif-270

ferentially heated cavity sketched in figure 4(a). This is a widely studied benchmark system for271

thermally-driven flows, relevant in nature and technical applications (e.g., ocean and atmospheric272

convection, materials processing, metallurgy), that is thus suitable to assess relevance of the nu-273

merical framework. The canonical initial condition is a fluid at rest that is being heated from the274

lower wall and/or cooled from the upper wall, with natural convection ensuing as a result of the275

induced temperature gradients and fluid-buoyancy e�ects. A Cartesian coordinate system is used276

with origin at the lower-left edge, horizontal x-axis, and vertical y-axis. The vertical sidewalls are277

perfectly insulated from the outside (adiabatic). The horizontal walls are isothermal: the upper278

wall is kept at a constant “cold” temperature Tc, and the lower wall is entirely controllable via a279

space-varying “hot” distribution Th(x) such that ÈThÍ > Tc, where the brackets denote the average280

over space the x-position along the hot wall. Several studies have reported the benefits of similarly281

using DRL for natural convection heat transfer performance in laterally and bottom-heated square282

cavities [15, 16]. Here, a laterally extended domain with aspect ratio 4:1 is considered, for which283

the rationale is twofold: first, the convection cells are closer to the unconstrained cells obtained284

in wide domains relevant for industrial use. Second, control is more demanding, as it makes more285

di�cult for the DRL agent to use the walls to move around and break the cells.286

In this case of no phase change, the governing equations are the classical Navier–Stokes and287

heat equations written under the Boussinesq approximation as288

Ò · u = 0 , (15)
fl(ˆtu + u · Òu) ≠ Ò · (2µ"(u)) + Òp = ≠fl—(T ≠ Tc)g , (16)

flcp(ˆtT + u · ÒT ) = Ò · (⁄ÒT ) , (17)

where — is the thermal expansion coe�cient, and we use Tc as Boussinesq reference temperature.289

The above equations are solved assuming no-slip on the walls and temperature boundary conditions290

ˆxT (0, y, t) = ˆxT (4H, y, t) = 0 , T (x, 0, t) = ÈThÍ + T̃h(x) , T (x, H, t) = Tc , (18)
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where T̃h is a zero-mean (in the sense of the space-average) hot temperature fluctuation, whose291

magnitude is bounded according to292

|T̃h(x)| Æ �Tmax , (19)

to avoid extreme and nonphysical temperature gradients. This system is controlled by the Rayleigh293

and Prandtl numbers, set here to Ra = 104 and Pr = 0.71 (air value at room temperature) using294

the cavity height, the heat conductivity time, and the (time and space-constant) di�erence between295

the mean horizontal temperatures as reference scales.296

4.2. Control and reward297

Following [15, 16], we seek to optimize the distribution of hot temperature fluctuations T̃h298

by training a DRL agent in selecting piece-wise constant temperatures over 4ns identical seg-299

ments (labeled from left to right), each of which allows only two pre-determined states referred300

to as hot or cold. This is intended to reduce the complexity and the computational resources, as301

large/continuous action spaces are known to be challenging for the convergence of RL methods [37].302

All results reported herein are for �Tmax = 0.75, for the hot temperature to vary in the range303

from 0.25 to 1.75.304

Based on the topology of the baseline, uncontrolled solution (more details in the following),305

symmetric actuation with respect to the vertical centerline is used, in which the network outputs306

ns discrete values T̂h,kœ{1...ns} = ±�Tmax, mapped into actual physical fluctuations over the first307

ns segments using308

T̃h,k = T̂h,k ≠ ÈT̂h,kÍ

maxlœ{1...ns}

A
1,

|T̂h,l ≠ ÈT̂h,lÍ|
�Tmax

B , (20)

to fulfill the zero-mean and upper bound constraints. This pattern is mirrored over the ns following309

segments, then repeated over the next 2ns segment, according to310

T̃h,k =

Y
]

[

T̃h,2ns+1≠k , if ns < k Æ 2ns ,

T̃h,k≠2ns , if 2ns < k Æ 3ns ,

T̃h,4ns≠k+1 , if 3ns < k Æ 4ns .

(21)

We avoid nonphysical sharp discontinuities across segments using hyperbolic tangent functions to311

regularize the temperature fluctuation on each segment relatively to its immediate neighbors. This312

ensures continuously di�erentiable actuation from one segment to another, and is accounted for313

in practice to impose the zero-mean condition from (20)-(21). We set here ns = 10, a spatial314

granularity of 10 segments per vortex of the uncontrolled solution, that has been found to allow315

suitable controllability.316

The agent is incentivized to alleviate convective heat transport by receiving the reward rt =317

≠Nu, where Nu is the Nusselt number defined as the non-dimensional temperature gradient av-318

eraged over the hot bottom wall (hence rt = 1 if heat transfer is by pure conduction, and rt > 1319

otherwise). All values are computed from 400 points (100 per vortex of the uncontrolled solution)320

uniformly distributed along the hot bottom wall. A typical DRL simulation runs on 64 CPU cores,321

using 8 environments of 8 CPU each. The agent is a fully connected network with two hidden layers322

holding two neurons. The resolution process uses eight environments and two steps mini-batches323

to update the network for 32 epochs, with the learning rate set to 0.005 and PPO loss clipping324

range to ‘ = 0.2. The agent then generates an improved batch of actions for the next generation,325

and the process repeats until convergence is achieved.326

4.3. Results327

Using the numerical methods described in the previous sections, the uncontrolled solution is328

computed starting from an initial condition of zero velocity and uniform temperature equal to Tc.329

Every five time steps, anisotropic mesh adaptation is performed under the constraint of a fixed330

number of elements nel = 80000, using velocity and temperature as multiple-component adaptation331

9



(a)

(b)

Figure 5: Uncontrolled twin-cell steady state solution. (a) Iso-contours of the temperature between 0 and 1. (b)

Iso-contours of the velocity magnitude between 0 and 30, together with the corresponding anisotroic adapted mesh.

criterion (but no level-set, as the solid is solely at the boundary of the computational domain, where332

either the temperature, or the heat flux is known). As shown in figure 5(a,b), the cold downwelling333

and hot upwelling fluid organizes into a twin-cell configuration made up of two pairs of counter-334

rotating vortices, that ultimately becomes stationary. This occurs after approximately 15 time335

units, after which the Nusselt number converges to a value of Nu = 2.56. The corresponding336

adapted mesh shown in the right half of figure 5(b) stresses that all boundary layers are sharply337

captured via extremely stretched elements, and that the adaptation strategy yields refined meshes338

near high temperature gradients and close to the side walls. Note however, the mesh refinement339

is not only along the boundary layers but also close to the recirculation regions near the cavity340

center, while the elements in-between are coarser and essentially isotropic.341

Control runs comprise of 100 learning episodes, each of which marches in time the above baseline342

initial state for a duration of 300 time units using time step �t = 1. This represents 800 simulations343

per run, each of which is performed on 8 cores and lasts 40mn, hence 530h of total CPU cost per344

run (about 65h in wall time). It is out of the scope of this work to analyze in details the flow345

patterns that develop when control is applied at the bottom of the cavity. Su�ce it to say that the346

outcome consistently exhibits twin-cell patterns of varying size and magnitude, accompanied by347

corner eddies at the bottom of the cavity. This is best seen in figure 6 through several iso-contours of348

the steady-state temperature, each of which corresponds to a di�erent learning episode performed349

over the course of the DRL optimization, and thus, to a di�erent temperature distribution at350

the hot bottom wall. For all cases, steady state is achieved within a few ten time units, but351

the counter-rotating vortices must occasionally exchange place to suit the specifics of the control,352

which may take up to a few hundred time units. Mesh adaptation is an asset in this regards, as353

it allows to capture the anisotropy of the transient and asymptotic dynamics, intensified by the354

sharp (albeit continuous) boundary conditions; see in figure 7 the detailed time-evolution of the355

temperature field for the one control episode that yields the steady-state in figure 6(d), together356

with the corresponding adapted meshes. We show in figure 8 the evolution of the reward (Nusselt357

number), for which performances have bean averaged over 5 independent runs, as is customary358

in machine learning evaluation. The run-averaged mean Nusselt number during the optimization359

process is shown as gray line, with standard deviations shown as the light shade around. Finally,360

the black line shows the moving average Nusselt number, computed from the run-averaged mean361

as the sliding average over the 50 latest reward values (or the whole sample if it has insu�cient362

size). The latter decreases monotonically and reaches a plateau after about 30 episodes, although363

we notice that sub-optimal distributions keep being explored occasionally.364

The optimal computed by averaging over the 10 latest episodes (hence the 800 latest instant365

values) is 2.03, which corresponds to an e�ciency of about 20% compared to the uncontrolled case.366

As evidenced by the best temperature distribution over the 5 optimization runs in figure 9, this367

requires providing a much wider plume by heating on either side of the vortex cores, although368

convection ultimately remains, consistently with the results in Ref. [16] at the same Rayleigh369

10



(a)

(b)

(c)

(d)

(e)

Figure 6: Iso-contours of the steady-state controlled temperature, computed between 0 and 1 under several zero-mean

temperature distributed at the hot bottom wall. Each sub-plot illustrates a di�erent learning episode performed

over the course of the DRL optimization.

number. The authors in Ref. [15] conversely report complete suppression using a classical multi-step370

DRL algorithm adjusting dynamically the temperature from appropriate sensing of flow changes,371

but this only reflects the sub-optimality of operating under an open-loop strategy. For the sake372

of completeness, we note that a mitigation in similar proportions (with e�ciency of about 23%)373

is reported in Ref. [17] using multi-step DRL, but this is yet another setup in which symmetry is374

assumed at the lateral ends of the cavity, which makes it di�cult to further compare.375

5. Control of quenching cooling rate in a 2-D open tank376

5.1. General case description377

We aim now at controlling quenching in the two-dimensional, rectangular tank described in378

figure 10, that has width 0.6m and height 0.4m. Four workpiece geometries of increasing complexity379

are considered, as seen in figure 11, that we refer to as rectangular brick, U-bend, serpentine and380

teeth, and whose width d (that drives the immersion depth to allow adjusting the insertion angle381
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7: Instantaneous distribution of the controlled temperature, computed between 0 and 1 for the learning

episode leading to the steady state in figure 6(d). The snapshots are sampled (from top to bottom) every 20 time

units from 0 to 140 time units, after which the steady state from figure 6(d) is recovered in (g).
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Figure 8: Evolution per learning episode of the instant (in grey) and moving average (in black) Nusselt number,

computed by averaging over 20 independent runs. The horizontal dashed line marks the baseline uncontrolled value.

Figure 9: Same as figure 7 for the optimal controlled solution.

Figure 10: Sketch of the 2-D quenching numerical experiment

without contact with the bottom of the tank) is between 0.08m and 0.11m. A Cartesian coordinate382

system is used with origin at the center of the tank, horizontal x-axis, and vertical y-axis. The383

quenchant (here, water) is initially at Tl = 25¶C, while the initial temperature of the metal alloy384

(Inconel) is Ts = 880¶C. The saturation temperature of water at normal temperature and pressure385

conditions is taken to be Tsat = 100¶C. Dirichlet boundary conditions for velocity and temperature386

boundary conditions are applied on the boundaries of the tank while the top is kept as a free surface.387

Each simulation runs for 60s of cooling time, with time steps �t ranging between 0.005 and 0.1s388

and number of elements ranging between 20000 and 70000, depending upon the case sti�ness. The389

mesh adaptation algorithm presented in section 2 continuously tracks the evolving vapor phase by390

remeshing every 5 time steps with minimum mesh size kept at 0.5mm to minimize errors at the391

interface.392

5.2. Control, reward and sensor placement393

The quantity being optimized is the orientation of the workpiece measured by its angle ◊ with394

the horizontal, with the understanding that ◊ is positive for a clockwise rotation up to 180¶, and395

◊ = 0¶ corresponds to the baseline orientation shown in figure 11. It is worth emphasizing that396

unlike the above Rayleigh-Bénard convection case, the action space here is continuous, although397
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(a) (b) (c) (d)

Figure 11: Workpiece geometries for the various test cases in section 5, together with associated sensor placement.

(a) Rectangular brick, (b) U-bend, (c) serpentine, and (d) teeth geometry.

“ Tl Ts µ fl ⁄ cp d np

- - 880 0.001 8000 11.4 435 Solid

Rectangular brick 0.08 15
U-bend 0.08 21

Serpentine 0.11 45
Teeth 0.08 15

0.07
25 - 0.005 1000 0.6 4185 Liquid

0.001 1.7 0.025 2010 Vapor

Table 1: Numerical parameters used in the 2-D quenching numerical experiment. All values in SI units, with the

exception of temperatures given in Celsius.

all angles reported in the following are rounded to the nearest integer to ease the reading. The398

network action output therefore consists of a single value x̂ in [≠1; 1], mapped into the actual angle399

according to400

◊ = ◊max
x̂ + 1

2 ≠ ◊min
x̂ ≠ 1

2 , (22)

where we set ◊max = ≠◊min = 180¶. An ideal control would target a very small temperature401

di�erence (ideally zero) between any two points of the workpiece at any given time during the entire402

quenching duration. Since the workpiece in quenching is initially heated to a uniform temperature,403

one way of mathematically achieving this objective is by forming a reward function that penalizes404

the agent proportional to the maximum heat flux flowing out of the workpiece at every instant.405

This forces the DRL agent to homogenize the heat flux out of the workpiece, which achieves406

indirectly homogeneous temperature distribution. Local temperature and temperature gradient407

information (as heat flux is directly proportional to temperature gradient) is thus recorded during408

the simulation at Np specific sensor locations in the workpiece, after which we compute the reward409

following the gradient strategy presented in [16], meant to approximate the averaged magnitude410

of the tangential heat flux from (except that all averages are performed here in space and time to411

encompass the whole history of phase change occurring of the quenching process). This information412

can help the agent update its policy so that future actions to minimize the largest gradient in a413

specific direction.414

The probes information and placement for each geometry are documented in Table 1 and figure415

11, respectively. For the rectangular brick and the teeth geometries, the probes are arranged in416

an array of nx columns and ny rows with resolutions �x and �y. The following formula gives an417

estimate of the tangential heat flux by averaging the norm of the temperature gradient in time and418

across rows and columns in x and y directions, respectively:419

È||ÒÎT ||Íi = 2
ny ≠ 1 |

ÿ

j ”=0
sgn(j)||ÒT ||ij | , (23)

È||ÒÎT ||Íj = 2
nx ≠ 1 |

ÿ

i ”=0
sgn(i)||ÒT ||ij | , (24)

where subscripts i, j and ij denote quantities evaluated at x = i�x, y = j�y and (x, y) =420

(i�x, j�y), respectively, and symmetrical numbering is used for the center probe to sit at the421
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intersection of the zero-th column and row. The reward rt = ≠È||ÒÎT ||Í fed to the DRL agent is422

given by the average of the quantities calculated before as,423

È||ÒÎT ||Í = d

Tref

1
nx + ny

ÿ

i,j

È||ÒÎT ||Íi + È||ÒÎT ||Íj , (25)

which specially yields rt = 0 for a perfectly homogeneous cooling. For the U-bend and serpentine424

geometries, a conformal mapping from rectangular to circular sector is used to distribute a similar425

array of probes on the actual workpiece geometry, in which case the above relations carry over426

provided the i and j indices are taken to refer to the unmapped sensor positions.427

5.3. Rectangular brick test case428

We start with the most straightforward and popular quenching geometry possible: the rectan-429

gular brick. The evolution of the rewards and actions for 320 episodes (40 episodes) is presented430

in figure 12(a) and (b), respectively. Initially, the agent randomly explores the action space to431

learn from the rewards. It is rather intuitive that for ◊ = 0¶ configuration shown in figure 13(a),432

the uneven vapor accumulation will cause di�erential cooling at the top and bottom surface of433

the workpiece, in turn leading to di�erential properties and thermal distortions. Moreover, the434

associated vapor film evolution pattern shows that a thick vapor film forms on the upper surface435

compared to the lower surface, that creates thermal insulation. For these reasons, it is standard436

practice in the industry to avoid this configuration. Nonetheless, it is interesting that the DRL437

agent learns this aspect without prior knowledge of boiling physics in the first few episodes. As438

the insertion angle increases to ◊ = 17¶ (rounded to the closest integer), the vapor film insulation439

accumulates on the top left corner, causing high temperature in this corner up to t=20-30s; see440

figure 13(b). It is worth mentioning that the workpiece temperature is close to the recrystalliza-441

tion temperature in some zones; hence such skewed temperature distribution will cause worst grain442

growth (and material properties) than in the previous case. The reward keeps decreasing until443

the brick is again set to achieve similar states due to the geometrical symmetry, after which the444

DRL agent settles in a range from 50¶ to 150¶ (which is rather fortuitous since the agent does445

not learn about symmetries under the optimization process [16]), and it takes a dozen episodes446

for the variance to start diminishing. At this stage, the insertion angle ◊ = 68¶ shown in figure447

13(c) yields an overall better temperature evolution throughout the quenching process (compared448

to the early actions taken by the agent). It is intriguing to see that for this configuration, the vapor449

film does not initially accumulate on either of the large edges, and the bubble nucleation occurs450

from both surfaces, producing a homogeneous temperature distribution. However, after t=30s, the451

bubble nucleation stops on the left side, creating a thin vapor film, after which the temperature452

distribution is skewed for the rest of the process. It is out of the scope of this work to analyze453

in details this subtle bubble dynamics, but these observations su�ce to highlight the sti�ness of454

boiling physics applied to quenching at di�erent insertion angles, as it is at least challenging, if not455

impossible, for an experienced professional to anticipate the behaviors discussed herein above just456

by inspection, even in a simplified 2-D case. The optimal insertion angle for this case is found to457

be ◊ = 97¶ ± 2¶, with the associated reward rt = 235 ± 17. This is slightly tilted from ◊ = 90¶,458

which forces the upper surface to convect more vapor mass due to the latter having lower specific459

density. It is also shown in figure (13(d) to avoid vapor entrapment along the long and short edges460

while attaining maximum e�ective length to improve natural convection. It is imperative to note461

that, in this case, the bubble nucleation occurs throughout the process with equal intensity from462

both surfaces. This can be one of the indications (along with the uniform temperature profiles)463

that the current state is arguably the optimum state achieved by the DRL.464

5.4. U-bend test case465

The U-bend is another common geometries treated in the industry. Similar to the previous case,466

the test case is set up with a total of 320 simulations (40 episodes), whose rewards and actions467

evolution is shown in figure 16. One of the most popular configurations for this geometry is the in468

the quenching industry is the inverted-U shape[38] illustrated in figure 15(a) that corresponds to469

◊ = 180¶. In this case, the nucleation of the bubbles mostly occurs at the top of the curved part470

while the two thongs are covered in a thick vapor film. This leads to a di�erential temperature471
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(a) (b)

Figure 12: (a) Evolution per learning episode of the instant (in grey) and moving average (in black) reward for the

rectangular brick test case. (b) Same as (a) for the workpiece insertion angle.

(a)

(b)

(c)

(d)

Figure 13: Temperature evolution for the rectangular brick test case inserted at various angles. (a) ◊ = 0
¶
, (b-d)

random angles selected over the course of optimization, and (e) ◊ = 97
¶
, the optimal angle selected by the DRL

agent. The snapshots are sampled (from left to right) every 10s from 0 to 50s. The iso-contours in the solid (resp.

in the fluid) show the temperature field between 0 and 880
¶
C (resp. the density field between 1.7 and 8000 kg/m

3
).
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(a) (b)

Figure 14: (a) Evolution per learning episode of the instant (in grey) and moving average (in black) reward for the

U-bend test case. (b) Same as (a) for the workpiece insertion angle.

distribution within the solid as the mid portion of the workpiece cools faster than two thongs472

creating three di�erent temperature zones. Another obvious strategy is the U configuration in473

figure 15(b), that corresponds to ◊ = 0¶. It yields a more uniform temperature distribution than474

the inverted U configuration, but one that i remains skewed. Meanwhile, it takes DRL agent475

approximately 50 episodes to find an optimal insertion angle ◊ = ≠171¶ ± 2¶ associated to reward476

269 ± 8. The latter corresponds to a beneficial tilt of the U configuration that slightly reduces the477

skewness in the temperature profile, and achieves a more homogeneous distribution at all profile478

at all intermediate time steps, as shown in figure 15(d). Again, we only aim here at assessing479

the ability to output unanticipated quenching solutions using DRL, so explaining the complex480

underlying physics remains out of scope at this stage, but it should be noted again that such481

dynamics are complicated to spot with mere observation, even to the shrewd eye.482

5.5. Serpentine483

The serpentine (or double U-bend) is a more complex geometry for which inferring an optimal484

insertion angle is a really challenging task. We train here the DRL agent with a total of 640485

simulations (80 episodes), with rewards and actions evolution reported in figure 16. For this case,486

it takes about 25 episodes to converge to an optimal 77¶ ± 2¶, which yields a reward 863 ± 20. In487

this setting, the temperature profile in the two U-bends is almost the same (symmetric) over the488

whole quenching process, as shown in figure 17(d). This is highly non-trivial, given the di�culty489

to achieve homogeneous cooling in a single U-bend, discussed in earlier sections. By comparison,490

at ◊ = 0¶ (figure 17(a)), one half of the geometry loses heat faster than the other one (which can491

yield incrased residual stresses), while at ◊ = 90¶ (figure 17(b)), the upper and middle parts of the492

geometry remain hotter compared to the other sections. The other angle reported in figure 17(c)493

yield di�erential cooling in the upper and middle section as the vapor gets entrapped in this region,494

insulating it further.495

5.6. Teeth geometry496

The teeth geometry is a highly complicated geometry inspired by actual industrial components,497

one that has no axis of symmetry, which makes inferring an optimal insertion angle completely498

impossible. The agent is trained with a total of 320 simulations (40 episodes); see figure 18 for499

the associated rewards and actions. While we do not strictly speaking achieve convergence for this500

case, as evidenced by the substantial variations in the insertion angles achieved over the last part of501

training, the agent succeeds in identifying a relevant range of parameters in the order from 100 to502

180¶. If we compare to the results obtained at empiric angles (◊ = 0¶
, 45¶

, 90¶), it is seen in figure 19503

that DRL produces a rather homogeneous temperature profile. As evident from previous cases, the504

workpiece face where vapor film accumulates and bubble creation occurs is always hotter compared505

to other regions. At ◊ = 90¶, this vapor accumulation causes skewed temperature profile in both506

horizontal (due to vapor accumulation) and vertical (due to thickness) directions; see figure 19(a).507

In other words, the geometry region that is thinner and immersed deeper, always cools first. This508
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(a)

(b)

(c)

(d)

Figure 15: Temperature evolution for the U-bend test case inserted at various angles. (a) ◊ = 0
¶
, (b) ◊ = 180

¶
,

(c) ◊ = ≠85
¶
, and (d) ◊ = ≠171

¶
, the optimal angle selected by the DRL agent. The snapshots are sampled (from

left to right) every 10s from 0 to 50s. The iso-contours in the solid (resp. in the fluid) show the temperature field

between 0 and 880
¶
C (resp. the density field between 1.7 and 8000 kg/m

3
).

carryies over to the other empiric setting considered, namely ◊ = 0¶ in figure 19(b) and ◊ = 45¶ in509

figure 19(c), where the thick region stays hotter compared to the teethes and thongs. Despite the510

lack of convergence (discussed in the next section), the DRL agent seems to learn these nuances511

by proposing a solution to insert the workpiece upside down, which increases the heat flux from512

the thick region (due to natural convection), while the heat flux from the thin teethed decreases513

due to added insulation coming from the vapor films.514

6. Conclusion and recommendations for future research515

6.1. Conclusion516

In this work, a numerical framework is presented, in which a fully connected network learns517

to find optimal parameters in the process of quenching heat treatment. The agent is trained518

with the single-step PPO deep reinforcement algorithm, and gets only one attempt per learning519

episode at finding the optimal. The numerical reward fed to the network is computed with a520
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(a)

(b)

Figure 16: (a) Evolution per learning episode of the instant (in grey) and moving average (in black) reward for the

serpentine test case. (b) Same as (a) for the workpiece insertion angle.

stabilized finite elements CFD environment solving a phase change model formulated after pseudo-521

compressible Navier–Stokes and heat equations, using a combination of variational multi-scale522

modeling, immerse volume method, and multi-component anisotropic mesh adaptation.523

Relevance of the proposed methodology is illustrated by controlling natural convection in a524

closed cavity with aspect ratio 4:1, for which DRL alleviates the flow-induced enhancement of heat525

transfer by approximately 20%. Regarding quenching applications, the DRL algorithm succeeds in526

finding optimal orientations that adequately homogenize the temperature distribution within both527

simple and complex 2-D part geometries, and improve over simpler trial-and-error configurations528

classically used in the quenching industry. Such results clearly stress that single-step PPO (and529

DRL in general) can be e�ective to explore and discover new solutions from unforeseen parameter530

combinations in quenching applications.531

6.2. Strategies towards practical application532

As an exploratory study, the current research provides preliminary evidence of the ability of the533

proposed DRL-CFD framework in optimizing complex quenching processes by improving cooling534

uniformity to mitigate thermal residual stresses. The presented results are encouraging, but more535

work is needed to to confirm and extend our conclusions, and to fully scope out the potential of the536

approach in real-world scenarios. In concluding the present paper, it is thus proposed to discuss537

key directions for improvement, all intended to help bridge the gap between the current capabilities538

and the requirements of practical deployment.539

Quenching is a complex thermomecanical process that can be cast as a thermal fluid-structure540

interaction problem involving the simultaneous resolution of turbulent flows with phase change541

and conjugate heat transfers between the solid and the fluid subdomains. Overall, the field is ever542

evolving, and there is a clear need for improved CFD models capable of dealing with this problem in543

all its complexity. A high-fidelity adaptive, multiphase DRL-CFD framework predicting accurately544

the phase change at the liquid-vapor interface, but also the phase transformation of the treated545
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(a)

(b)

(c)

(d)

Figure 17: Temperature evolution for the serpentine test case inserted at various angles. (a) ◊ = 0
¶
, (b) ◊ = 90

¶
,

(c) random angle selected over the course of optimization, and (d) ◊ = 77
¶
, the optimal angle selected by the DRL

agent. The snapshots are sampled (from left to right) every 10s from 0 to 50s. The iso-contours in the solid (resp.

in the fluid) show the temperature field between 0 and 880
¶
C (resp. the density field between 1.7 and 8000 kg/m

3
).

(a) (b)

Figure 18: (a) Evolution per learning episode of the instant (in grey) and moving average (in black) reward for the

teeth geometry test case. (b) Same as (a) for the workpiece insertion angle.
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(a)

(b)

(c)

(d)

Figure 19: Temperature evolution for the teeth geometry test case inserted at various angles. (a) ◊ = 90
¶
, (b)

◊ = 0
¶
, (c) ◊ = 45

¶
, and (d) ◊ = 180

¶
, in the optimal range selected by the DRL agent. The snapshots are sampled

(from left to right) every 10s from 0 to 50s. The iso-contours in the solid (resp. in the fluid) show the temperature

field between 0 and 880
¶
C (resp. the density field between 1.7 and 8000 kg/m

3
).

part to predict its metallurgical evolution, will thus be instrumental in providing industrially rel-546

evant process parameters encompassing not only the thermal residual stresses caused by large547

temperature gradients (as has been done here), but also the volumetric residual stresses caused by548

martensitic transformations. By then, it is reasonable to expect that further developments in the549

fast-moving field of deep reinforcement learning will allow for faster convergence and lesser execu-550
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tion load (using, e.g., auto-encoders and systematic state compression, or on-the-fly generation of551

surrogate models with uncertainty level prediction), and will facilitate application to industrially552

relevant 3-D configurations. This should set up a framework fast enough to inform process design553

in a matter of hours rather than days, thereby reliably augmenting industrial applicability. A core554

feature of the proposed framework in this respect is its high generalizability, that is, the fact that555

it builds naturally from any improved CFD model or/and DRL training method. For instance, a556

more elaborated algorithm can easily substitute for the rather simplistic PPO framework, such as557

Policy-based Optimization [36], another single-step reinforcement algorithm that samples actions558

from full covariance matrices, and is theoretically better suited to represent higher order logic and559

to handle complex parameter interactions.560

An important limiting factor is the limited availability of process data, often a�ected to a small561

number of sensors, which can make it di�cult to develop accurate models and control algorithms562

due to high-variance output. In a broad sense, the agent operates under partially observable563

environments, so its performance is highly dependent on the quality and relevance of the available564

data (this is an issue strongly related to data-driven model reduction techniques for large scale565

dynamical systems, which usually require using measures of observability as an information quality566

metric). In this regards, we note that the reward construction strategy employed in this work puts567

constraints on how many sensors can be used and how they can be arranged in the workpiece.568

This is detrimental to learning, and may explained the overall lack of convergence observed in the569

teeth geometry, as the agent does not learn the heat flux out of the workpiece in some regions of570

interest (here, the hood) but has to figure it out from the indirect information it gets from the other571

sensors. Another explanation is that the reward is approximated from point-wise temperature data572

(similar to experimental measurements) that has more sensitivity to small numerical errors (e.g.,573

the interpolation error at the probes position) than an integral quantity, and mesh adaptation574

procedure is not a deterministic process, as the outcome depends on the processors and number of575

processors used, and any initial di�erence propagates over the course of the simulation because the576

meshes keep being adapted dynamically. For these reasons, two control parameters, even close, can577

yield di�erent rewards on behalf of di�erent interpolation errors at the probes position and di�erent578

nucleation patterns initiated by slightly di�erent initial conditions, as illustrated in figures 20 for579

the rectangular brick, the U-bend and the serpentine solution. This also likely explains why the580

variance in reward is systematically larger (by a factor of almost 5) than that of the action itself for581

all cases reported herein. Ultimately, it calls for the design of robust reward functions capable of582

guiding the learning process toward e�ective and e�cient policies even with randomly distributed583

sensors. This is no small task, in the absence of a best practice on how to design a reward function584

(this being essentially a trial-and-error process of a practitioner using their knowledge to define585

a baseline reward intended to provide a consistent feedback to the agent about its performance,586

observing how the agent performs, then tweaking the reward to achieve greater performance).587

Finally, another reason to push DRL forward in this context is the ability of neural networks to588

transfer knowledge from previous experiences, to quickly adapt to di�erent environments (ıwork-589

piece geometry and material properties, quenchant) and e�ectively learn new tasks. For instance,590

it is easy to compare di�erent settings of design complexity, reflecting di�erent levels of constrained591

operation when it comes to optimizing a practically meaningful scenarios (e.g., heavily constrained592

optimization problems relevant to cases where the practitioner has limited freedom to optimize593

the design, in which case one can seek to optimize the orientation, immersion rate and depth of594

the solid part and the fluid viscosity, or mildly constrained problems relevant to cases where the595

practitioner has great freedom to act, in which case additional parameters can include the size of596

the tank, the number, type and placement of agitators and the agitation rate). We expect that597

this will be a key feature to reduce learning time and improve neural network performance, as598

progress are made towards realizing the potential of DRL-CFD for flexible, ready-to-use control of599

industrial manufacturing processes.600
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