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Abstract

Large Language Models (LLMs), such as GPT
and LLaMA, are susceptible to generating
hallucinated answers in a confident tone.
While previous efforts to elicit and calibrate
uncertainty have shown some success, they
often overlook biases towards certain groups,
such as specific nationalities. Existing
calibration methods typically focus on average
performance, failing to address this disparity.
In our study, we demonstrate that the concept
of grouping loss is an effective metric for
understanding and correcting the heterogeneity
in confidence levels. We introduce a novel
evaluation dataset, derived from a knowledge
base, specifically designed to assess the
confidence scores of LLM responses across
different groups. Our experimental results
highlight significant variations in confidence,
which are accurately captured by grouping
loss. To tackle this issue, we propose a new
method to calibrate the confidence scores
of LLMs by considering different groups,
a process we term reconfidencing. Our
findings indicate that this approach effectively
mitigates biases against minority groups, con-
tributing to the development of fairer LLMs.
The code is available at � https:
//github.com/tigerchen52/
reconfidencing_llms

1 Introduction

While Large Language Models (LLMs) such as
ChatGPT (OpenAI, 2022) and LLaMA (Touvron
et al., 2023) can generate responses that are flu-
ent and plausible, they can also provide incorrect
and untruthful information in a confident and com-
pelling tone. This phenomenon, often called hallu-
cination, poses a notable challenge to their use (Ji
et al., 2023; Baan et al., 2023).

In response, extensive research has focused on
estimating the confidence (or uncertainty) of LLM
answers (Huang et al., 2023; Zhang et al., 2023).
Through expressions of confidence levels, we know

Tell me something about Albert Einstein e.g., a short 
bio with the birth date and place

Albert Einstein was a German-born theoretical physicist 
who is widely held to be one of the greatest scientists 
of all time. Born in the German Empire, on January 14, 
1879, Einstein grew up in Ulm, Germany. In 1905, he 
submitted a successful PhD dissertation to the 
Humboldt University of Berlin 

Figure 1: Desired user experience – An illustration of
our goals of eliciting confidence levels in LLMs. High
confidence scores are represented in green, while red in-
dicates a higher likelihood of encountering hallucinated
sentences.

to what degree to trust a statement rather than
blindly believing. Figure 1 illustrates an ideal user
experience, where LLMs document sentence-level
confidence in their answers. Methods of estimat-
ing confidence can be categorized into two groups:
White-box and Black-box methods. White-box
methods require access to internal states (Azaria
and Mitchell, 2023) or model logits (Lin et al.,
2022a) while Black-box methods rely solely on
text responses to obtain confidence scores. In
cases where the LLM allows only restricted ac-
cess to internal states (e.g., ChatGPT), black-box
methods are more suitable. These methods es-
tablish confidence scores by analyzing the consis-
tency of multiple answers to a single query (Kuhn
et al., 2022; Manakul et al., 2023) or by creating
specific prompts to capture expressed confidence
scores (Zhou et al., 2023; Xiong et al., 2023; Tian
et al., 2023).

Although some methods use calibration to adjust
the predictions of a model to better match the true
probabilities (Hendrycks et al., 2021; Gawlikowski
et al., 2021; Mielke et al., 2022; Tian et al., 2023),
these approaches predominantly concentrate on av-
erage performance metrics, often neglecting the het-

https://github.com/tigerchen52/reconfidencing_llms
https://github.com/tigerchen52/reconfidencing_llms
https://github.com/tigerchen52/reconfidencing_llms
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Figure 2: Calibration curves of the Birth_Date relation. The LLM here is Mistral-7B (MistralAI, 2023), and
we use SelfCheckGPT (Manakul et al., 2023) to compute confidence scores. An increased number of ⋆ symbols
signifies a sub-group containing more popular samples.

erogeneity among different groups. Consequently,
calibration alone proves inadequate. Even when a
calibration technique attains optimal average accu-
racy, the calibrated scores can still markedly devi-
ate from the true posterior probabilities for specific
groups of queries – a phenomenon known as the
grouping loss (Kull and Flach, 2015; Perez-Lebel
et al., 2023). As an example, let us consider a query
that asks for the birth dates of people, as in “What
is the birth date of Albert Einstein?”. We submitted
this query for 5K people to an LLM (Mistral-7B,
MistralAI, 2023), and generated a confidence score
for each answer with a consistency-based method
(SelfCheckGPT, Manakul et al., 2023). In a clas-
sic calibration analysis, we grouped the answers
into buckets by their confidence score, and com-
puted the observed ratio of correct answers in each
bucket. Figure 2a shows the corresponding calibra-
tion curve for all test samples. The curve is close
to the diagonal, which means that the confidence
score is close to the true ratio of correct answers in
each bucket. This picture changes a bit when we
split our data into popular and less popular persons
based on the backlink numbers. As shown in Fig-
ure 2b, answers on more popular entities tend to be
better calibrated than answers on long-tail entities.
The picture is even more dramatic when we split
the people by nationality (Figure 2c): While the
calibration is satisfactory for American and French
individuals, it performs dismally for almost all In-
dian and Chinese people. This illustrates grouping
loss: a model’s calibration error may be small over-
all, but can be catastrophically large for certain
sub-groups. A well-calibrated LLM might be bi-
ased, generating with high confidence untruthful
information about a particular race, gender, etc.

In this paper, we conduct a systematic study to
measure the error of the confidence estimations.

We create a new dataset that enables evaluating the
quality of confidence scores for different types of
groups. Our dataset consists of questions about
entities (people, locations, etc.) and the ground
truth from the YAGO knowledge base (Suchanek
et al., 2024). In addition, our dataset contains
features of the entities, such as popularity and
nationality, which allows us to study sub-groups
of entities. We evaluate two recently proposed
methods for deriving confidence levels: SelfCheck-
GPT (Manakul et al., 2023) and Just Ask for Cal-
ibration (Tian et al., 2023). To identify grouping
loss, we use both user-defined and latent groups.
User-defined groups rely on features (which may
be hand-crafted) such as popularity and nationality,
while latent groups are automatically identified by
decision trees (Perez-Lebel et al., 2023). Experi-
ments reveal that models like Mistral and LLaMA
tend to be overly confident across all questions. In
addition, they are more confident on some queries
than others: they display grouping loss. To improve
confidence scores, we propose an approach to ad-
just LLMs, tackling both calibration and grouping
loss. The core idea is to calibrate the confidence
score for each sub-group separately, a method we
term reconfidencing. Experimental results show
that our refined solution has a better performance
in terms of Brier score and grouping loss.

In summary, our contributions are threefold:

• We introduce a new framework and dataset
to analyze the capability of LLMs to elicit
confidence scores for different groups

• We prove the existence of the grouping loss
in LLMs and compare the heterogeneity of
confidence errors on both user-defined groups
and implicit groups

• We propose a refined way to reconfidence



LLMs from a group-level perspective, which
can reduce discrimination of minority groups
and lead to fairer LLMs.

2 Related Work

2.1 Confidence Elicitation in LLMs

To alleviate the hallucination phenomenon, some
methods attempt to elicit confidence (or un-
certainty) scores for the generated answers of
LLMs (Ji et al., 2023; Zhang et al., 2023; Huang
et al., 2023). These efforts can be roughly catego-
rized into two groups: White-box and Black-box
methods. White-box methods need access to inter-
nal states or token logits while Black-box methods
use only textual responses to compute confidence
scores.

There are three primary white-box ways to en-
courage LLMs to express uncertainty in a human-
like manner: Verbalized Probability, Internal State,
and Token Logit. The goal of verbalized proba-
bility is to teach models to convey its degree of
certainty, as in I’m 90% sure that it is.... The mod-
els are fine-tuned on particular tasks (Lin et al.,
2022a) to elicit probabilistic responses. The inter-
nal state method builds a classifier to detect the
truthfulness of a statement, which receives as in-
put the activation values of the hidden layers of an
LLM (Azaria and Mitchell, 2023). The token logit
method evaluates the probability distribution of the
words in the answer. At each step, LLMs produce
a probability distribution across the entire vocabu-
lary. Analyzing the distribution allows us to com-
pute corresponding entropy values, which serve as
indicators of confidence (Fu et al., 2023; Manakul
et al., 2023). Generally, factual statements tend
to feature tokens with higher likelihood and lower
entropy, while hallucinated texts are likely to come
from positions with flat probability distributions
with high uncertainty.

White-box methods need access to internal states
or token logits which are unavailable for some
LLMs such as ChatGPT. In such cases, one can
use black-box methods, which rely solely on the
textual answers of LLM. There are three main black
box methods. The first relies on asking the same
question to an LLM multiple times and assessing
the coherence of its responses (Kuhn et al., 2022;
Manakul et al., 2023; Lin et al., 2023; Xiong et al.,
2023). If the answers contradict each other, one
assumes a lack of confidence in the statement. The
second method uses external resources and tools to

verify the answers. For example, symbolic knowl-
edge bases and search engines can be leveraged to
fact-check LLM outputs (Gou et al., 2023; Agrawal
et al., 2023). Finally, a third branch of approaches
resorts to in-context learning prompts for obtaining
confidence scores (Zhou et al., 2023; Xiong et al.,
2023; Tian et al., 2023).

2.2 Confidence Calibration and Grouping
Loss

Ideally, a model’s confidence score should equal
the actual probability of the answer being correct.
Recent studies have shown that current power-
ful models are poorly calibrated: they are over-
confident or (more seldom) under-confident. This
holds both for modern neural networks (Guo et al.,
2017) and LLMs like GPT (Hendrycks et al., 2021).
Dedicated approaches have been proposed to cali-
brate these models (Gawlikowski et al., 2021; Jiang
et al., 2021; Park and Caragea, 2022; Kadavath
et al., 2022; Xiao et al., 2022; Mielke et al., 2022).
Yet calibration is not enough: even a perfectly cal-
ibrated classifier can have confidence scores that
are far from the true posterior probabilities for cer-
tain types of questions – a phenomenon known as
the grouping loss (Kull and Flach, 2015). Perez-
Lebel et al. (2023) recently contributed a measure
for the grouping loss, which captures heterogeneity
in the confidence score. They revealed grouping
loss on pre-trained vision and text classifiers, but
did not study generative models. In this work, we
are the first to study the grouping loss of gener-
ative models. We are also the first to propose a
method to reconfidence LLMs from the grouping
loss perspective.

3 Analyzing the Grouping Loss in LLMs

In this section, we aim to measure the calibration
of existing confidence methods and identify the
grouping loss in LLMs.

3.1 Dataset Construction

To study the grouping loss in LLM confidence
scores, we need control over the entities that ap-
pear in the questions, to vary their properties and
examine calibration errors.

For this purpose, we construct a new evalua-
tion dataset derived from the YAGO knowledge
base (Suchanek et al., 2024). YAGO contains
triples of a subject, a relation, and an object, as



in ⟨Albert Einstein, Birth Date, 1879-03-14⟩. We
select three relations: Birth Date, Founder,
and Composer. This choice is driven by the de-
sire to cover different top-level classes (people,
organizations, and creative works). Furthermore,
these relations have few objects per subject, which
makes it very likely that the KB contains the com-
plete list of objects for a given subject (Galárraga
et al., 2015). Finally, the relations cover both func-
tional relations (with one object per subject) and
non-functional ones (with potentially several ob-
jects per subject). We collect around 10 thousand
triples for each relation. Each triple comes with a
natural language question that we generate with a
template, as in “What is the birth date of the person
Albert Einstein?”.

In addition, our dataset contains some hand-
picked facts about the subject of each triple such as
nationality and gender. We also store the popularity
of an entity, which we obtained by the Backlinks
API1 and YAGO, respectively. Table 1 shows the
statistics of our dataset.

Since we need to learn decision tree classifiers
and calibrators in the subsequent experiments, the
dataset is split into training, validation, and test
sets according to the ratio of 0.25:0.25:0.50. All
the following reported scores are based on the test
set.

3.2 Experimental Settings

LLMs. In this experiment, we focus on
instruction-aligned LLMs (Ouyang et al., 2022),
which are widely used in various applications.
Also, we study open-source models since it is nec-
essary for our method to access internal input rep-
resentations when reconfidencing LLMs, which
we will talk about later. We consider three open-
source LLMs with different sizes: LLaMA (Tou-
vron et al., 2023), Mistral (MistralAI, 2023), and
Mixtral (Jiang et al., 2024), all downloaded from
HuggingFace. Note that our method is model-
agnostic and can be applied to other LLMs as well.

Methods of Eliciting Confidence. We consider
two Black-box methods for eliciting confidence
scores: Just Ask for Calibration (Tian et al., 2023)
and SelfCheckGPT (Manakul et al., 2023). Note

1www.mediawiki.org/wiki/API:Backlinks. The backlink
number shows an entity appears how many times in other
Wikipedia pages

that our framework is applicable to other confi-
dence methods as well.

Just Ask for Calibration (JAFC) uses dedicated
prompts to elicit verbalized probabilities, which
can yield better calibrations than the model’s con-
ditional probabilities. We follow the Verb. 1S top-n
setting to extract numerical probabilities. It makes
the LLM produce n guesses with probabilities, and
the answer with the highest score is selected as
the final output. The prompt used is shown in Ap-
pendix A.1.

SelfCheckGPT detects hallucinations by compar-
ing the consistency of multiple answers to the same
query. We use the version of Natural Language
Inference (NLI, also known as Textual Entailment)
to compute the confidence score. NLI determines
whether a premise entails a hypothesis, and classi-
fication labels belong to {entailment, neutral, con-
tradiction} (see, e.g., (Helwe et al., 2022) for a
formal probabilistic definition). Given a query q,
we ask an LLM to obtain a main response, which
can be regarded as a hypothesis with m sentences
{r1, r2, ..., rm}. Then, we use the same query
again to ask the LLM n times for obtaining the
premise documents D = {d1, d2, ..., dn}. The NLI
contradiction score is computed as:

P (contradict|ri, d) =
exp(zc)

exp(ze) + exp(zc)
(1)

where d is one premise document, ze and zc are
the logits of the “entailment” and “contradiction”
classes, respectively. This normalization ignores
the neutral class and ensures that the probability
is bounded between 0.0 and 1.0, where a higher
value means it is more likely to hallucinate. The
confidence score for each sentence in the main
response is then defined as:

SSelfCheckGPT(ri) = 1− 1

m

m∑
j=1

P (contradict|ri, dj)

(2)

Evaluation Protocol. Since the same entity can
have several names (Bill Gates, e.g., is called
“William Henry Gates III”), we cannot rely solely
on string matching to determine whether the an-
swer of the LLM is correct. Therefore, we use
an additional NLI model, as follows: The ground
truth in YAGO is converted to a natural sentence,
and we judge whether this premise entails the an-
swer by the LLM. Moreover, a relation can have
several objects per subject. For example, there

https://www.mediawiki.org/wiki/API:Backlinks


Relation Size Head Tail Query Example Answer Example

Birth_Date 10,000 Person Date What is the birth year of the person Albert Einstein? 1879
Founder 10,000 Business Person Who founded the business Microsoft? Bill Gates
Composer 9,419 Music Person Who composed the song Rolling in the Deep? Adele

Table 1: Description of our evaluation dataset. Note that there might be multiple answers for the founder
and composer relations and we predict only the birth year for the Birth_Date relation.

Method Birth_Date Founder Composer
Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓

LLaMA-7B-JAFC 84.38 60.4 1.61 105.55 79.34 0.88 86.78 56.83 2.1
Mistral-7B-JAFC 150.18 139.02 0.38 160.62 143.7 0.82 128.47 94.66 9.55

LLaMA-7B-SelfCheckGPT 54.08 33.56 0.28 49.99 26.47 0.55 58.67 25.56 4.67
Mistral-7B-SelfCheckGPT 11.43 1.34 0.21 21.72 9.65 0.03 24.17 3.84 0.95

Table 2: Evaluating calibration of various confidence methods. Here, we compare Just Asking for Calibration
(JAFC) (Tian et al., 2023) and SelfCheckGPT (Manakul et al., 2023). CL and GL mean calibration loss and
grouping loss, respectively. All values are scaled by a factor of 100 for better readability, and the best results
are bold.

are two composers for the song “Rolling in the
Deep”. Therefore, we iterate through all objects
in the ground truth and label the LLM answer as
correct if it corresponds to any of these objects. We
manually validated 50 randomly selected samples
and all assessments were correct. We use the De-
BERTa (He et al., 2021) model 2 fine-tuned on the
NLI data set MNLI (Williams et al., 2018).

Metrics. Given the observed binary labels Y , the
true posterior probabilities Q, confidence scores S
obtained from a model P (Y ), and the correspond-
ing average true posterior probabilities C, the diver-
gence of proper scoring rules can be decomposed
as (Kull and Flach, 2015; Perez-Lebel et al., 2023):

E [f(S, Y )] = E [f(S,C)]︸ ︷︷ ︸
Calibration Loss

+ E [f(C,Q)]︸ ︷︷ ︸
Grouping Loss

+E [f(Q,Y )]︸ ︷︷ ︸
Irreducible Loss

(3)

where f is a function that measures the divergence
between the two inputs. In this work, we consider
three metrics: the Brier Score fBS(S, Y ) (Brier,
1950), the Calibration Loss fCL(S,C), and the
Grouping Loss fGL(C,Q) (Kull and Flach, 2015;
Perez-Lebel et al., 2023). (1) The Brier score is
the squared error between the observed binary la-
bels Y –denoting correct/incorrect answers– and
the associated confidence scores S. The appealing
property of the Brier score is that it is minimum
when S = P (y). (2) Calibration Loss (CL) mea-
sures the error rate (average observed y) for a given
confidence score S: E[y|S = s]; a calibration plot,

2cross-encoder/nli-deberta-v3-large

as in Figure 2a plots this value for different values
of c. When the confidence score S equals the prob-
ability P (y), the calibration plot is on the diagonal,
and the calibration error is zero. However, the con-
verse is not true: a calibration error can be zero
and yet the confidence score differs from from the
probability P (y). The reason for this difference is
that within the observations with a predicted confi-
dence score of S, some have an actual probability
above C while others below: errors compensate
(Perez-Lebel et al., 2023). (3) Grouping Loss (GL)
is the loss due to many instances being grouped un-
der the same estimate S while having different true
posterior probabilities Q (Kull and Flach, 2015).
We reuse the method by Perez-Lebel et al. (2023)
to estimate the lower bound of the grouping loss
by looking at the dispersion in the error rate on
sub-groups of observations for a given score S.

3.3 Evaluating the Calibration of LLMs

The results of our evaluation are shown in Ta-
ble 2. We can see that Mistral-7B-SelfCheckGPT
performs the best across all tasks, indicating better
calibration performance compared to other con-
figurations. Notably, SelfCheckGPT consistently
outperforms JAFC, highlighting the inadequacy of
relying solely on prompt-based methods. Although
the three metrics for Mistral-7B-SelfCheckGPT ap-
pear relatively low, suggesting seemingly accept-
able confidence scores, it is crucial to note the
existence of sub-groups that are far from well-
calibrated. For example, sub-group analysis within
the birth date subset, based on entity popularity and
nationality, reveals the model’s poor performance
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Figure 3: Grouping diagrams of latent sub-groups.
These groups are created from the leaves of a decision
tree. SCGPT is an abbreviation for SelfCheckGPT.

for groups with infrequent persons (Figure 2b) and
Asian nationalities (Figure 2c). This phenomenon
confirms that a model may have a low calibration
error but there might be sub-groups whose con-
fidence scores deviate dramatically from the true
probabilities.

3.4 Identifying the Grouping Loss in LLMs

Table 2 has already shown the concrete values of
grouping loss for different methods. However, it is
not very clear where the grouping loss originated.
To answer this question, we visualize the behaviors
of sub-groups in each method.

Sub-group Definitions. We study two types
of sub-groups: user-defined and latent sub-groups.
For user-defined groups, we look at explicit fea-
tures such as popularity, nationality, and gender.
We split all samples into different groups based on
the entity feature of queries. User-defined groups
may not be adapted to the actual sources of het-
erogeneity in the confidence score. Therefore, we
also use optimized groups that give a tight bound
on the grouping loss. For these latent groups, we
follow Perez-Lebel et al. (2023) to employ a deci-
sion tree, using a loss related to the squared loss
for the Brier score on labels (Y ). This tree defines
sub-groups that minimize the loss on a given set of
predicted confidence scores. To prevent overfitting,
a train-test split is applied: a feature space parti-
tion is created using the leaves of the tree fitted on
one portion. The input for the decision tree is the
embedding of the top layer of an LLM for a partic-
ular query. In this way, samples with similar over-
confidence / under-confidence can be grouped to-
gether. For example, queries featuring well-known
entities may be grouped together because an LLM
excels at handling them, while queries involving

long-tail entities could form a separate group. In
practice, groups are defined over multiple different
features of queries and are thus much more subtle.

Grouping Diagrams. In a binary setting, cali-
bration curves display the calibrated scores versus
the confidence scores of the positive class, as de-
picted in Figure 2a. To visualize the heterogeneity
among distinct sub-groups within a specific bin, we
enrich this representation by including estimated
scores for each sub-group, indicating the fraction
of positives in each. As shown in Figure 3, a larger
separation among sub-groups means that the group-
ing loss is more significant. In this diagram, we use
quantile binning with 15 bins.

Based on the above setting, we visualize group-
ing diagrams across different confidence methods
for both user-defined and latent sub-groups. We
aggregate the scores of three relations in this exper-
iment. The results of latent groups are shown in
Figure 3, while the results of user-defined groups
are shown in Figure A1 in the appendix.

LLMs tend to be overconfident. Ideally, well-
calibrated LLMs should produce confidence scores
that align closely with true probabilities. However,
upon examination, it becomes evident that both
LLaMA and Mistral tend toward overconfidence.
Even in the case of Mistral-7B-SCGPT (Figure 3b),
which demonstrates the best performance among
other methods, the estimated confidence scores sur-
pass the actual probabilities. For instance, when
considering the fraction of true positives at 0.20,
the associated confidence score is around 0.50.

The grouping loss is significant. If there is a
large number of deviating sub-groups in the group-
ing diagrams, this indicates a higher level of vari-
ance and, consequently, a greater grouping loss.
Sub-groups positioned above the diagonal show
underconfidence, while those below the diagonal
demonstrate overconfidence. Our results reveal
a substantial grouping loss for both user-defined
and latent groups. Regarding user-defined groups
(Figure A1), we see distinct behaviors among sub-
groups based on popularity. If we take a look at the
individual samples of each sub-group, we find that
samples associated with more popular entities tend
to appear above the calibration curve, while the
opposite is observed for sub-groups with long-tail
entities. This suggests that LLMs exhibit a greater
tendency toward overconfidence when dealing with
long-tail entities.



Method Birth_Date Founder Composer

Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓

LLaMA-7B-JAFC

Before 84.38 60.4 1.61 105.55 79.34 0.88 86.78 56.83 2.1
Calibration 23.79 0.02 1.52 26.39 0.05 0.89 30.06 0.2 2.1

Ours 22.24 0.03 0.89 26.12 0.14 0.44 28.81 0.37 1.36

Mistral-7B-JAFC

Before 150.18 139.02 0.38 160.62 143.7 0.82 128.47 94.66 9.55
Calibration 11.14 0.01 0.36 17.24 0.14 0.85 34.1 0.04 9.13

Ours 10.95 0.05 0.14 16.97 0.15 0.34 26.61 0.17 0.89

LLaMA-7B-SelfCheckGPT

Before 54.08 33.56 0.28 49.99 26.47 0.55 58.67 25.56 4.67
Calibration 20.59 0.45 0.76 23.83 0.17 0.74 33.94 0.16 8.83

Ours 19.64 0.24 0.21 23.13 0.4 0.51 27.06 0.45 0.93

Mistral-7B-SelfCheckGPT

Before 11.43 1.34 0.21 21.72 9.65 0.03 24.17 3.84 0.95
Calibration 10.25 0.05 0.01 12.21 0.14 0.0 20.27 0.18 1.14

Ours 10.21 0.08 0.0 12.01 0.15 0.0 18.98 0.13 0.0

LLaMA-13B-SelfCheckGPT

Before 64.48 33.93 3.01 70.47 40.71 0.23 70.26 32.83 1.34
Calibration 30.96 0.4 4.02 30.22 0.1 1.31 37.36 0.57 1.48

Ours 26.63 0.33 0.23 29.32 0.56 0.21 33.78 1.18 0.58

Mixtral-8x7B-SelfCheckGPT

Before NA NA NA 49.96 27.4 0.1 54.02 23.74 1.27
Calibration NA NA NA 23.82 0.98 0.48 31.42 0.91 0.66

Ours NA NA NA 23.61 0.61 0.0 29.26 1.28 0.0

Table 3: Comparing methods of after Calibration and our reconfidencing. Blue colors indicate improved
performances, while red colors indicate decreased performances. All values are scaled by a factor of 100 for
better readability. Note that Mixtral refuses to answer birth date questions due to privacy protection.

In the case of latent groups, which are automat-
ically identified, diverse partitions with varied be-
haviors can be obtained. Figure 3 illustrates a more
scattered distribution of sub-groups, including in-
stances of underconfidence not visible through the
user-defined groups.

In summary, our analysis indicates a prevalent
tendency of overconfidence in LLMs. Additionally,
we reveal the impact of grouping loss on confidence
scores. When contrasting user-defined sub-groups
with autonomously identified latent sub-groups, the
latter exhibit greater flexibility and diversity.

4 Reconfidencing LLMs

In this section, we present a simple yet effective
solution to reconfidence LLMs. The core idea is to
calibrate each sub-group separately.

Standard Calibration Following standard cali-
bration procedures, we train a regressor, commonly
known as a calibrator, to conduct the calibration
of a model (Niculescu-Mizil and Caruana, 2005)
This calibrator works by mapping the model’s out-
put to a refined probability within the interval [0,

1], with the aim of aligning closely with the true
probability. Concretely, we train an isotonic regres-
sor using our constructed training and validation
sets for calibration purposes (Zadrozny and Elkan,
2002). Subsequently, we apply this trained regres-
sor to calibrate the confidence scores on the test
set.

Reconfidencing The standard calibration ap-
proaches are marginal: they control average error
on confidence and overlook the nuances of sub-
groups, where confidence errors can be especially
marked. Inspired by this, we propose a more re-
fined method to calibrate LLMs from the sub-group
perspective. Adapting Perez-Lebel et al. (2023), a
tree classifier is trained to know how to partition
samples (see details in Section 3.4). We employ
a loss function derived from the squared loss for
the Brier score on labels (Y ) to optimize the pre-
dicted confidence scores. This decision tree algo-
rithm partitions the data into sub-groups that min-
imize the specified loss. The tree’s input consists
of embeddings from the top layer of a LLM for
a given query, which can effectively cluster sam-
ples exhibiting similar levels of over-confidence or
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Figure 4: Comparing calibrations across different popularity groups for the Mistral-7B. We use merged results of
three regions. The confidence method here is SelfCheckGPT. More ⋆ symbols mean a sub-group with more popular
samples.

under-confidence. This, in contrast to user-defined
sub-groups, does not need background knowledge
and thus applies to queries that are not matched to
the knowledge base. Following this step, a distinct
isotonic regressor is trained for each identified sub-
group. The final step is to apply this refined method
to reconfidence the test set The reconfidencing can
effectively reduce the grouping loss thus yielding
improved calibration results.

To validate our proposed solution, we conduct
a comparative analysis of calibration performance
between the standard calibration and our reconfi-
dencing approach. The partition number of the
decision tree is eight in this experiment (check
Section A.5 to see how we select the leaf num-
ber). Table 3 presents the calibration performances
of various methods across different relations and
LLMs. While calibration is successful in reduc-
ing the Brier score and calibration loss, it does not
guarantee mitigation of the grouping loss. For in-
stance, in the case of Mistral-7B-SelfCheckGPT on
the composer relation, the calibration significantly
improves the Brier score (24.1 → 20.27) and cali-
bration loss (3.84 → 0.18). However, it is notewor-
thy that the grouping loss increases (0.95 → 1.14).
Conversely, our proposed reconfidencing approach
not only consistently achieves a better Brier score
but also shows a significant reduction in grouping
loss. Using the same example, our method attains a
lower Brier score (20.27 → 18.98) and effectively
eliminates grouping loss (1.14 → 0.0) compared
to the calibration method.

Since our reconfidencing works on the latent
group loss, it does not specifically target the issues
shown in the examples of popularity (Figure 2b)
and nationality (Figure 2c). To answer whether
it improves the situation for these user-defined
groups, we analyze calibration curves across sam-

ples after calibration and reconfidencing. The re-
sults for popularity and nationality sub-groups are
shown in Figure 4 and Figure A3 respectively.
Compared to the standard calibration , our pro-
posed method can consistently yield more diagonal
calibration curves across sub-groups.

To show the scalability of our method on
other relations and other types of groups, we
conduct experiments on Birth_Place and
LocationCreated. Experimental results con-
firm again that our model can reduce biased in-
formation on gender group (Figure A5) and the
location relation (Figure A6). The same observed
improvements can also be extended to different
sizes of LLaMA (Figure A4).

5 Conclusion

In this work, we analyzed how trustworthy current
methods are when they give confidence scores to
LLM answers. We create a novel dataset derived
from the ground truth within the YAGO knowl-
edge base, providing a framework for evaluating
the calibration of confidence scores for different
groups. Subsequent evaluations of different sizes
of LLMs reveal a consistent discrimination towards
particular minority groups. We show grouping loss
in LLMs, such as those associated with long-tail
entities and individuals of Asian origin. These find-
ings emphasize that we should pay particular at-
tention to minority groups when calibrating LLMs.
Building upon these insights, we introduce a novel
approach for reconfidencing LLMs based on la-
tent sub-groups, resulting in improved calibrations.
This new approach can mitigate the problem of
hallucinations by generating alerts in response to
LLM answers. Meanwhile, our findings can reduce
biased information against groups such as race and
gender, which is useful for the fairness of LLMs.



Limitations

One limitation of our proposed method is that it
targets entity-related questions, and not long-form
open-ended tasks, as shown in Section A.3 in the
appendix. For example, there is no obvious ben-
efit of our method for this very common ques-
tion: “why is the sky blue?” from the TruthfulQA
dataset (Lin et al., 2022b). We aspire for this study
to highlight the importance of considering minority
groups in the calibration of LLMs. Additionally,
we anticipate that future research can build upon
our methodology to encompass open-ended gener-
ation tasks.
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A Appendix

A.1 Prompts
The prompt used for SelfCheckGPT to elicit confi-
dence scores (Manakul et al., 2023) is shown below:
Provide your best guess and the probability
that it is correct (0.0 to 1.0) for the follow-
ing question. Give ONLY the guess and prob-
ability, no other words or explanation. For
example:\n\n Guess: <most likely guess, as
short as possible; not a complete sentence, just
the guess!>\n Probability: <the probability
between 0.0 and 1.0 that your guess is cor-
rect, without any extra commentary whatso-
ever; just the probability!>\n\n The question is:
${THE_QUESTION}

A.2 Reconfidencing Sub-groups
In this section, we conduct a comparative analysis
of the performance between calibration and our
proposed reconfidencing. This evaluation is carried
out through the examination of calibration curves
and grouping diagrams.

Calibration Curves. We present the calibration
curves for the birth date relation, with samples cat-
egorized into five sub-groups based on their nation-
alities. In Figure A3a, it is evident that LLaMA ex-
hibits overconfidence across all nationalities. Fol-
lowing calibration A3b, there is an improvement
for samples with predicted confidence scores less
than 0.5, but challenges persist for samples with
higher confidences. However, after reconfidenc-
ing, as illustrated in Figure A3c, the calibration
curves demonstrate substantial enhancement, al-
though perfection is not achieved. This observation
aligns with similar trends observed in the Mistral
model (Figure A3f).

Grouping Diagrams. We illustrate the group-
ing diagrams for popularity sub-groups, where all
samples are evenly distributed into eight partitions
based on the number of backlinks. Subsequently,
we depict diagrams following calibration and recon-
fidencing in Figure A7. In general, when compar-
ing the calibration method to reconfidencing, the
latter exhibits superior calibration of confidence
scores. For instance, in Figure A7h, the calibra-
tion curve appears more diagonal compared to Fig-
ure A7g, indicating improved calibration through
reconfidencing.

Overall, these findings confirm again that our
reconfidencing can yield better calibrations.

A.3 Experiments on Open-ended QA Tasks
Since our method reduce the grouping loss for
entity-based queries, one may ask can our recon-
fidencing method be applied for other datasets or
open-ended generation tasks. To answer this ques-
tion, we conducted additional experiments from
existing benchmarks. We follow the setting in this
Manakul et al. (2023) to conduct experiments on
three QA datasets: SciQ (Welbl et al., 2017), Triv-
iaQ (Joshi et al., 2017) and Truthful QA (Lin et al.,
2022b). Besides, we include another open-ended
generation task from the medical domain, Medi-
cal QA3. Some details of the four QA datasets are
shown in the Table A2. As for evaluation, we use
the API of GPT-3.5-Turbo to determine whether
the generated answers and ground truth are seman-
tically equivalent. The LLM to generate confidence
scores here is LLaMA-13B.

The experimental results are shown in Table A3.
We first observe that our method still take a lead on
entity-based QA (the first two columns). However,
we find that our method no longer has an advantage
on open-ended QA tasks (the last two columns).

In summary, our proposed method brings value
to entity-related questions while it is not targeted
at long-form open-ended tasks.

A.4 Experiments on Other Relations
To show the scalability of our reconfidenc-
ing method, we conduct experiments on
another two relations: Birth_Place and
LocationCreated. To study the fairness of
LLMs better, we introduce gender groups in the
Birth_Place dataset. In Figure A5, we draw
curves of Birth_Place for both male and
female sub-groups. We find that LLMs work
better for the male group than the female one (the
left figure). Our method not only achieves better
performance than the calibration method but also
makes LLMs generate fair predictions for both
males and females. In figure A6, we also draw the
calibration curves for the LocationCreated
relation (a film is created in which country). These
files are divided into groups by their popularities
and we get consistent conclusions.

A.5 The Impact of Partition Numbers
To study the impact of the granularity of partition,
we vary the number of partitions for LLaMA-13B

3https://huggingface.co/datasets/
medalpaca/medical_meadow_medical_
flashcards

https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
https://huggingface.co/datasets/medalpaca/medical_meadow_medical_flashcards
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(d) Mistral-7B-SCGPT

Figure A1: Grouping diagrams of user-defined sub-groups. We divide each bin into eight groups by the popularity
of entities. SCGPT is an abbreviation for SelfCheckGPT.
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Figure A2: Grouping diagrams of latent sub-groups. These groups are created from the leaves of a decision tree.
SCGPT is an abbreviation for SelfCheckGPT.

Method Composer
Brier ↓ CL ↓ GL ↓

Before 68.16 37.89 3.05
Calibration 30.62 0.31 3.6
Ours (p=2) 26.52 0.76 1.04
Ours (p=4) 26.12 0.62 0.0
Ours (p=8) 26.01 0.54 0.0
Ours (p=16) 25.87 0.56 0.37
Ours (p=32) 25.44 0.72 0.0
Ours (p=64) 25.9 1.32 0.0

Table A1: Evaluating calibration of various con-
fidence methods. Here, we compare Just Asking
for Calibration (JAFC) (Tian et al., 2023) and Self-
CheckGPT (Manakul et al., 2023). CL and GL
mean calibration loss and grouping loss, respec-
tively. All values are scaled by a factor of 100 for
better readability, and the best results are bold.

and check the performances. The results are shown
in Table A1. If there are too few partitions (p ≤ 4),
it will decrease the performance of our method.
When we gradually increase the partitions, there is
no significant gain after 8 partitions. In our paper,
the partition number is 8 for all datasets.
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Figure A3: Comparing calibrations across different nationality groups for the Mistral-7B and LLaMA-7B. We use
merged results of three regions. The confidence method here is SelfCheckGPT.

Relation Size Head Query Example Answer Example

SciQ 1,000 Scientific entity-
based QA

What tells you how much of the
food you should eat to get the
nutrients listed on the label?

serving size

TriviaQ 1,000 General entity-
based QA

Which American-born Sinclair
won the Nobel Prize for Litera-
ture in 1930?

Sinclair Lewis

Truthful QA 817 Commonsense
open-ended QA

What happens to you if you eat
watermelon seeds?

The watermelon seeds pass
through your digestive system

Medical QA 1,000 Medical open-
ended QA

What is the relationship between
very low Mg2+ levels, PTH lev-
els, and Ca2+ levels?

Very low Mg2+ levels corre-
spond to low PTH levels which
in turn results in low Ca2+ lev-
els.

Table A2: Description of four QA evaluation dataset. We follow the setting in this paper
(https://aclanthology.org/2023.emnlp-main.330/) to run experiments. Medical QA is adapted from
the medical_meadow_medical_flashcards on HuggingFace Datasets. As for evaluation, we
use the API of GPT-3.5-Turbo to determine whether the generated answers and ground truth are semanti-
cally equivalent. The LLM here is LLaMA-13B.

Method SciQ TriviaQ Truthful_QA Medical_QA
Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓ Brier ↓ CL ↓ GL ↓

LLaMA-13B-SelfCheckGPT
Before 94.83 52.53 5.19 64.96 17.91 0.0 95.14 61.07 1.17 99.44 70.21 0.0

Calibration 50.16 3.3 2.74 51.43 4.47 0.0 38.9 3.27 0.0 29.62 1.39 0.0
Ours 48.65 5.15 0.0 51.0 6.92 0.0 41.36 7.06 0.0 32.58 3.52 0.32

Table A3: Comparing methods on four QA tasks of after calibration and our reconfidencing. Blue colors indicate
improved performances, while red colors signify decreased performances. All values are scaled by a factor of 100
for better readability.
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Figure A4: Comparing calibrations across different popularity groups of the Birth Date relation for the LLaMA-
13B. The confidence method here is SelfCheckGPT.
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Figure A5: Comparing calibrations across different gender groups of the Birth Place relation for the Mistral-7B.
The confidence method here is SelfCheckGPT.
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Figure A6: Comparing calibrations across different popularity groups of the LocationCreated relation for the
Mistral-7B. The confidence method here is SelfCheckGPT.
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Figure A7: Comparing calibrations on popularity groups. Each bin is divided into 8 groups. "Recal" means the
Calibration method.


