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Abstract: It has been known for a long time that epileptic seizures provoke brain neuroinflammation
involving the activation of microglial cells. However, the role of these cells in this disease context and
the consequences of their inflammatory activation on subsequent neuron network activity remain
poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role
of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome
epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia
and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation.
Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures dis-
played morphological and biochemical changes characteristic of M1-like pro-inflammatory activation;
i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia
expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and
swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an in-
crease in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD
individuals with microglia. These findings strongly suggest that despite microglia activation and the
synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic
neuronal networks, making these cells a promising therapeutic target in epilepsy.

Keywords: microglia; epilepsy; seizure; calcium imaging; zebrafish; seizures; cytokines; neuroprotection

1. Introduction

Epilepsy, a frequent neurological disorder affecting more than 1% of the world popula-
tion [1,2], is characterized by recurrent seizures caused by the synchronized hyperactivation
of neuronal networks of various sizes, ranging from limited brain regions to the whole
cortex, leading to focal or generalized seizures, respectively [3–5]. Although potent anti-
epileptic drugs (AEDs) have been developed in the last decades, they are ineffective in
one-third of patients, approximately, and especially children with developmental epileptic
encephalopathies (DEE), such as Dravet syndrome (DS) [6–8]. Moreover, several AEDs
have been shown to display teratogenic activities in pregnant women [9,10]. These limita-
tions emphasize the need for novel AEDs and new anti-epileptic strategies. Notably, while
almost all current AEDs are “neurocentric”, targeting neuron proteins directly involved in
neuron network activation, microglial cells and their inflammatory activation in epileptic
contexts have received little attention so far as therapeutic targets [11,12].

Microglial cells, the resident brain macrophages, display several essential functions,
including immuno-protection, maintenance of neuron health and homeostasis, and matu-
ration of neuronal networks through developmentally controlled phagocytosis of super-
numerary apoptotic neurons and pruning of excess synapses [13]. Moreover, as immune
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cells, microglia respond rapidly to brain injuries or infections through complex reprogram-
ming, referred to as microglia activation, which comprises morphological and biochemical
changes, including increased motility and phagocytic activities, associated with the synthe-
sis and release of pro-inflammatory cytokines [12].

In epileptic patients, it was shown for a long that epileptic seizures induce microglia
activation and the synthesis of inflammatory mediators [11,14–16]. Actually, analysis of
post-mortem brain tissues from epileptic patients revealed massive microglia activation,
directly correlated with seizure severity [17,18]. Moreover, in various pharmacological
rodent epilepsy models, significant morphological changes of microglial cells were observed
after seizures, prior to the onset of neuronal damages [19,20], suggesting that microglia
activation is an early event following neuron seizures.

In epileptic patients and animal models [21], while data suggested that microglia
might be harmful to hyperexcitated neuronal networks, probably owing to the synthesis
and release of pro-inflammatory cytokines, which are known to promote neuron excita-
tion [22–24], other studies suggested that microglia played a beneficial role by decreasing
neuronal network hyperactivity [19,25–27]. Data also suggested that microglia response
to epileptic seizures is not uniform throughout the brain, with microglia showing a wide
range of phenotypes within the same individual [18]. Moreover, other data indicated
that the synthesis of both pro- and anti-inflammatory cytokines is increased in microglia
after epileptic seizures, supporting the notion that the response of these cells to seizures
is not limited to classic M1-type pro-inflammatory activation [27,28]. Therefore, whether
microglia activity has an overall detrimental or beneficial role in epilepsy is still a largely
open question with far-reaching therapeutic implications [26].

To address this issue and gain a better understanding of the role of microglia in
epilepsy, we used a zebrafish genetic model of DS, a severe intractable epileptic syndrome
in infants, which is caused in 70–80% of the cases by de novo loss-of-function mutations
in the gene encoding the voltage-gated sodium channel, SCN1A [29–31]. Using a well-
characterized zebrafish DS model relying on the loss of function of the zebrafish orthologue
of SCN1A, the scn1Lab gene, we first investigated the morphological changes of microglial
cells in vivo using the transgenic Tg[mpeg1:mCherryF] microglia-reporter line. We also
recorded neuron activity using neuronal Ca2+ imaging and local field potential (LFP)
recording in scn1Lab-deficient larvae, with or without microglia.

Our data showed that microglia are deeply remodeled in scn1Lab-deficient larvae, with
cells shifted toward an amoeboid morphology with markedly reduced branching, combined
with significantly increased mobility and number of Il1β-expressing cells. In addition,
in scn1Lab larvae fully devoid of microglia, neuronal hyperactivation was significantly
increased when compared to that observed in scn1Lab individuals not microglia-depleted,
suggesting these cells have neuroprotective activities for epileptic neurons that decrease
their hyperactivity.

2. Materials and Methods
2.1. Fish Maintenance and Transgenic Lines

Zebrafish were maintained at 26.5 ◦C in 14 h light and 10 h dark cycles. Embryos
were collected by natural spawning and raised at 28 ◦C in an E3 medium. Developmental
stages were determined as hours post-fertilization (hpf) or days post-fertilization (dpf),
as previously described. 0.003% 1-phenyl-2-thiourea (PTU) was added at 1 dpf to avoid
pigmentation. The scn1Labs552 line has been previously described [30] and was generously
provided by the laboratory of Dr. Herwig Baier. Calcium imaging was performed using the
Tg[Huc: GCaMP5G] transgenic line [32,33], and microglia and cytokine Il1β expression
were visualized using the transgenic Tg[mpeg1: mCherryF] [34] and Tg[il1β: GFP] lines,
respectively [35,36].

All animal experiments described in this study were conducted at the French National
Institute of Health and Medical Research (INSERM), UMR 1141, Paris, in compliance with
European Union guidelines for the handling of laboratory animals (https://environment.
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ec.europa.eu/topics/chemicals/animals-science_en, accessed on 10 April 2024), and were
approved by the Direction Départementale de la Protection des Populations de Paris and
the French Animal Ethics Committee under reference No. 2012-15/676-0069.

2.2. Morpholino Knockdown

The following morpholinos (MOs), obtained from Gene Tools (Philomath, OR, USA),
were used in this study: MO 5′-CTGAGCAGCCATATTGACATCCTGC-3′ was used at
0.62 mM to block zebrafish scn1Lab mRNA transcription, and MO 5′-GATATACTGATACTC
CATTGGTGGT-3′ was used at 0.88 mM to block zebrafish pu.1 mRNA transcription. These
MOs were injected together with 0.03 mM rhodamine B dextran and 0.1 mM KCl into
1–2 cell stage embryos.

2.3. Microglia Morphological Analysis

To visualize microglial cells in scn1Lab embryos experiencing epileptiform seizures,
4 dpf Tg[mpeg1:mCherryF]; scn1Lab morphants, and Tg[mpeg1:mCherryF] controls, were
paralyzed using 300 µM pancuronium bromide (Sigma Aldrich, Saint-Louis, MO, USA)
and agar-mounted in the center of a 35 mm glass-bottom dish. 100 µm stacks of the larval
optic tectum were acquired at 1024 × 1024-pixel resolution using a Leica SP8 laser scanning
confocal microscope equipped with a 20×/0.75 multi-immersion objective. Images were
processed using AutoQuant X3 (Media Cybernetic, Rockville, MD, USA) and Fiji ImageJ
1.53 (NIH, Bethesda, MD, USA) softwares. Microglia surface area, volume, and sphericity
were quantified using Imaris MeasurementPro 9.1 (Oxford Instruments, Abingdon, UK).
The number and length of microglia processes and Sholl analysis were determined using
the Imaris Filament Tracer 9.1 (Oxford Instruments, Abingdon, UK).

2.4. Morphological Clustering of Microglial Cells

Cluster analysis, based on microglia morphology parameters, was performed as de-
scribed in [37]. Briefly, five morphological parameters were quantified for each microglial
cell: sphericity (S), number of processes (NP), total process length (TL), surface area (A),
and volume (V). Cells with at least three of the following parameters: sphericity < 0.5,
process number > 7, total process length > 140 µm, and surface area > 2400 µm2, were clas-
sified as “branched”. Conversely, microglia with at least three of the following parameters:
sphericity > 0.7, process number < 3, total process length < 60 µm, and surface area < 1500 µm2,
were classified as “amoeboid”. Lastly, cells showing less than three “branched” or “amoe-
boid” parameters were classified as “transitional” microglia.

2.5. RNA Isolation and Quantitative RT-PCR

For RNA isolation, whole larvae or dissected brains were homogenized using a syringe
equipped with a 26G needle (10 embryos or brains per sample) using the RNA XS Plus
kit (Macherey Nagel, Düren, Germany). Following RNA quantification with a Nanodrop
2000 (ThermoScientific, Waltham, MA, USA) and RNA integrity analysis using denaturing
gel electrophoresis, total RNAs (1 µg) were reverse transcribed into cDNAs using the
iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA), and qPCRs were performed
using the iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). Samples were run
in triplicate, and the expression levels of the studied genes were normalized to those of
the tbp gene. The primers (Eurofins Genomics, Ebersberg, Germany) used are listed in
Supplementary Table S1.

2.6. Analysis of the Dynamics of Microglia Morphology Changes

Here, 4 dpf pancuronium bromide-paralyzed Tg[mpeg1:mCherryF] scn1Lab morphant
and not-injected Tg[mpeg1:mCherryF] control larvae were agar-mounted in the center of a
35-mm glass-bottom dish. A 42-µm stack of the larval living half optic tectum was acquired
at 1024 × 512-pixel resolution every 40 s for 1 h using a Leica SP8 laser scanning confocal
microscope equipped with 40×/1.1 water objective (Leica, Wetzlar, Germany). Videos
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were processed using ImageJ 1.53 software. Microglial cell body displacement, distance
traveled between the first and last frames and microglial cell body speed displacement
were quantified using Imaris MeasurementPro 9.2.

2.7. Calcium Imaging

Quantification of neuronal calcium transients was performed as previously described [31,37].
Briefly, 4 dpf Tg[Huc:GCaMP5G] scn1Lab morphant and Tg[mpeg1:mCherryF] control
larvae were paralyzed using pancuronium bromide, agar-mounted in the center of a
recording chamber, and placed under a Leica SP8 laser scanning confocal microscope
equipped with a 20×/0.75 multi-immersion objective. A single focal plane of the optic
tectum was captured at a high frequency for 40 min. The mean gray value of each frame
was measured using ImageJ software, and fluorescence variation (∆F/F0) was calculated
using Excel (Microsoft, Redmond, WA, USA) by subtracting the mean fluorescence intensity
of all frames from the fluorescence intensity of a frame of interest, then normalizing this
difference by the mean fluorescence intensity of all frames. The fluorescence drift during
recording was corrected by subtracting the background intensity of the surrounding frame.
Calcium events were defined as any fluorescence increase greater than 0.04 ∆F/F0.

For movie illustration (Supplementary Video S5–S8), larvae were paralyzed and
immobilized as described above. Calcium transients in a single focal plane of the optic
tectum of larvae were captured for 5 min at 5 Hz using a Yokogawa CSU-X1 spinning disk
confocal microscope (Yokogawa, Tokyo, Japan) equipped with an LD LCI Plan-Apochromat
25×/0.8 DIC Imm Korr (UV) objective (Zeiss, Oberkochen, Germany).

2.8. Local Field Potential (LFP) Recording

LFP recording was performed as previously described [31]. Briefly, 4 dpf scn1Lab
morphant or not-injected control larvae were paralyzed using pancuronium bromide and
agar-mounted in the center of a recording chamber. A glass electrode filled with artificial
cerebrospinal fluid was placed in the right neuropil of the optic tectum. Neuronal activity
was recorded for 1 h in current clamp mode at a 10 µs sampling interval, amplified with
a digital gain of 10, and filtered through a 0.1 Hz high-pass filter and a 1 kHz low-pass
filter. Recordings were analyzed using Clampfit 11 software (Molecular Devices, San Jose,
CA, USA). Every downward membrane potential variation under −0.3 mV amplitude and
lasting more than 100 ms was defined as an event.

2.9. Locomotor Activity

The locomotor behavior of larvae was assessed using an infrared automated tracking
device (Zebrabox), controlled by the ZebraLab 5.31 software (ViewPoint, Lyon, France).
First, 4 dpf larvae were individually deposited in 96-well plates in 200 µL of E3 medium.
The plates were then placed in the Zebrabox recording chamber in the dark for 30 min for
habituation. Then larvae were tracked for 30 min divided into one-minute integration time.
The animal color was set to dark and the detection sensitivity to 12 for tracking. Besides
the total distance swum by the larvae, we also recorded the time during which larvae
were either immobile or in low-, medium-, or high-speed movements. The inactive speed
threshold was set at 4 mm and the high-speed threshold was set at 8 mm. Each experiment
replicates comprised at least 16 larvae per condition and was replicated at least three times.

2.10. Data Analysis

Data were analyzed and plotted using R-studio 1.2.5. (Posit, Boston, MA, USA). Data
are presented as mean ± sem. Statistical analysis was performed using the Mann–Whitney
test if the data did not follow a normal distribution or the Student’s unpaired t-test with
or without Welch’s correction depending on the variance difference. A two-way ANOVA
with a Tukey post-test was used to analyze the data in Figures 3–5.



Cells 2024, 13, 684 5 of 17

3. Results
3.1. Microglia Morphology Changes in scn1Lab-KD Larvae

To characterize microglia morphology changes in epileptic brains in vivo, we first
took advantage of real-time microglia imaging in living zebrafish embryos [36], using
two zebrafish scn1Lab models of DS, scn1Lab morphant [31] and scn1Labs552/s552 mutant
larvae [38]. Both models display recurrent spontaneous epileptiform seizures starting from
4 days post-fertilization (dpf) onward, as visualized by LFP recording and Ca2+ imaging
and by the characteristic swirling behavior of larvae [31,38,39]. Although, throughout
this study, we used scn1Lab morphants, referred to below as scn1Lab-KD individuals,
all data were confirmed in scn1Labs552/s552 mutant larvae, displaying a complete loss of
Scn1Lab function [31,38]. To visualize microglial cells in vivo, we chose the transgenic
Tg[mpeg1:mCherryF] line, which shows intense labeling of these cells [40]. However, as
the mpeg1:mCherryF reporter gene is expressed in both microglia and macrophages, we
verified that all the mCherryF-expressing microglia imaged in this study also expressed the
Tg[p2y12:GFP] transgene [41], a specific marker of microglial cells [42].

As previously shown [36,43], in wild-type (WT) larvae, most microglial cells displayed
the characteristic branched phenotype of “resting” microglia, with a relatively small cell
body and several long and ramified processes (Figure 1(A1–A3) and Supplementary Video S1
(Figure 1A2): (Accessed on 10 April 2024, Link: https://urlz.fr/iPxZ). By contrast, in
scn1Lab-KD larvae, a significantly increased number of microglia exhibiting a more rounded
morphology, a larger cell body, and much fewer and shorter branches were observed
(Figure 1(B1–B3) and Supplementary Video S2 (Figure 1B3): (Accessed on 10 April 2024,
Link: https://urlz.fr/iPxP). To further characterize and quantify these morphological
differences, we used the 3D image analysis software Imaris 9.2 (Bitplane) to measure several
microglia morphological parameters, as described in [44] (sphericity, volume, surface area,
branch number, total branch length, and ramification index). Data confirmed that microglia
in scn1Lab-KD larvae displayed increased sphericity (WT: 0.567 ± 0.006 vs. scn1Lab-KD:
0.644 ± 0.006; p < 0.0001) (Figure 1C), a decreased number of branches (WT: 6.3 ± 0.2 vs.
scn1Lab-KD: 5.1 ± 0.2; p < 0.0001) (Figure 1D), a decreased total (WT: 115 ± 3 µm vs. scn1Lab-
KD: 85 ± 3 µm; p < 0.0001) (Figure 1E) and mean process lengths (control: 23.5 ± 0.4 µm
vs. scn1Lab-KD: 19.6 ± 0.3 µm; p < 0.0001) (Figure 1F), and a decreased ramification index
(WT: 1.94 ± 0.05 vs. scn1Lab-KD: 1.74 ± 0.05; p < 0.0001) (Figure 1G), when compared to
those observed for microglia in WT individuals. Sholl analysis, a method used to quantify
both the extent and complexity of cell branches (Imaris 9.2 software), further confirmed
that microglia in scn1Lab-KD individuals had fewer and shorter branches than those in
their WT siblings (Figure 1H). Taken together, our data show that microglia exhibited a
morphology reminiscent of M1-type activated macrophages in scn1Lab-KD larvae.

To further evaluate the extent of microglia morphology changes in scn1Lab-KD larvae
compared to that seen in their non-injected sibling controls, we performed a cluster analysis
of these cells according to five morphological parameters (sphericity, branch number,
branch length, surface area, and volume), leading to three cell clusters, as described in [37]
(see Materials and Methods). The first comprised low-sphericity microglia with numerous
elongated branches and high surface area and volume, which were referred to below
as “branched” microglia. The second included cells showing high sphericity, few short
processes, and low surface area and volume, which were referred to below as “amoeboid”
cells. The third, which comprised cells displaying intermediate phenotypes, was referred
to below as “transitional” microglia (Figure 1J). Although the three microglia clusters were
found in both contexts, their respective proportions varied greatly. In scn1Lab-KD larvae,
we observed a high percentage of “amoeboid” microglia (29.1 ± 1.2% vs. 10.4 ± 0.3%;
p < 0.001) combined with a low proportion of “branched” cells (10.2 ± 0.8% vs. 27.8 ± 1.5%;
p < 0.01) (Figure 1K), compared to that seen in WT individuals. However, the percentage
of cells showing an “intermediate” phenotype was roughly similar in scn1Lab-KD and
control larvae (61.8 ± 1.8% vs. 61.8 ± 1.9%; p > 0.05). These findings further suggest that a
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significantly increased number of microglia display an M1-like inflammatory phenotype in
scn1Lab-KD larvae.
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showing microglial cells, and 3D reconstructions of microglia in Tg[mpeg1:mCherryF] (A2,A3) and
Tg[mpeg1:mCherryF]; scn1Lab-KD (B2,B3) individuals. (C–G) Quantification of microglia sphericity
(C), number of processes (D), total process length (E), mean process length (F), and ramification
index (G), in 4 dpf Tg[mpeg1:mCherryF]; scn1Lab-KD (N = 11; n = 239) and Tg[mpeg1:mCherryF]
larvae (N = 11; n = 228). (H) Sholl analysis of Tg[mpeg1:mCherryF] (black) and Tg[mpeg1:mCherryF];
scn1Lab-KD (blue) microglia branching. (I) Scheme of the head of a zebrafish larva with the area of
interest (the periventricular stratum) framed in red. (J) Cluster analysis of microglia populations in
4 dpf Tg[mpeg1:mCherryF]; scn1Lab-KD larvae (N = 11; n = 239) and Tg[mpeg1:mCherryF] sibling
controls (N = 11; n = 228), according to sphericity (S), number of processes (NP), total process length
(TL), area (A), and volume (V), leading to three cell populations. (K) Repartition of control (white)
and scn1Lab-KD (blue) microglia populations in the three clusters defined (“branched”, “amoeboid”,
and “intermediate”). All data are represented as the mean ± sem. p-values were determined using
Mann–Whitney or unpaired Student t-test depending on the normal distribution of the values. n.s.,
non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. Scale bars: 50 µm (A1,B1); 10 µm
(A2,A3,B2,B3).

Visual examination of real-time recording of the behavior of microglia in scn1Lab-KD
and WT larvae provided a first indication that these cells, in addition to their morphological
changes, displayed increased mobility in the mutant context. To confirm this observation,
we measured the movements of microglia cell bodies and their speed in the two genetic
contexts. In WT larvae, as previously described [39], microglia displayed several elongated
branches that were constantly extending and retracting, while their cell bodies remained
almost immobile (Figure 2(A1,A2,C1,F1)) (Supplementary Video S3, (Accessed on 10 April
2024, Link: https://urlz.fr/iOIz). By contrast, microglia in scn1Lab-KD larvae were much
less branched, but their cell bodies were significantly more mobile (Figure 2(B1,B2,C2,F2))
(Supplementary Video S4, (Accessed on 10 April 2024, Link: https://urlz.fr/iOIA).

3.2. Increased Microglia-Mediated Brain Inflammation in scn1Lab-KD Larvae

Because the microglia phenotype changes observed in scn1Lab-KD larvae were strongly
reminiscent of those of “activated” M1-type inflammatory microglia observed in various
neuronal disease situations, including epilepsy [18], we next evaluated the neuroinflamma-
tory profile in the brain of scn1Lab-KD and WT larvae. First, we used qRT-PCR to quantify
the brain accumulation of transcripts encoding two major pro- (Il1β and Il8) and three
anti-inflammatory cytokines (Il10, Il4, and Tgfβ3). Surprisingly, we did not observe any
significant changes, neither in the expression of pro-[il1β (WT: 1.00 ± 0.22 vs. scn1Lab-KD:
1.33 ± 0.18; p > 0.05) and il8 (WT: 1.00 ± 0.09 vs. scn1Lab-KD: 0.93 ± 0.11; p > 0.05)]
(Figure 3A), nor anti-inflammatory cytokine mRNAs [il10 (WT: 1.00 ± 0.21 vs. scn1Lab-KD:
0.767 ± 0.17; p > 0.05), il4 (WT: 1.00 ± 0.12 vs. scn1Lab-KD: 0.89 ± 0.19; p > 0.05), and
tgfβ3 (WT: 1.00 ± 0.04 vs. scn1Lab-KD: 0.876 ± 0.08; p > 0.05)] (Figure 3B). Therefore,
although morphological changes seen in scn1Lab-KD larvae suggested pro-inflammatory
microglia activation, no significant increase in the expression of transcripts encoding pro-
or anti-inflammatory cytokines could be detected in the brains of these individuals. It
can be hypothesized that levels of neuroinflammation in this genetic epilepsy model are
much lower than those observed in rodent pharmacological models, as also suggested
by the relatively small percentage of “amoeboid” microglia in scn1Lab-KD individuals
(~30%). To analyze more precisely microglia expression of il1β mRNA, encoding a major
pro-inflammatory cytokine, we generated Tg[mpeg1:mCherryF]; scn1Lab-KD larvae also
carrying the Il1β-reporter Tg[il1β:GFP] transgene [45]. Data revealed a significant increase
in the number of Il1β-expressing microglia in scn1Lab-KD larvae when compared to that
observed in not-injected controls (WT: 14.6 ± 1.7% vs. scn1Lab-KD: 33.6 ± 1.7%; p < 0.0001)
(Figure 3C–F). Interestingly, as can be seen in Figure 3D2, while part of the “amoeboid”
microglial cells only expressed the il1β:GFP transgene in scn1Lab-KD larvae, few highly
branched cells also expressed the transgene, highlighting the complexity of the microglia
response. Altogether, these results showed a significant increase in the percentage of acti-
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vated il1β-expressing microglia in the mutant context, consistent with increased microglia
activation and brain neuro-inflammation.
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an SP8 Leica laser scanning confocal equipped with a 40×/water 1.1 objective. All data are repre-
sented as the mean ± sem. p-values were determined using the Mann–Whitney test. ****, p < 0.0001. 
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and three anti-inflammatory cytokines (Il10, Il4, and Tgfβ3). Surprisingly, we did not ob-
serve any significant changes, neither in the expression of pro-[il1β (WT: 1.00 ± 0.22 vs. 
scn1Lab-KD: 1.33 ± 0.18; p > 0.05) and il8 (WT: 1.00 ± 0.09 vs. scn1Lab-KD: 0.93 ± 0.11; p > 
0.05)] (Figure 3A), nor anti-inflammatory cytokine mRNAs [il10 (WT: 1.00 ± 0.21 vs. 
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Figure 2. Microglia dynamics in scn1Lab-KD larvae. Confocal time-lapse analysis of microglia dynam-
ics in the brains of 4 dpf not-injected Tg[mpeg1:mCherryF] control (A1,A2) and Tg[mpeg1:mCherryF];
scn1Lab-KD larvae (B1–B4), and merged images of two-time points highlighting the increased move
of microglia cell bodies in scn1Lab-KD larvae (C2) compared to that observed in WT controls during
a 36-min period (C1) (0′: cyan, 36′: magenta, merge: white). Quantification of microglia cell body
displacements (D) and mean displacement speed (E) over a 60-min period, in 4 dpf scn1Lab-KD
larvae (N = 6; n = 55) and WT controls (N = 4; n = 46). (F) Microglial cell tracking over a 60-min
period, in 4 dpf control (F1) and scn1Lab-KD (F2) larva brain. The scale bar is 20 µm in all images.
N = number of larvae and n = number of microglial cells. All images were acquired with an SP8
Leica laser scanning confocal equipped with a 40×/water 1.1 objective. All data are represented as
the mean ± sem. p-values were determined using the Mann–Whitney test. ****, p < 0.0001.
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Figure 3. Cytokine expression in scn1Lab-KD larvae. (A,B) Quantification of the expression of
genes encoding pro- (Il1β and Il8) (A), and anti-inflammatory cytokines (Il10, Il4, and Tgfβ3) (B),
relative to that of the tbp gene, in the brains of 4 dpf not-injected (white) and scn1Lab-KD (blue)
larvae. (C,D) Dorsal view of the periventricular stratum of 4 dpf Tg[mpeg1:mCherryF] (C1–C3) and
Tg[mpeg1:mCherryF]; scn1Lab-KD larvae (D1–D3), showing Il1β-expressing microglial cells (C2,D2).
Note that while part of “amoeboid” microglial cells only expressed the il1β:GFP transgene, few
highly branched microglia also expressed il1β:GFP. (E) Scheme of a zebrafish larval head with the
area of interest (the periventricular stratum) framed in red. (F) Quantification of the percentage
of microglial cells expressing Il1β:GFP in not-injected (N = 19) and scn1Lab-KD larvae (N = 16).
Scale: 10 µm. N = number of larvae analyzed. All images were acquired using a Leica SP8 confocal
microscope, equipped with a 20×/water objective with a numerical aperture of 0.75. All graphs
represent mean ± sem. The p-values were calculated using a Student’s t-test. n.s., not significant; ****,
p < 0.0001.

3.3. Microglia Ablation Increases Neuronal Activation in scn1Lab-KD Larvae

The phenotype changes and increased Il1β expression observed in microglia of scn1Lab-
KD larvae further suggest that a significant proportion of microglia, at least 30% of the
cells, respond to neuron hyperactivity through M1-type activation. These results then
raised the question as to whether this inflammatory response of microglia mitigates or
worsens the excitability of neuronal networks caused by Scn1lab loss-of-function. As
a first attempt to address this question, we generated scn1Lab-KD larvae fully devoid
of microglia following morpholino-mediated inactivation of the pu.1 gene, encoding a
factor essential for proper differentiation of macrophages and microglia [35,46,47], and
also expressing the Tg[HuC:GCaMP5G] transgene, a sensitive calcium bio-sensor [47]. As
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previously described [43], the brains of pu.1 morphant larvae are completely devoid of
microglial cells, as shown by the absence of L-plastin immunostaining (Figure 4A1,A2).
By taking advantage of these morphant individuals without microglia, we were able to
compare neuron activation in WT and scn1Lab-KD larvae, with or without microglia, using
simultaneous calcium imaging and local field potential (LFP) recording.
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Figure 4. Microglia depletion increases neuron hyperactivity in scn1Lab-KD larvae. (A) Scheme
of the experimental setup. (B) Calcium imaging of Ca++ uptake events recorded over a 20-min
period in 4 dpf WT (N = 11), scn1Lab-KD (N = 16), microglia-depleted WT (N = 9) and microglia-
depleted scn1Lab-KD larvae (N = 9). (C) LFP recording over a 20-min period of neuron activity
in 4 dpf WT (N = 5), scn1Lab-KD (N = 5), microglia-depleted WT (N = 5) and microglia-depleted
scn1Lab-KD larvae (N = 5). Scale bars of calcium traces: 0.05 ∆F/F0 and 1 min; and that of LFP traces:
0.5 mV and 1 min. Quantification of the frequency (D1) and amplitude (D2) of calcium events with
intensity > 0.04 ∆F/F0, recorded during a 1-h period in 4 dpf not-injected (white) and scn1Lab-KD
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larvae (blue). (E). Quantification of the frequency (E1) and amplitude (E2) of LFP traces with
downwards depolarization > 0.3 mV and lasting > 100 ms, recorded during a 1-h period in 4 dpf not
injected (white) and scn1Lab-KD larvae (blue). N = number of larvae. All data are represented as
the mean ± sem. ****, p < 0.0001: indicates a statistically significant difference between control and
scn1Lab-KD larvae. $$, p < 0.01; $$$, p < 0.001; $$$$, p < 0.0001: indicates a statistically significant
difference between larvae with or without microglia. p-values were determined using two-way
ANOVA with Tukey post-tests.

As previously shown [31,47], when compared to WT individuals, scn1Lab-KD larvae
display a markedly increased neuronal activity, as indicated by the larger number of
seizure-like events revealed by both calcium imaging (WT: 16.5 ± 1.0 vs. scn1Lab-KD:
32.2 ± 1.4, p < 0.0001) (Figure 4B,D1) (Supplementary Video S5, (Accessed on 10 April
2024, Link: https://urlz.fr/jlSX), (Supplementary Video S6, (Accessed on 10 April 2024,
Link: https://urlz.fr/jlT1) and LFP recording (WT: 4.8 ± 1.2 vs. scn1Lab-KD: 28.2 ± 2.4,
p < 0.0001) (Figure 4C,E1). More importantly, in microglia-depleted scn1Lab-KD larvae, an
increased number of epileptiform events was observed when compared to that seen in
scn1Lab-KD individuals with microglia. Moreover, the amplitude of the events detected in
scn1Lab-KD larvae was also significantly increased in scn1Lab-KD individuals devoid of
microglia (Figure 4D2,E2; Supplementary Video S7, (Accessed on 10 April 2024, Link: https:
//urlz.fr/jlTa, and Supplementary Video S8, (Accessed on 10 April 2024, Link: https://urlz.
fr/jlTr). These data suggest that microglial cells in the scn1Lab-KD mutant context displayed
neuroprotective activities that were able to mitigate, at least partially, the hyperactivation
of neuron networks.

3.4. Microglia Ablation Exacerbates Seizure-like Swimming Behavior of scn1Lab-KD Larvae

Scn1Lab mutants and morphants exhibit spontaneous seizure-like swimming behav-
ior characterized by whole-body convulsions, “swirling behavior”, and rapid undirected
movements [31,38]. Therefore, we used the increased swimming behavior of scn1Lab-KD
larvae to further question whether the increased neuron activity in scn1Lab-KD individuals
could be modulated by the presence or absence of microglia (Figure 5A–C). As previously
shown, scn1Lab-KD larvae swam longer and over longer distances than WT individuals
(WT: 212 ± 11 vs. scn1Lab-KD: 355 ± 11 mm, p < 0.0001), reflecting their neuronal hy-
peractivation (Figure 5B–D4). Interestingly, in scn1Lab-KD larvae devoid of microglia, we
observed a markedly increased locomotor activity compared to that observed in scn1Lab-KD
larvae not microglia-depleted (scn1Lab-KD: 355 ± 11 vs. microglia-depleted scn1Lab-KD:
423 ± 12 mm, p < 0.0001) (Figure 5B–D4), suggesting that microglia depletion worsened
the increased locomotor behavior of scn1Lab-KD larvae, and thus confirming that neuronal
hyperactivation was further exacerbated in scn1Lab-KD larvae lacking microglia when
compared to that observed in their siblings not microglia-depleted.

https://urlz.fr/jlSX
https://urlz.fr/jlT1
https://urlz.fr/jlTa
https://urlz.fr/jlTa
https://urlz.fr/jlTr
https://urlz.fr/jlTr
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Figure 5. Microglia ablation increases the locomotor activity of scn1Lab-KD larvae. (A) Scheme of
the experimental setup. (B) Traces of the moves of WT (N = 148), scn1Lab-KD (N = 184), microglia-
depleted WT (N = 45), and microglia-depleted scn1Lab-KD larvae (N = 28). The swimming speeds
of larvae are represented according to the following color codes: black (low speed), green (medium
speed), and red (high speed). (C) Quantification of the total distance traveled by 4 dpf WT (white)
and scn1Lab-KD larvae (blue) during a 30-min period recording. (D) Quantification of the time
spent by 4 dpf WT (white) and scn1Lab-KD larvae (blue) in a motionless position (D1), or swimming
at low (D2), medium (D3), and high speed (D4). N = number of larvae. All graphs represent the
average ± sem. The p-values were calculated by a two-way ANOVA followed by a Tukey post-test.
***, p < 0.001; ****, p < 0.0001: indicates a statistical difference between genotypes. $$$, p < 0.001; $$$$,
p < 0.0001: indicate significant differences depending on the presence or absence of microglia.

4. Discussion

It is well established that epileptic seizures induce microglia-mediated brain inflam-
mation [48]. However, the precise response of microglia to epileptic seizures and its
consequences on subsequent neuronal network function and activity have been poorly
studied so far. In particular, it is not known whether seizure-induced microglia activities
reduce or exacerbate neuronal network hyperactivity [12]. This gap in knowledge has
several causes. Firstly, microglial cells cannot be directly imaged in vivo in rodents and
most other animal species because of the opacity of their skull, necessitating transparent
windows to be inserted through delicate surgery, thus increasing the risk of excessive and
not-relevant differentiation of microglia, which are highly sensitive to disturbances in brain
homeostasis [45]. Therefore, zebrafish larvae, with the optical transparency of their skulls,
offer a powerful model that enables easy real-time imaging of microglial cells in live brains
and, thus, in their physiological environment [43]. Secondly, most studies investigating
microglia activities in rodent epilepsy models have been conducted using pharmacologi-
cally induced seizures. While those chemicals provided highly efficient models to promote
neuron hyperactivity, they usually caused extended status epilepticus-like activity lasting
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for several hours [12,14,20,49], likely inducing much stronger brain inflammation than that
observed in genetic models and probably in human patients [21,47,48]. This concern can
be overcome by using genetic epilepsy models, such as those offered by zebrafish. In this
study, using the zebrafish scn1Lab-KD DS model, we report here what is, to our knowledge,
the first study analyzing the response of microglial cells in vivo in a DS model.

DS is a severe DEE induced by deficits in the activity of inhibitory interneurons and
most commonly caused by de novo loss-of-function mutations in the SCN1A gene encoding
the voltage-gated sodium channel NaV1.1. Models of this disease have been characterized
in zebrafish using morpholino-mediated or loss-of-function mutations of one of the two
zebrafish orthologues of the SCN1A gene, scn1Lab. Mutant and morphant scn1Lab larvae
display recurrent epileptiform seizures from 4 dpf onward, which we and others have
previously characterized [31,38]. In particular, we previously showed that loss of scn1Lab
function induced a shift in the excitatory/inhibitory synapse balance, with a decreased
number of GABAergic synapses and an increased number of glutamatergic ones, combined
with an increased number of apoptotic neurons [31].

In close agreement with data gained from both animal models and human patients [50],
microglia displayed significant morphological differences in scn1Lab-KD larvae when com-
pared to those in their not-injected siblings. In the mutant context, we observed a decreased
number of “branched” microglia and an increased percentage of cells showing an “amoe-
boid” morphology, the latter resembling M1-type pro-inflammatory “activated” microglia
observed following brain injuries or in various neuronal disease situations, including
epilepsy [18], but also, as we previously showed, following intoxication by neurotoxic
organophosphates [37,51]. Interestingly, although DS larvae showed an increased number
of microglia with an “activated” phenotype, the proportion of “transitional” microglia
was similar in the two genetic contexts, and a small, but significant, percentage (10%) of
“branched” (resting) microglia was still observed in scn1Lab-KD individuals. These observa-
tions highlight the complexity of the microglial response in epilepsy and, more importantly,
are evidence that different populations of microglial cells are present in epileptic brains,
each likely playing a distinct role in the pathophysiology of the disease. Although increased
expression of pro-inflammatory mediators has been observed both in patients and in var-
ious animal epilepsy models [18,52], other studies have shown that anti-inflammatory
cytokines are also increased in epileptic brains [28].

Surprisingly, and in contrast with the results gained in many pharmacological ro-
dent epilepsy models, qRT-PCR analysis found no significant overexpression of pro-
inflammatory or anti-inflammatory cytokine-encoding genes in the brains of scn1Lab-KD
individuals. This result could be due to the moderate severity of the seizures observed in
this context compared to those induced by pharmacological agents such as PTZ, kainate, or
DFP [37]. However, using the transgenic Tg[il1β:GFP] line, which enables Il1β-expressing
microglial cells to be visualized in vivo [35], we observed a significant increase in the
percentage of cells expressing this pro-inflammatory cytokine in scn1Lab-KD individuals.
This observation, which is in close agreement with our cluster analysis, further confirmed
not only the increased number of M1-like “activated” microglia in scn1Lab-KD larvae
but also the existence of at least two distinct microglia populations, expressing, or not,
Il1β. However, this increased il1β expression was probably too weak to be detected by
qRT-PCR analysis of brain RNAs, showing again the differences between genetic and
pharmacological epilepsy models [37]. Interestingly, only part of the microglia expressed
the Tg[il1β:GFP] transgene in scn1Lab-KD larvae, and while most of these cells displayed
an “amoeboid” morphology, a few highly ”branched” cells also expressed the transgene.
These results further demonstrate the complexity of the response of microglia to epileptic
seizures. Moreover, these data also suggest that biochemical and morphological changes
following microglia activation are not fully coupled, with cells displaying either or both
features. It is also worth noting that studies of microglia-mediated neuroinflammation in
SCN1A+/− mice yielded widely varying results. In some studies, significant activation of
microglial cells was observed in the prefrontal cortex and dentate gyrus, combined with an
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increased expression of the IL1β and TNFα genes [44], while in other studies, no microglia
activation was detected in the hippocampus of SCN1A+/− mice, associated with a lack
of over-expression of pro-inflammatory mediators [53]. Moreover, Benson et al. (2015)
showed that whereas microglia expressed both pro- and anti-inflammatory mediators in
the mouse pilocarpine model, only pro-inflammatory mediators were overexpressed in
microglia of mice exposed to kainate [28], highlighting again the wide range of microglia
responses in epilepsy.

Genetic depletion of microglial cells in scn1Lab-KD larvae exacerbated the hyper-
activity of neuronal networks, as shown by the increased number of spontaneous epilepti-
form seizures and worsening of the characteristic swirling swimming behavior of larvae,
further suggesting that microglia played a protective role in epileptic brains and mit-
igated neuronal hyper-activity. This result is in good agreement with several studies,
which concluded that microglia played a beneficial role in epilepsy through mitigation
of neuronal activity and modulation of synaptic plasticity [25,26,53]. Also, Mirrione et al.
(2010) showed that microglia ablation in adult mice led to an increased sensitivity to the
pro-convulsant substance pilocarpine [54], further suggesting that microglia display neu-
roprotective functions in epileptic contexts. However, preventing microglia proliferation
during the late stage of epileptogenesis, but not the early stage, decreased spontaneous
seizures in the kainate mouse model, showing the complexity of the temporal responses
of these cells [55]. It can be hypothesized that the neuroprotective activities of microglia
involve the expression of anti-inflammatory cytokine and neurotrophic factors, such as
brain-derived neurotrophic factor (BDNF). Microglia neuroprotection may also rely on the
expression of protective H2O2 signaling to neurons or astrocytes. Further work will be
necessary to better understand the molecular basis of the neuroprotective activities of these
cells in epilepsy.

In the present work, which is, to our knowledge, the first study investigating the re-
sponses of microglial cells in vivo in a genetic DS epilepsy model, we showed that epileptic
seizures induce deep microglia reprogramming, including significant changes in cell shape
and dynamic behavior and increased expression of the pro-inflammatory cytokine Il-1β.
However, this reprogramming is partial, and only part of the microglia shows either M1-
type morphology or il1β expression, or both, suggesting that the response of these cells to
seizures is complex and not limited to M1-type activation. Importantly, we also showed that
scn1Lab-KD larvae entirely devoid of microglia exhibited an increased number of seizures,
also displaying a greater amplitude, suggesting that microglia provide neuroprotection
by decreasing the excitability of epileptic neurons. Future research will be necessary to
investigate how microglial cells modulate neuronal activity, because modulation of the
activity of these cells may offer a novel therapeutic strategy with great potential to mitigate
neuron hyperactivity in epilepsy.
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