Learning on the Edge: Unlocking the Storage Bottleneck with a Divide and Conquer Approach

Jalil Boukhobza, ENSTA-Bretagne, Lab-STICC UMR 6285

<https://www.ensta-bretagne.fr/boukhobza/> jalil.boukhobza@ensta-bretagne.fr

⁄ **Education**

- ⁄ 1999 Engineer in Electronics, INELEC, Algeria
- ⁄ 2000 Master in computer science, Univ. Versailles
- ⁄ 2004 PhD Univ. Versailles, PRiSM Lab., Storage Systems

⁄ **Prof. Exp.**

- ⁄ 2004-2006 Research and teaching assistant, Univ. Versailles
- ⁄ 2006-2020 Associate Professor, Univ. Bretagne Occidentale
- ⁄ 2013-* Part time researcher at IRT b<>com, Rennes
- ⁄ 2016 Invited researcher, Hong Kong Polytechnic University
- ⁄ 2024 Invited scholar at Academia Sinica Taipei
- ⁄ 2020-* Professor, ENSTA-Bretagne Lab-STICC
- ⁄ Team leader of SHAKER (Software/HArdware and unKnown Environment inteRactions)

⁄ **Research topics:**

- ⁄ Storage and memory systems
	- ⁄ Modeling / benchmarking / data placement / I/O optimization / I/O tracing
- ⁄ **Domains**: Cloud and Fog resource management, Embedded systems, HPC

⁄ **Current projects**:

- ⁄ CEA: DataMeSS, data placement in multi-tiered storage systems
- ⁄ Atos: Energy I/O optimization for HPC with frugal and federated learning
- ⁄ NIST: cache optimization for NDN networks
- ⁄ DGA-AID project: DISPEED Intrusion Detection and Security/Performance/Energy tradeoff: a Study for Drone Swarms
- ⁄ IRT b<>com: service scheduling in heterogeneoussystems(FPGA, GPU, GPP)

- 1. Edge intelligence
- 2. Problem statement and general pattern
- 3. Case studies
	- a) K-means
	- b) Gaussian mixture model
	- c) Random forest
- 4. Time limited learning and energy optimization
- 5. Conclusions and perspectives

1. Edge intelligence - More data on the edge

1. Edge intelligence - Edge computing

⁄ **Edge computing definition**

- ⁄ « …*paradigm that pushes computing tasks and services from the network core to the network edge* » [1]
- ⁄ « …*capturing, storing, processing, analyzing data near its source* » [2]
- ⁄ Several neighboring concepts: Cloudlets, Fog computing, Micro datacenters …
- ⁄ **Move computation capabilities to the data (Vs data to the computing resources)**

⁄ Why ?

- ⁄ Reducing latency
- ⁄ Preserving privacy + security
- ⁄ Reducing network traffic
- ⁄ "*cloud computing may lack the capacity to meet data processing needs*"[3]

[1] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762, Aug. 2019,. [2] G. Boesch, **Edge Intelligence: Edge Computing and ML (2024 Guide),** https://viso.ai/edge-ai/edge[intelligence-deep-learning-with-edge-computing/, 2023, accessed last on 21 sept 2024](https://viso.ai/edge-ai/edge-intelligence-deep-learning-with-edge-computing/) [3]Thomas Bittman, Gartner analyst, The Edge Will Eat the Cloud, 2017

1. Edge intelligence - Edge applications

- ⁄ Smart (health, transportation, agriculture, home, environement), surveillance systems, …
- ⁄ «… intelligent systems that can adapt to changing environments and learn from experience without being explicitely programmed » [1]
- ⁄ 80% of entreprise IoT include projects AI components in 2022 [2]

Tractica

[1] A.C. Chen Liu, O. M. K. Law, J. Liao, J. Y. Chen, A. J. En Hsieh, C. h. Hsieh, Traffic safety systems edge ai computing, in IEEE/ACM Symposium on Edge Computing SEC, 2021. [2] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in *Proceedings of the IEEE*, vol. 107, no. 8, pp. 1738- 1762, Aug. 2019,

1. Edge intelligence (EI or Edge AI) = Edge computing + AI

⁄ Edge intelligence:

- ⁄ «*providing reliable and real-time intelligent services on the network's edge*» [1],
- ⁄ « … derives from the concept of combining edge computing and ML » [2]
- ⁄ Both learning and inference can be done at different levels

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in *Proceedings of the IEEE*, vol. 107, no. 8, pp. 1738-1762, Aug. 2019,

1- Edge intelligence- devices and platforms

⁄ Edge devices:

⁄ **"***resource-constrained device located at the edge of the network***" [1]**

⁄ " …*ranging from credit-card-sized computer to a micro data-center server … physical proximity … most crucial characteristic*" [2]

\angle Limited resources = {processing, memory, network, storage}

[1] R. Singh, S. S. Gill, Edge AI: A survey, Internet of Things and Cyber-Physical Systems, Volume 3, 2023, Pages 71-92, ISSN 2667-3452 [2] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in *Proceedings of the IEEE*, vol. 107, no. 8, pp. 1738-1762, Aug. 2019,

BRETA

2. Problem statement and general pattern

When applying machine learning on the edge …

Source: https://www.wordslingersok.com/2017/09/caught-between-a-rock-and-a-hard-place/

jalil.boukhobza@ensta-bretagne.fr 9

2. Problem statement and general pattern -2-

 \angle Several ML algorithms \rightarrow go through all (or most) of the dataset during the learning process ⁄ When **the dataset size > memory workspace** ➔ I/O swapping issues

2. Problem statement and general pattern Proposed solution pattern – Divide and conquer

2. Problem statement and general pattern Basic solution pattern

Case study 1: K-means

2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS) Systems (MASCOTS)

K -MLIO: Enabling K -Means for Large Data-sets and Memory Constrained Embedded Systems

Stéphane Rubini Jalil Boukhobza

Univ Brest Lab-STICC, CNRS, UMR 6285 F-29200 Brest, France Camelia.Slimani@univ-brest.fr

Univ Brest Lab-STICC, CNRS, UMR 6285 F-29200 Brest, France rubini@univ-brest.fr

Jalil Boukhobza **Univ Brest** Lab-STICC, CNRS, UMR 6285 F-29200 Brest, France boukhobza@univ-brest.fr

jalil.boukhobza@ensta-bretagne.fr

 \mathcal{L}

jalil.boukhobza@ensta-bretagne.fr 18

BRETAGNE

Case study 2: Gaussian Mixture Model

with a Low I/O Design ⁄ ICT

Meriem Bouzouad^{1,2}, Yasmine Benhamadi^{1,2}, Camélia Slimani¹, Jalil Boukhobza¹ ¹ ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, Brest, France
² École Nationale Supérieure D'Informatique (ESI), Algiers, Algeria
{im_bouzouad,iy_benhamadi}@esi.dz,{camelia.slimani,jalil.boukhobza}@ensta-bretagne.fr

HH

jalil.boukhobza@ensta-bretagne.fr

Context : Gaussian Mixture Models (GMM)

⁄ Probabilistic Machine Learning Models used for **clustering** data and **density estimation**.

Each cluster is represented by :

- A **Gaussian density** (mean and covariance matrix)
- A **weight** : probability to be affected to this cluster

Reynolds, Douglas A. "Gaussian mixture models." *Encyclopedia of biometrics* 741.659-663 (2009).

Expectation Maximization (EM) Algorithm

PIGMMaLIOn : Partial **I**ncremental **G**aussian **M**ixture **M**odel with **a L**ow **I/O** Desig**n**.

PIGMMaLIOn design

jalil.boukhobza@ensta-bretagne.fr 25

PIGMMaLIOn design

BRETAGNE

⁄ Dynamic subsampling

- ⁄ A partial GMM is trained
- \angle The complexity of the clustering task is inferred based on:
	- \angle The uncertainty factor α
	- ⁄ The balance factor β
- \angle N^{*} is calculated based on clustering complexity:

$$
N^* = M + \frac{\alpha(N - M) + (1 - \beta)(N - M)}{2}
$$

jalil.boukhobza@ensta-bretagne.fr 26

PIGMMaLIOn design

⁄ Incremental learning

- ⁄ Load data one increment at a time
- ⁄ Train a partial GMMs on each loaded increment
- ⁄ Merge the partial GMMs incrementally

100

92.78%

76.39%

36.39 40

 $\ddot{\mathbf{0}}$

 $\%$ of ARI Loss

 -5

9.72

 5°

 14.44

Case study 3: Random forests

IEEE TRANSACTIONS ON COMPUTERS, VOL 72, NO. 6, JUNE 2023

Accelerating Random Forest ⁄ MECHANICS Through Data Storage Optimization

> Camélia Slimani[®], Chun-Feng Wu[®], Member, IEEE, Stéphane Rubini[®], Camélia Slimani¹⁰, Chun-Feng Wu^o, Member, IEEE, Stephane Transmer, IEEE
Yuan-Hao Chang[®], Senior Member, IEEE, and Jalil Boukhobza[®], Senior Member, IEEE

1595

 \mathbf{r}

feature f

- $6:$ end for
- $7:$ Choice of the best feature f^* and creation of the effective children nodes
- 8: end while

BRETA

ACECHABF

- 1: Bootstrap creation
- 2: while it exists an impure node n do
- Random creation of feature sub- 3° set F
- for $f = 1$ to $|F| 1$ do 4:
- Split trial of n into two chil- $5:$ dren nodes according to the feature f
- end for $6:$
- $7:$ Choice of the best feature f^* and creation of the effective children nodes
- 8: end while

- 1: Bootstrap creation
- 2: while it exists an impure node n do
- Random creation of feature sub- $3:$ set F
- **for** $f = 1$ to $|F| 1$ **do** 4:
- $5:$ Split trial of n into two children nodes according to the feature f
- $6:$ end for
- $7:$ Choice of the best feature f^* and creation of the effective children nodes
- 8: end while

Random Forest - background

- 1: Bootstrap creation
- 2: while it exists an impure node n do
- Random creation of feature sub- $3:$ set F
- for $f = 1$ to $|F| 1$ do 4:
- $5₁$ Split trial of n into two children nodes according to the feature f
- end for $6:$
- $7:$ Choice of the best feature f^* and creation of the effective children nodes
- 8: end while

- 1: Bootstrap creation
- 2: while it exists an impure node n do
- Random creation of feature sub- $\mathbf{3}$ set F
- for $f = 1$ to $|F| 1$ do $4:$
- $5:$ Split trial of n into two children nodes according to the feature f
- $6:$ end for
- $7:$ Choice of the best feature f^* and creation of the effective children nodes
- 8: end while

RaFIO: Random Forest I/O-Aware algorithm

⁄ Key principles:

- ⁄ **On demand data loading**: Load only effectively needed data instead of the whole dataset
- ⁄ **Adaptive data loading**: Adaptively select useful data according to memory space available

⁄ **Data volume loaded depends on the iteration.**

⁄ 3 options:

- ⁄ **Scenario 1**, Full Sub-Tree Building: all elements of the current node can fit in memory
- ⁄ **Scenario 2**, Full node Building: only features of current node can fit in memory.
- ⁄ **Scenario 3**, per-Chunk split trial: features of the current node cannot fit in the available memory \rightarrow see next slide

RaFIO: Random Forest I/O-Aware algorithm

⁄ **Scenario 1**

- ⁄ Memory workspace monitor: all elements and all features <= memory workspace
- ⁄ Data Loader module: Load all features of all elements of the node
- ⁄ Decition Tree Building module: Builds a subtree (depth first)

⁄ **Scenario 2**

- ⁄ Memory workspace monitor: all features of elements of the node <= memory workspace
- ⁄ Data Loader Module: loads all features of the elements of the node
- ⁄ Decition Tree Building module: Splits the current node

RaFIO: Random Forest I/O-Aware algorithm

⁄ **Scenario 3**

- ⁄ Memory workspace monitor: features of elements of the node > memory available
- ⁄ Data Loader module: Load elements chunk by chunk
- ⁄ Decision Tree Building module:
	- \angle Load a chunk, i.e. a subset of elements of the node → memory
	- ⁄ Process each chunk separatly
	- ⁄ Merge the sub-trees obtained from each chunk

- ⁄ Compared RaFIO to Ranger [1]
- \angle N/M = {1, 2, 4, 8}
	- ⁄ N: Volume of data to process;
	- ⁄ M: Available memory workspace

 \blacksquare Covertype \square Wearable \blacksquare Adult \square Synthetic

RaFIO vs Ranger

[1] Wright, Marvin & Ziegler, Andreas. (2015). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software. 77.

Used Datasets

ENST **BRETAGNE**

4. Time limited learning and energy optimization

IEEE MASCOTS'23

Training K-means on Embedded Devices: a Deadline-aware and Energy Efficient Design

Hafsa Kara Achira*[†], Camélia Slimani *, Jalil Boukhobza* *ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, F-29200 Brest. France [†] École Nationale Supérieure D'Informatique (ESI), Algiers, Algeria Email: ih_karaachira@esi.dz, camelia.slimani@ensta-bretagne.fr, jalil.boukhobza@ensta-bretagne.fr

OSIGAPP

Applied Computing Review

Adapting Gaussian Mixture Model Training to Embedded/Edge Devices: A Low I/O, Deadline-aware and Energy Efficient Design

Meriem Bouzouad ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285 France im bouzouad@esi.dz

Camélia Slimani ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285 France camelia.slimani@ensta-bretagne.fr

Yasmine Benhamadi ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285 France iy benhamadi@esi.dz

Jalil Boukhobza ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, France Insititute of Information Science, Academia Sinica, Taiwan jalil.boukhobza@ensta-bretagne.fr

The case of K-means: A simpe time model

EK-means : embedded K-means with timing and energy optimization

⁄ **Dropping a certain number of chunks** to satisfy the deadline

⁄ Estimate online the worst-case execution time of a chunk

⁄ **Applying DVFS opportunistically to reduce energy** consumption

 \prime Update the optimal frequency for processing the remaining chunks

EK-means : embedded K-means with timing and energy optimization

⁄ **Step 1**: **chunk processing time online analysis**

⁄ Measure T_{load}, T_{init}, T_{it} with max frequency and deduce the number of cycles

⁄ **Step 2**: **Estimate the number of chunks to drop** (to meet the deadline)

- ⁄ According to the worst case scenario (max number of iterations to converge)
- ⁄ According to previous measured time metrics

⁄ **Step 3&4**: **Applying DVFS**

- \angle Compute the slack time from previous chunks (WCET actual time to process the chunk)
- \angle Find the lowest frequency that satisfies the deadline

⁄ **Step 5**: **Process the final chunk**

⁄ Select the right frequency (according to cumulated slack)

⁄ **Deadline**

compared to K-MLIO

> 50% reduction on the processor dynamic energy

jalil.boukhobza@ensta-bretagne.fr 43

⁄ **Context**:

- ⁄ One facet of Edge AI is the ability to learn on resource-limited edge devices to:
	- ⁄ Reduce latency
	- ⁄ Reduce the network traffic
	- ⁄ Enforce Privacy and security
- ⁄ On commodity hardware, several frameworks can hardly be usable
- ⁄ **Problem:** Several ML algorithms have been thought with the memory large enough to contain the dataset
	- \angle \rightarrow Lag because of I/O swapping issues

⁄ **Solution**:

- ⁄ Devised a general pattern → divide (the dataset) to conquer (the I/O bottlneck)
- ⁄ Applied the optimization pattern successfully on 3 ML algorithms: K-means, GMM, Random forests
- \angle Reduced the I/Os by up to 95%
- ⁄ No or small loss on accuracy
- ⁄ Energy optimization

Applications on the edge

- More ML algorithms to work on \rightarrow Generalize the approach
- Explore deep learning algorithms
- Explore LLM deployments
- Adaptive accuracy for the learning

• …

• …

System and distribution issues

- Temperature reduction issues
- Energy consumption modeling and optimization
- Design of ML libraries optimized for I/Os
- ML learning on comodity hardware (VM, containers)
- Load balacing/scheduling between edge devices
- Data and compute placement
- Carbon footprint-aware deployment

Special thanks to …

Hafsa Kara Achira

Camélia Slimani

Yasmine Benhamadi

Stéphane Rubini

You can download the presentation by flashing the code

Meriem Bouzouad

Chun-Feng Wu

Vincent Lannurien

Yuan-Hao Chang

