Learning on the Edge: Unlocking the Storage Bottleneck with a Divide and Conquer Approach

Jalil Boukhobza, ENSTA-Bretagne, Lab-STICC UMR 6285

https://www.ensta-bretagne.fr/boukhobza/ jalil.boukhobza@ensta-bretagne.fr

/ Education

- / 1999 Engineer in Electronics, INELEC, Algeria
- / 2000 Master in computer science, Univ. Versailles
- / 2004 PhD Univ. Versailles, PRiSM Lab., Storage Systems

/ Prof. Exp.

- / 2004-2006 Research and teaching assistant, Univ. Versailles
- / 2006-2020 Associate Professor, Univ. Bretagne Occidentale
- / 2013-* Part time researcher at IRT b<>com, Rennes
- / 2016 Invited researcher, Hong Kong Polytechnic University
- / 2024 Invited scholar at Academia Sinica Taipei
- / 2020-* Professor, ENSTA-Bretagne Lab-STICC
- / Team leader of SHAKER (Software/HArdware and unKnown Environment inteRactions)

/ Research topics:

- / Storage and memory systems
 - / Modeling / benchmarking / data placement / I/O optimization / I/O tracing
- / Domains: Cloud and Fog resource management, Embedded systems, HPC

/ Current projects:

- / CEA: DataMeSS, data placement in multi-tiered storage systems
- / Atos: Energy I/O optimization for HPC with frugal and federated learning
- / NIST: cache optimization for NDN networks
- / DGA-AID project: DISPEED Intrusion Detection and Security/Performance/Energy tradeoff: a Study for Drone Swarms
- / IRT b<>com: service scheduling in heterogeneous systems (FPGA, GPU, GPP)

- 1. Edge intelligence
- 2. Problem statement and general pattern
- 3. Case studies
 - a) K-means
 - b) Gaussian mixture model
 - c) Random forest
- 4. Time limited learning and energy optimization
- 5. Conclusions and perspectives

1. Edge intelligence - More data on the edge

1. Edge intelligence - Edge computing

/ Edge computing definition

- / « ...paradigm that pushes computing tasks and services from the network core to the network edge » [1]
- / « ...capturing, storing, processing, analyzing data near its source » [2]
- Several neighboring concepts: Cloudlets, Fog computing, Micro datacenters ...
- Move computation capabilities to the data (Vs data to the computing resources)

Why?

- / Reducing latency
- / Preserving privacy + security
- / Reducing network traffic
- / "cloud computing may lack the capacity to meet data processing needs"[3]

[1] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in Proceedings of the IEEE, vol. 107, no. 8, pp. 1738-1762, Aug. 2019,.
[2] G. Boesch, Edge Intelligence: Edge Computing and ML (2024 Guide), <u>https://viso.ai/edge-ai/edge-intelligence-deep-learning-with-edge-computing/</u>, 2023, accessed last on 21 sept 2024
[3]Thomas Bittman, Gartner analyst, The Edge Will Eat the Cloud, 2017

1. Edge intelligence - Edge applications

- / Smart (health, transportation, agriculture, home, environement), surveillance systems, ...
- «... intelligent systems that can adapt to changing environments and learn from experience without being explicitly programmed » [1]
- / 80% of entreprise IoT include projects AI components in 2022 [2]

Al Edge Device Shipments by Device Category, World Markets: 2017-2025 3,000,000 Automotive Consumer and Enterprise Robots 2,500,000 Drones HMDs 2,000,000 Millions) Mobile Phones PCs/Tablets 1,500,000 Security Cameras 1.000.000 Smart Speakers 500,000 2018 2019 2020 2021 2022 2023 2024 2025 2017

Tractica

[1] A.C. Chen Liu, O. M. K. Law, J. Liao, J. Y. Chen, A. J. En Hsieh, C. h. Hsieh, Traffic safety systems edge ai computing, in IEEE/ACM Symposium on Edge Computing SEC, 2021.
[2] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in *Proceedings of the IEEE*, vol. 107, no. 8, pp. 1738-1762, Aug. 2019,

6

Source: Tractica

1. Edge intelligence (El or Edge Al) = Edge computing + Al

/ Edge intelligence:

- / «providing reliable and real-time intelligent services on the network's edge» [1],
- / ~ « ... derives from the concept of combining edge computing and ML » [2]
- / Both learning and inference can be done at different levels

²Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificia Intelligence With Edge Computing," in *Proceedings of the IEEE*, vol. 107, no. 8, pp. 1738-1762, Aug. 2011

1- Edge intelligence- devices and platforms

/ Edge devices:

/ "resource-constrained device located at the edge of the network" [1]

/ " ...ranging from credit-card-sized computer to a micro data-center server ... physical proximity ... most crucial characteristic" [2]
[1] R. Singh, S. S. Gill, Edge Al: A survey, Internet of Things

/ Limited resources = {processing, memory, network, storage}

[1] R. Singh, S. S. Gill, Edge AI: A survey, Internet of Things and Cyber-Physical Systems, Volume 3, 2023, Pages 71-92, ISSN 2667-3452
[2] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo and J. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," in *Proceedings of the IEEE*, vol. 107, no. 8, pp. 1738-1762, Aug. 2019,

BRETAGN

2. Problem statement and general pattern

When applying machine learning on the edge ...

Source: https://www.wordslingersok.com/2017/09/caught-between-a-rock-and-a-hard-place/

2. Problem statement and general pattern -2-

✓ Several ML algorithms → go through all (or most) of the dataset during the learning process
 ✓ When the dataset size > memory workspace → I/O swapping issues

2. Problem statement and general pattern Proposed solution pattern – Divide and conquer

2. Problem statement and general pattern Basic solution pattern

Case study 1: K-means

2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)

K-MLIO: Enabling K-Means for Large Data-sets and Memory Constrained Embedded Systems

Camélia Slimani Univ Brest Lab-STICC, CNRS, UMR 6285 F-29200 Brest, France Camelia.Slimani@univ-brest.fr Stéphane Rubini Univ Brest Lab-STICC, CNRS, UMR 6285 F-29200 Brest, France rubini@univ-brest.fr Jalil Boukhobza Univ Brest Lab-STICC, CNRS, UMR 6285 F-29200 Brest, France boukhobza@univ-brest.fr

jalil.boukhobza@ensta-bretagne.fr

jalil.boukhobza@ensta-bretagne.fr

BRETAGNE

Case study 2: Gaussian Mixture Model

PIGMMaLIOn: a Partial Incremental Gaussian Mixture Model with a Low I/O Design

Meriem Bouzouad^{1,2}, Yasmine Benhamadi^{1,2}, Camélia Slimani¹, Jalil Boukhobza¹ ¹ ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, Brest, France ² École Nationale Supérieure D'Informatique (ESI), Algiers, Algeria {im_bouzouad,iy_benhamadi}@esi.dz,{camelia.slimani,jalil.boukhobza}@ensta-bretagne.fr

jalil.boukhobza@ensta-bretagne.fr

Context : Gaussian Mixture Models (GMM)

/ Probabilistic Machine Learning Models used for **clustering** data and **density estimation**.

Each cluster is represented by :

- A Gaussian density (mean and covariance matrix)
- A weight : probability to be affected to this cluster

Reynolds, Douglas A. "Gaussian mixture models." Encyclopedia of biometrics 741.659-663 (2009).

Expectation Maximization (EM) Algorithm

23

PIGMMaLIOn : Partial Incremental **G**aussian **M**ixture **M**odel with **a L**ow **I/O** Desig**n**.

PIGMMaLIOn design

PIGMMaLIOn design

BRETAGNE

/ Dynamic subsampling

- / A partial GMM is trained
- / The complexity of the clustering task is inferred based on:
 - / The uncertainty factor α
 - / The balance factor β
- / N* is calculated based on clustering complexity:

$$N^* = M + \frac{\alpha(N - M) + (1 - \beta)(N - M)}{2}$$

PIGMMaLIOn design

/ Incremental learning

- / Load data one increment at a time
- / Train a partial GMMs on each loaded increment
- / Merge the partial GMMs incrementally

n		Ir
n with:		Ρ
$N-M) + (1-\beta)(A$	N-M	
2		

Incremental GMM	
PIGMMaLIOn with: All t	he
$N^{st}=N$ data	set

5.55 4.44

10 21.65

5

Execution time reduction Interval	Partial	PIGMMaLIOn	Incremental	
< 0%	0.00%	1.94%	6.11%	
[0% - 40%]	0.83%	13.33%	61.39%	
[40% - 60%]	7.22%	25.00%	30.00%	
> 60%	91.94%	59.72%	2.50%	

ENSTA BRETAGNE

28

Case study 3: Random forests

IEEE TRANSACTIONS ON COMPUTERS, VOL. 72, NO. 6, JUNE 2023

Accelerating Random Forest on Memory-Constrained Devices Through Data Storage Optimization

Camélia Slimani[®], Chun-Feng Wu[®], *Member, IEEE*, Stéphane Rubini[®], Yuan-Hao Chang[®], *Senior Member, IEEE*, and Jalil Boukhobza[®], *Senior Member, IEEE*

1595

Random Forest - background

sick	Sport	History (H)	BMI	Age	bel
0	0	0	23	40	A
1	0	1	31	50	В
0	1	0	26	27	С
0	0	0	22	63	D
1	1	1	29	70	Ε
1	0	1	32	35	F
0	1	0	22	45	G
0	1	0	21	25	Η

¢	Algorithm	Decision	Tree building
	method [4]		

- 1: Bootstrap creation
- 2: while it exists an impure node *n* do
- 3: Random creation of feature subset *F*
- 4: for f = 1 to |F| 1 do
- 5: Split trial of *n* into two children nodes according to the feature *f*
- 6: end for
- 7: Choice of the best feature f* and creation of the effective children nodes
- 8: end while

ACECHABF

(1) Bootstrap creation

Random Forest - background

ort sick) 0) 1	l 0) 0	1) 1	L 0
Sport	0	0	1	0	1	0	1
History (H)	0	1	0	0	1	1	0
BMI	23	31	26	22	29	32	 22
Age	40	50	27	63	70	35	45
Label	Α	В	С	D	Ε	F	 G

Algorithm Decision Tree building method [4]

- 1: Bootstrap creation
- 2: while it exists an impure node *n* do
- 3: Random creation of feature subset *F*
- 4: **for** f = 1 to |F| 1 **do**
- 5: Split trial of *n* into two children nodes according to the feature *f*
- 6: end for
- 7: Choice of the best feature f* and creation of the effective children nodes
- 8: end while

Random Forest - background

ort sick) 0) 1	l 0) 0	1) 1	l 0
Sport	0	0	1	0	1	0	1
History (H)	0	1	0	0	1	1	0
BMI	23	31	26	22	29	32	22
Age	40	50	27	63	70	35	45
Label	А	В	С	D	Е	F	G

Algorithm Decision Tree building method [4]

- 1: Bootstrap creation
- 2: while it exists an impure node *n* do
- 3: Random creation of feature subset *F*
- 4: for f = 1 to |F| 1 do
- 5: Split trial of n into two children nodes according to the feature f
- 6: end for
- 7: Choice of the best feature f* and creation of the effective children nodes
- 8: end while

Random Forest - background

Age BMI History (H) 40 23 0 50 31 1 27 26 0 63 22 0
50 31 27 26
50 27 63

Algorithm Decision Tree building method [4]

- 1: Bootstrap creation
- 2: while it exists an impure node *n* do
- 3: Random creation of feature subset *F*
- 4: for f = 1 to |F| 1 do
- 5: Split trial of *n* into two children nodes according to the feature *f*
- 6: end for
- 7: Choice of the best feature f* and creation of the effective children nodes
- 8: end while

33

Random Forest - background

Age BMI History (1 40 23 0 50 31 1 27 26 0 63 22 0 70 29 1	0 0	0 1	1 0	0 0	1 1		0 1	0 1 1 0
40 23 50 31 27 26	0	1	0	0	1		1	1 0
40 50 27 63	23	31	26	22	29		32	32 22
	40	50	27	63	70		35	35 45
Label		A 40 23 0 0 0		B 50 31 1 0 1	B 50 31 1 0 1 C 27 26 0 1 0	B 50 31 1 0 1 C 27 26 0 1 0 D 63 22 0 0 0	B 50 31 1 0 1 C 27 26 0 1 0 D 63 22 0 0 0 E 70 29 1 1 1	B 50 31 1 0 1 C 27 26 0 1 0 D 63 22 0 0 0 E 70 29 1 1 1 F 35 32 1 0 1

Algorithm Decision Tree building method [4]

- 1: Bootstrap creation
- 2: while it exists an impure node n do
- 3: Random creation of feature subset *F*
- 4: for f = 1 to |F| 1 do
- 5: Split trial of *n* into two children nodes according to the feature *f*
- 6: end for
- 7: Choice of the best feature f* and creation of the effective children nodes
- 8: end while

RaFIO: Random Forest I/O-Aware algorithm

/ Key principles:

- / On demand data loading: Load only effectively needed data instead of the whole dataset
- / Adaptive data loading: Adaptively select useful data according to memory space available

/ Data volume loaded depends on the iteration.

- / 3 options:
 - / Scenario 1, Full Sub-Tree Building: all elements of the current node can fit in memory
 - / Scenario 2, Full node Building: only features of current node can fit in memory.
 - ✓ Scenario 3, per-Chunk split trial: features of the current node cannot fit in the available memory → see next slide

RaFIO: Random Forest I/O-Aware algorithm

/ Scenario 1

- / Memory workspace monitor: all elements and all features <= memory workspace</p>
- / Data Loader module: Load all features of all elements of the node
- / Decition Tree Building module: Builds a subtree (depth first)

/ <u>Scenario 2</u>

- / Memory workspace monitor: all features of elements of the node <= memory workspace</p>
- / Data Loader Module: loads all features of the elements of the node
- / Decition Tree Building module: Splits the current node

RaFIO: Random Forest I/O-Aware algorithm

Ścenario 3

- / Memory workspace monitor: features of elements of the node > memory available
- / Data Loader module: Load elements chunk by chunk
- / Decision Tree Building module:
 - \checkmark Load a chunk, i.e. a subset of elements of the node \rightarrow memor
 - / Process each chunk separatly
 - / Merge the sub-trees obtained from each chunk

- / Compared RaFIO to Ranger [1]
- / N/M = {1, 2, 4, 8}
 - / N: Volume of data to process;
 - / M: Available memory workspace

 $\blacksquare Covertype \Box Wearable \blacksquare Adult \blacksquare Synthetic$

RaFIO vs Ranger

[1] Wright, Marvin & Ziegler, Andreas. (2015). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software. 77.

Used Datasets

38

Dataset	Number of features	Number of elements	Dataset size (MB)
Covertype	54	581012	239.36
Wearable	8	75128	4.58
Adult	14	48842	5.21
Synthetic	64	100000	48.82

 $\blacksquare d = 16 \square d = 32 \blacksquare d = 64 \blacksquare d = 128$

4. Time limited learning and energy optimization

IEEE MASCOTS'23

Training K-means on Embedded Devices: a Deadline-aware and Energy Efficient Design

Hafsa Kara Achira*[†], Camélia Slimani *, Jalil Boukhobza* *ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, F-29200 Brest. France [†] École Nationale Supérieure D'Informatique (ESI), Algiers, Algeria Email: ih_karaachira@esi.dz, camelia.slimani@ensta-bretagne.fr, jalil.boukhobza@ensta-bretagne.fr

Applied Computing Review

Adapting Gaussian Mixture Model Training to Embedded/Edge Devices: A Low I/O, Deadline-aware and Energy Efficient Design

Meriem Bouzouad ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285 France im bouzouad@esi.dz

Camélia Slimani ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285 France camelia.slimani@ensta-bretagne.fr Yasmine Benhamadi ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285 France iy_benhamadi@esi.dz

Jalil Boukhobza ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, France Insititute of Information Science, Academia Sinica, Taiwan jalil.boukhobza@ensta-bretagne.fr

The case of K-means: A simpe time model

EK-means : embedded K-means with timing and energy optimization

/ Dropping a certain number of chunks to satisfy the deadline

/ Estimate online the worst-case execution time of a chunk

- / Applying DVFS opportunistically to reduce energy consumption
 - / Update the optimal frequency for processing the remaining chunks

EK-means : embedded K-means with timing and energy optimization

/ Step 1: chunk processing time online analysis

/ Measure T_{load} , T_{init} , T_{it} with max frequency and deduce the number of cycles

/ Step 2: Estimate the number of chunks to drop (to meet the deadline)

- / According to the worst case scenario (max number of iterations to converge)
- / According to previous measured time metrics

/ Step 3&4: Applying DVFS

- Compute the slack time from previous chunks (WCET actual time to process the chunk)
- / Find the lowest frequency that satisfies the deadline

/ Step 5: Process the final chunk

/ Select the right frequency (according to cumulated slack)

/ Deadline

Sep	$T_{deadline}$	EK-means interval (s)	$T_{deadline}$ satisfaction (%)
	300	95.82 - 250.6	100
	450	294.7 - 406.01	100
-0.2	600	424.38 - 514.37	100
-0.2	750	572.38 - 766.69	80
	900	744.19 - 899.37	100
	1050	822.63 - 957.52	100
	300	55.08 - 134.99	100
	450	191.94 - 229.15	100
0.0	600	286.99 - 337.86	100
0.0	750	370.98 - 436.43	100
	900	482.21 - 591.01	100
	1050	578.3 - 660.63	100
	300	56.67 - 248.73	100
	450	192.73 - 324.65	100
0.2	600	247.41 - 561.85	100
0.2	750	358.34 - 529.82	100
	900	404.72 - 821.24	100
	1050	558.44 - 812.79	100

ARI of EK-means is 1.43% lower compared to K-MLIO

/ Energy

> 50% reduction on the processor dynamic energy

jalil.boukhobza@ensta-bretagne.fr

43

/ Context:

- / One facet of Edge AI is the ability to learn on resource-limited edge devices to:
 - / Reduce latency
 - / Reduce the network traffic
 - / Enforce Privacy and security
- / On commodity hardware, several frameworks can hardly be usable
- **/ Problem:** Several ML algorithms have been thought with the memory large enough to contain the dataset
 - $/ \rightarrow$ Lag because of I/O swapping issues

/ Solution:

- / Devised a general pattern \rightarrow divide (the dataset) to conquer (the I/O bottlneck)
- / Applied the optimization pattern successfully on 3 ML algorithms: K-means, GMM, Random forests
- / Reduced the I/Os by up to 95%
- / No or small loss on accuracy
- / Energy optimization

Applications on the edge

- More ML algorithms to work on \rightarrow Generalize the approach
- Explore deep learning algorithms
- Explore LLM deployments

• ...

• ...

Adaptive accuracy for the learning

System and distribution issues

- Temperature reduction issues
- Energy consumption modeling and optimization
- Design of ML libraries optimized for I/Os
- ML learning on comodity hardware (VM, containers)
- Load balacing/scheduling between edge devices
- Data and compute placement
- Carbon footprint-aware deployment

Special thanks to ...

Hafsa Kara Achira

Camélia Slimani

Stéphane Rubini

You can download the presentation by flashing the code

46

Meriem Bouzouad

Chun-Feng Wu

Vincent Lannurien

Yuan-Hao Chang

