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In embedded and cyber-physical systems, the design of a desired functionality under constraints increasingly
requires parallel execution of a set of tasks on a heterogeneous architecture. The nature of such parallel
systems complicates the process of understanding and predicting performance in terms of response time.
Indeed, response time depends on many factors related to both the functionality and the target architecture.
State-of-the-art strategies derive response time by examining the operations required by each task for both
processing and accessing shared resources. This procedure is often followed by the addition or elimination of
potential interference due to task concurrency. However, such approaches require an advanced knowledge of
the software and hardware details, rarely available in practice.

This work presents an alternative "top-down" strategy, called PathTracer, aimed at understanding software
response time and extending the cases in which it can be analyzed and estimated. PathTracer leverages on
dataflow-based application representation and response time estimation of signal processing applications
mapped on heterogeneous Multiprocessor Systems-on-a-Chip (MPSoCs). Experimental results demonstrate
that PathTracer provides i) information on the nature of the application (work-dominated, span-dominated,
or balanced parallel), and ii) response time modeling which can reach high accuracy when performed post-
execution, leading to prediction errors with average and standard deviation under 5% and 3% respectively.

Keywords: model-based design, dataflow, MPSoC, design space exploration, processing latency, signal process-
ing applications

1 INTRODUCTION
Embedded systems are now the most widespread devices in both mass and industrial electronics.
Their processing are managed by Multiprocessor Systems-on-a-Chip (MPSoCs) that embed a
growing number of heterogeneous Processing Elements (PEs) in order to efficiently perform
demanding signal and information processing. For this reason, the design of systems based on
MPSoCs has become increasingly complex and several approaches aiming at limiting this complexity
have appeared [13]. Among the concepts of embedded systems, Cyber-Physical Systems (CPSs)
have been studied with interest by the scientific community in the last few years. These systems are
capable of monitoring and controlling physical elements and consider heterogeneous components
that interact with each other in different modalities depending on the context in which they
operate [54]. Design and maintenance of such systems are extremely complex because of their
multidisciplinary nature, their elaborate requirements, the heterogeneity of their components
and the continuous communication between their physical and cyber layers [14]. Both embedded
systems and CPSs have demanding requirements in terms of flexibility and efficiency. The former
property requires solutions capable of performing different functionalities evaluated in various
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operating modes. The latter is needed for the exploitation of the system with respect to the
performance and costs deriving from the design choices (e.g. regarding requirements associated
with energy budget and response time). In order to facilitate these application requests, the use of
parameters, associated with specific operating modes, offers high-level management of functionality.
Among the most common Key Performance Indicators (KPIs) of embedded systems and CPSs,

latency, also called system execution latency or response time, plays an important role for the strategies
considered for adapting signal processing solutions [20, 23]. Indeed, this metric represents the
execution time of a complete elaboration of a functionality, starting from the acquisition of a given
input data, and ending with the generation of an associated output data. With current MPSoC
technology, the accurate evaluation of the response time implies complex timing analyses or strong
limitations in the implementation of the hardware and software components. Indeed, although
different approaches in literature aim at providing accuracy and reliability in the verification
of the response time, their applicability depends on various aspects, such as: the availability
of information regarding hardware and software features (cache management, bus arbitration,
operating system scheduling decisions), and the amount of processing and requests in the use of
system resources associated with the functionality [63]. In this context, the present paper aims to
simplifyMPSoC response time estimation, especially when parametric functionalities are performed
on heterogeneous systems. In particular, the analysis focuses on parametric functionalities described
via a dataflow computation model (which allows the use of parameters) and examined in the single-
rate DAG version suitable for their scheduling. However, reducing latency evaluation complexity
does not come for free, and typically leads to a large loss of response time evaluation accuracy.
This paper introduces the PathTracer methodology for modeling the system execution latency

of signal processing applications described through a dataflow Model of Computation (MoC). The
objective of the developed method is to extract, from an application model, a Longest-Latency
Path (LLP), that is a subset of the application workload sufficient to approximate its response
time. Generalizing this concept, we refer as activity to the share of an application workload that
determines a given KPI [48]. When evaluating latency, the LLP is the application activity, and having
such information on the application workload opens up to a large set of studies, ranging from the
design of abstract Models of Architecture (MoAs) to scheduling optimizations and Design Space
Exploration (DSE). PathTracer aims at building a model of the MPSoC workload execution that
offers more insights on response time activity than the Deterministic Actor Execution Time (DAET)-
based solution provided by schedulers. This paper is an extension of our previous work [55]. The
main contributions of this paper with respect to this previous work are i) the explanation of the
PathTracer method to extract a Longest-Latency Path (LLP) from a dataflow application, and ii) the
detailed analysis on functional use cases of the causes of MPSoC response time.

The rest of the paper is organized as follows. Section 2 discusses the dataflow-based description
of signal processing applications that serve as information source for PathTracer and details the
input MoC used in PathTracer. Section 3 explains the concept of Longest-Latency Path and how
it differs from application Critical Path. Sections 4 and 5 respectively describe the PathTracer
design flow and its assessment. Section 6 discusses current limitations of PathTracer and potential
improvements. Section 7 concludes the paper.

2 DATAFLOW REPRESENTATION OF SIGNAL PROCESSING APPLICATIONS
This paper focuses on signal processing applications that process streams of data through trans-
formational operations. The MoC used to describe such a functionality impacts the DSE strategy
exploitable for specific KPIs [2]. The large available set of MoCs led to the development of many
tools capable to evaluate a functionality in terms of timing behavior [1, 40, 43]. Depending on the
latency evaluation objectives and their requirements in terms of accuracy, DSE strategies can lead
to intractable evaluation problems and long times of development and analysis. This is mainly due
to the amount of information (even not always available) required in this type of investigation,
which implies scalability issues. Another explanation is the presence of timing anomalies, i.e. the
fact that decisions with small local influence can have a very large system-level influence [22].



Different design tools can be used depending on the constrained and optimized KPIs that have to
be considered during development of the functionality. In particular, in order to achieve timing
estimation and optimization for embedded systems, simulators working at different abstraction
levels are exploited [44, 50]. Among these tools, DSE tools are focused on high abstraction levels and
designed for obtaining fast evaluations. Conversely, low-level analyses such as the ones performed
by instruction set simulators favor accuracy at the expense of an increased exploration time. For
these reasons, having the possibility to include in the analysis a certain amount of information
available depending on the degree of accuracy required (i.e. elasticity in the DSE) is desirable to
efficiently exploit this trade-off and improve design productivity [2]. This is particularly true with
large design spaces, where abstraction is needed to reduce exploration complexity [29].
Since dataflow (DF) models are optimized for modularity and abstraction, these MoCs are

widely used in predicting streaming application response time. DF MoCs have in particular proven
useful for modeling signal processing applications [5, 12]. When using a DF MoC, one of several
alternative abstract models can be chosen to represent the computation of a functionality as a set
of non-preemptive tasks which exchange messages with each other through First In, First Out
data queues (FIFOs) [45]. Each DF MoC offers a different trade-off between application behavior
predictability and runtime reconfiguration of the workload. Synchronous DF (SDF) [34] in particular
makes it possible to precisely define an execution iteration that is indefinitely repeated after an
initial transitory phase. In that case, response time can be defined as the time between the beginning
of the execution of the firstly executed data source actor in the graph iteration and the end of the
execution of the last data sink actor, where a data source actor (data sink actor) corresponds to a task
that acquires (provides) determined input data (output data) of the DF network (see Figure 1). This
notion of iteration is important for the present studies because it provides a formal ground for the
definition of latency. Latency evaluations can be computed from a DF MoC instance and a model
of the hardware architecture [38]. In that case, the accuracy of the timing analysis relies on the
quality of these timing models, based on KPI estimates that define runtime behavior thresholds
(such as worst-case execution time or average execution time).
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Fig. 1. Representation of response time along the graph iterations.

The proposed PathTracer method aims at estimating the latency of a DF modeled application.
This modeling choice is motivated by the fact that DF MoCs give advanced information on both
computation and data transfers in a stream processing application, represented as a network of
tasks that communicate with each other. This approach brings modularity and abstraction that
are assets for timing analysis, especially for heterogeneous architectures. Section 2.1 and Section
2.2 propose a state-of-the-art of the DF MoCs and the timing-focused tools based on these models
respectively.



2.1 Dataflow Models of Computation
When modeling applications for timing analysis, various DF MoCs have been used, their semantics
representing different modeling forms of execution, and interaction among tasks that describe the
desired functionality. Each MoC brings specific features as reported in Table 1. This table focuses
on main monodimensional DF MoCs while multidimensional MoCs [19, 41] constitute promising
future directions for timing analysis of compact application representations.

MoC Reconfiguration Rate Determinism Expressivity Turing
Variability Completeness

KPN N N N high Y
DPN Y Y N high Y
SDF N N Y low N
BDF N Y N high Y
CSDF N Y Y low N
HDF N Y Y low N
SADF Y Y N medium Y
PSDF Y Y Y medium N
PiSDF Y Y N medium N
SPDF Y Y N high Y
BPDF Y Y N high Y
EIDF Y Y N high Y
CFDF Y Y Y high Y

Table 1. Comparison of the presented DF MoCs.

Kahn Process Networks (KPNs) [30] model an application with parallel tasks communicating
with each other via unbounded FIFOs. Each task represents a specific amount of computation
of the whole functionality, which, at each iteration, receives input data (called tokens) through
FIFO channels interfaces. In particular, FIFO writes and FIFO reads are non-blocking and blocking
respectively. Other MoCs presented below derive from KPN [46]. As a specialization of KPN,
Dataflow Process Networks (DPNs) [35] associate tasks (called actors) with firing rules that specify
data arrival patterns that trigger actor-related execution modes (called actions), making FIFO reads
potentially non-blocking. Such firings are completed without preemption and firing rules are based
on the presence of tokens into bounded FIFOs. SDF [34] specializes DPNs by providing static firing
rules, losing the capacity to reconfigure the datapath. Indeed, consumption and production rates
associated with the number of tokens on FIFOs are fixed and constant for all executions. This choice
improves design-time predictability and optimization. As an extension of SDF, Boolean DF (BDF)
[10] introduces a new class of actors that control dynamic token consumption and production
rates. This control flow makes the BDF model Turing complete. Other MoCs limited to applications
that provide for the sequential execution of scenarios are the Heterochronous DF (HDF) [21]
and the Scenario-Aware DF (SADF) [62]. HDF supports changing the token consumption and
production rates through Finite State Machine (FSM), whose state remains fixed during a firing,
and during which the system can be considered as an SDF model. SADF extends SDF with the
concept of scenarios, which imply the dynamic control of the rates. An alternative way to perform
reconfiguration of the data rates in a DF MoC is the Parameterized SDF (PSDF) metamodel [4].
Parameterized dataflow extends a DF model with dynamically reconfigurable parameters. As
an extension of PSDF, Parameterized and Interfaced SDF (PiSDF) [15] refines the control over
parametrization compared to the PSDF and adds the notion of interface [49] that insulates the
different levels of hierarchy in the application representation. This insulation makes schedulability
analyzable per hierarchy level in the graph. Modularity is obtained by improving graph composition
and adding dependencies among parameters, whose relations are defined in a hierarchical tree. Other
models that make use of parameters to set consumption and production rates are the Schedulable
Parametric DF (SPDF) [17] and the Boolean Parametric DF (BPDF) [3]. These models represent



non-hierarchically reconfigurable generalizations of the SDF model. SPDF considers special actors
in charge of modifying parameters after every specified number of firings, with the purpose of
guaranteeing schedulability. BPDF leverages a combination of integer and boolean parameters in
order to dynamically control rates and communication channels respectively. An alternative to
the parametric approaches consists in using dynamic MoCs. With respect to the parametric-based
MoCs, these models, such as Enable-Invoke DF (EIDF) [52] and Core Functional DF (CFDF) [51],
offer more efficient implementations with different degrees of analyzability. These models are by
nature less predictable than PiSDF. In the EIDF, consumption and production rates depend on the
dynamic firing modes of the actors. CFDF corresponds to a subset of the EIDF, that provides for a
restriction of the achievable next modes, from a series to a single and deterministic case.
In this work, the PiSDF MoC has been chosen for the availability of advanced tooling, the

possibility to change parameters to adapt functionalities, and the predictability of the application
representations supporting reconfiguration. However, LLP activity computation could be conducted
from all forementioned dataflow models, provided that application model is representative of
application behavior for the considered time window.

2.2 Timing-focused Tools for Design Automation of Dataflow Applications
In literature, various design automation tools relying on specific DF MoCs have been developed
over the years. This section focuses on those tools that provide system-level analysis to optimize
timing of functionality expressed with the DF models (see Table 2).

DF Tool MoC Architectural Input AvailabilityModel Specifications

cost funct.MAPS KPN of target C,CPN academic

MPPA AccessCore CSDF abstract Sigma-C commercial
PREESM PiSDF S-LAM C open source

KPN,DPN,SDF,
BDF,CSDF,HDF, variousPtolemy II

PSDF
abstract languages open source

commands,SDF3 SDF,CSDF,SADF abstract C/C++ open source

SPIDER PiSDF S-LAM C++ open source

Table 2. Comparison of the main timing-focused tools based on DF MoCs.

MAPS [36] is a compilation framework that supports applications expressed with the KPN model.
The main feature of MAPS consists of providing DSE in order to favor fast functional validation
in systems with heterogeneous PEs, which are defined by their cost functions. Applications can
be implemented in sequential C code or in its extension called C for Process Networks (CPN).
Developed by Kalray, MPPA AccessCore [8, 31] is a commercial framework dedicated to MPPA
multi-core systems. Applications are expressed as Cyclo-Static DFs (CSDFs) through a C-based
language called Sigma-C. PREESM [47] is a rapid prototyping tool that provides design simulation
and verification for applications described as a PiSDF graph. The tasks of the desired functionality
are specified as C functions and mapped on a target modeled through the System-Level Architecture
Model (S-LAM). In order to execute the application on the system, PREESMprovides code generation
for MPSoCs. Ptolemy II [53] provides modeling and simulation of heterogeneous systems expressed
as combinations of various DF MoCs. A functionality is specified through a hierarchy of application
graphs, whose levels conform to a determined MoC, which is represented in some modeling
language (such as Java or C). SDF3 [61] is an open-source framework that offers analysis and
simulation for SDF, CSDF and SADF MoCs. Functionalities are described by using command-line
tools and C/C++ Application Programming Interface (API). Nevertheless, like with Ptolemy II, code
generation of the application prototype for MPSoCs is not provided. SPIDER [26] offers runtime



management of applications specified as PiSDFs. The development of the functionality can take
place by exploiting the PREESM environment, and the actors internal code is provided as C++ code.

In this work, PREESM is chosen for application representation since it provides a design environ-
ment for scheduling and mapping parametric functionalities at design time and generates MPSoC
functional code for static and parameterized dataflow. In addition, this tool is open source and uses
the S-LAM as an architectural model, which is suitable for describing heterogeneous MPSoCs with
a high level of abstraction. Finally, PREESM provides automated Directed Acyclic Graph (DAG)
generation when fixing application parameters and scales up to thousands of individual actor
firings. As explained in the next section, this DAG serves as an input to PathTracer.

The next section leverage dataflow application representation to explain the concepts of Critical
Path and Longest-Latency Path, as well as the different possible levels of latency evaluations
depending on available system-level knowledge.

3 DAG-BASED TIMING ANALYSIS: KNOWLEDGE LEVELS, CRITICAL PATH AND
LONGEST-LATENCY PATH

The application representation input to the PathTracer method complies to a subset of the SDF [34]
MoC corresponding to a transformation into a single-rate DAG. In this form, production and
consumption rates on each FIFO in the graph are made identical. Moreover, to this general graph,
the following simplifications are applied: i) no cycle is considered (FIFOs from one iteration of the
graph to the next are ignored) and ii) it is assumed that the number of initial data packets (delay)
in each FIFO is zero. A formal definition follows.

The DAG model is represented as a finite directed, weighted graph 𝐺 =< 𝑉 , 𝐸,𝑚 > where:

• 𝑉 is the set of nodes called actors; each node represents a non-preemptive task that performs
computation on one or more input data streams and produces one or more output data streams.
Task execution is data driven: the task is fired as soon as input messages are available on all
input edges.
• 𝐸 ⊆ 𝑉 ×𝑉 is the edge set, representing messages between tasks.
• 𝑚 : 𝐸 → N∗ is themessage size function with𝑚(𝑒) representing the number of data indivisible
units (called tokens) sent from the 𝑒 source actor to the 𝑒 sink actor in a message.

This DAG is used as an intermediate representation and is generated after consistency and
liveness have been guaranteed on the PiSDF graph. Ignoring cycles and delays is consistent with the
objective of analyzing latency of a single application iteration. Indeed, when the PiSDF parameters
of the application are fixed, the model respects the SDF graph semantics and this semantics ensure
that, if the graph is consistent and schedulable, a fixed sequence of actor firings, called graph
iteration, can be repeated indefinitely to execute the graph [11]. There is then a well defined
concept of a minimal sequence for achieving an indefinite execution with bounded memory [59].
The generated DAG is representing one iteration of the application and ignoring any edge holding
initial data (called delays) makes it possible to analyze one iteration in isolation, the iteration number
determining which source and sink task executions shall be associated to compute algorithm latency.
The single-rate nature of the DAG makes all tasks executed only once per iteration of the graph.
One may note that for the graph to be alive, all source actors, i.e. actors with no input edge, shall
be fired at the same rate. This graph is a coordination language and as such, it only specifies the
topology of the network, but does not give any information on the internal behavior of tasks.
However, each actor is associated to a code implementing its internal functionality (e.g., a C code
as in Section 5). Moreover, information is tagged on tasks and messages to model the relative cost
of their management and, as discussed hereunder, latency precision accuracy depends on the level
of knowledge of these tags.
Such a model is called single-rate DAG (srDAG) in the literature and has the advantage of

simplicity at the cost of a lack of scalability for heavily multirate applications (e.g., see [28]).
This srDAG entry point is chosen because it is common to many studies in the literature (e.g.,
[9, 18, 37, 39, 42]) and can be generated from many applicative representations, ranging from



advanced DF algorithms (such as SDF [34], CSDF [6] or PiSDF in our case [15]) to real-time
application task sets. In the following discussions, we will refer to DAG or srDAG interchangeably,
considering their meanings corresponding to the definition given in this section.

(A) PiSDF (B) SDF

(C) srSDF (D) srDAG

Fig. 2. Transformation steps of the application description from PiSDF to srDAG. Actors whose names
are written vertically are simple data routers whose behavior is automatically generated. This is a pseudo-
application with data and task parallelism, as well as pipelining. Gthr = Gather, Scatr = Scatter, BrdC =
Broadcast, StrI = Stream Input, StrO = Stream Output, PPA = Pipelined Actor, DPP = Data Parallel Actor, TPP
= Task Parallel Actor.

Figure 2 depicts the different steps required for obtaining a srDAG starting from a PiSDF descrip-
tion designed in PREESM. Figure 2A shows an example signal processing application described
with PiSDF with only static parameters. In this illustrative example, 𝑁 data packets (tokens) of a
stream (StrI) are given as input to a scatter task (Scatr) every execution (firing), where 𝑁 = 𝑝1 + 𝑝2
and 𝑝1 and 𝑝2 are integer parameters. Then, a broadcast actor (BrdC) conveys tokens to a data
parallel actor (DPPa) and to task parallel actors (TPPa and TTPb), that fire 2 ∗ 𝑝1 and 1 times for
each graph execution respectively, given their consumption/production rates of the communication
links (edges). In the branch below, a pipelined actor (PPA) and another data parallel task (DPPb)
are shown in sequence and executed both 𝑝2 times per graph firing. Finally, gather (reduce) actors
(Gthr1 and Gthr2) collect and send the processing results to the stream output tasks (StrO1 and
StrO2). Setting 𝑝1 = 4 and 𝑝2 = 3, a more specific SDF description can be derived (Figure 2B) and
given as an input to the scheduler, that is capable to automatically convert it into its single-rate
version (Figure 2C). In this description, the instances of the actors are made explicit, new routing
blocks are added (Scatr0, Scatr1, Gthr0 and Gthr3), and the hypotheses on the number of their
executions per graph firing mentioned previously can be verified. Defining latency of the appli-
cation such as the execution time of a single graph firing, it can be evaluated by the difference
between the start time of the first firing actor (StrI) and the end time of the last firing actor (StrO1
or StrO2). Following this mono-iteration strategy, feedback edges (with delay, represented by a
black round in the link in Figure 2C) can be removed from the analysis because they represent
inter-iteration dependencies, obtaining the srDAG (as in Figure 2D). We can take this hypothesis
because two graph iterations are here not pipelined, i.e. a new iteration does not start as long as the
previous one is running. If pipeline at a graph level was activated, additional interference would be
to consider, that are not taken into account in this paper. Source and sink actors are highlighted in
Figure 2D by respectively a golfer and golf holes.
In order to identify the latency contribute (or activity) of an application for latency estimation,

the starting point of this work is to divide the whole application DAG into paths of tasks and
edges linking sources to sinks. At this point, the Critical Path (CP) is extracted. CP is characterized
by the following assumptions: i) it consists of a path that maximizes the sum of contributions,
and ii) the CP determines the latency of the whole application. Each of source-to-sink paths



(A) CP candidates with edges and actors (B) CP candidates with actors only

Fig. 3. CP candidates list associated with the srDAG depicted in Figure 2D.

is a CP candidate (see Figure 3A). Then, the longest path, that will constitute the CP, can be
approximated. As a further definition, the CP can be defined as the longest chain of dependent
application elements causing latency. Indeed, every actor and edge (an edge in the DAG represents a
message) may contribute to the CP with its specific weight in terms of time associated to its activity.
Depending on the application domain, this general analysis can be simplified by focusing on the
most relevant execution characteristics, removing those with negligible impact. An implementation
of a signal processing application in an MPSoC is likely to require, to build an efficient system,
token manipulation times to be small compared to those for their processing. In this case, the
dominant activity is the processing associated with the actors, while communication weights
deriving from signals/data exchange and routing shall be orders of magnitude lower. In the case
of shared memory MPSoCs such as the one considered in Experiments Section 5.2, times for data
reads and writes, included within task timings, depend on cache activities and directly model
data transfer timings within task activity. Modeling a distributed memory MPSoCs would require
separate modeling of the edges latency, not compulsory in this study. However, as will be shown in
our experimental results, mapping and scheduling the activity of several CP candidates and ignoring
the interference due to their combination is in general not realistic. To model these latencies, two
different approaches have been considered in this study. In the first one, the CP is estimated by
exploiting the information on the mapping and the pre-characterized/monitored timing of its
elements. The second one extends the previous method by adding interferences to the CP, obtaining
another set of latency contributions with higher accuracy: the Longest-Latency Path (LLP).
PathTracer aims at analyzing the determining factors that lead to the prediction gap between

different levels of architectural information when a DAG-based application is mapped on a hetero-
geneous system, as motivated in [55]. The discussion starts from the levels (A, B and C) based on the
information available before running the DAG on the MPSoC, such as DAET tags and architectural
properties (called a-priori information/knowledge). On the other hand, the subsequent levels (D and
E) consider tags of the start/end time, obtained only after the DAG execution and named a-posteriori
information/knowledge. At all the defined (A-E) levels, the scheduling policy is hypothesised to be
known to the simulation process so that levels represent knowledge of architecture rather than
knowledge of the scheduling decisions. This notion of knowledge levels could be extended to
knowledge of the platform scheduling policy but this study is kept out of the scope of the current
paper. In experimental results of Section 5, the chosen scheduling is an list scheduling algorithm
with As Soon As Possible (ASAP) task starting date [33] and the total order of the task list is
known to the simulation process. We can list the mentioned levels of knowledge and related latency
estimations:
• level A –DAGwith Single DAET Tags: several works have analyzed the theoretical latency
of the DAG depending on its CP [32, 46, 58]. As shown in Figure 3B, the DAG is divided into
task chains starting from each source node (with no predecessor) and ending to every sink
node (with no successor), that we will call paths. The latency evaluation from CP analysis
is usually performed by using heuristic approaches based on path exploration and task



characterizations. For each CP candidate, DAG nodes are tagged with timing weights. In this
context, since no information about the architecture is used, CP is considered to freely run on
a system with unbounded (or large enough) memory and infinite (or as many as necessary)
number of homogeneous PEs, as depicted in Figure 4A.
• level B – DAG with Single DAET Tags and Architecture with a Specified Number of
PEs: with a known number of homogeneous PEs and a bounded memory, a heuristic-based
scheduling/mapping strategy can be applied in order to achieve an optimized solution in
terms of timing performance [56] (see Figure 4B). This procedure leads to a more realistic
model of execution in which paths do not need to be analyzed in the latency representation,
usually depicted with a Gantt chart. As tasks share PEs and messages share memory, con-
tentions appear on architectural resources among tasks or communication operations. These
contentions lead to interferences in DAG execution, which in turn increase latency and, if
not predicted, reduce latency predictability.
• level C – Architecture with a Specified Number of PEs of Different Types, and DAG
tagged with one DAET per PEs Type: a more accurate solution in terms of the DAG
execution time can be achieved by distinguishing the types of the PEs in the target system
(see Figure 4C). Nevertheless, with respect to the homogeneous case, this implies to provide
latency prediction with the characterization of: i) the tasks for each type of PE, and ii) the
elements of the hardware infrastructure. To do so, a DSE consisting of a statistical evaluation
of the target-dependent costs associated to computation and communication may be required.
• level D (Trace) – DAG with Start and End Time Tags and Real Architecture: differently
from the level C, the bus system linking multiple PEs is due to the real architecture, as well
as the hierarchical structure of the memory. This case corresponds to an execution trace,
extracting from code executions the start and end times of all tasks (see Figure 4D). It can be
used as the reference Gantt chart to be looked for by models. At this post-execution stage,
system latency is perfectly known. However, such a trace does not provide a full knowledge
on the execution, as only start and end times of tasks are known but the causal chain of
latency-causing phenomena is still unknown.
• Proposed level E: PathTracer – DAG with Start and End Time Tags, Full Scheduling
Information and Architecture with a Specified Number of PEs: we propose PathTracer
as a new level of latency explaining system model. This level extracts the LLP as the subset
of tasks causing latency (see Figure 4E). At a PathTracer level, the objective of the analysis is
to be able to tag the Gantt chart, knowing whether a particular task execution or message
effectively belongs to the LLP, and to remove all tasks that do not participate to latency.
PathTracer can be evaluated by a heuristic, evaluating start and end times, and tracing the
most probable causal chain. Apart from CP tasks, the LLP may contain different types of
interferences. Scheduling interferences are tasks whose execution delay the execution of a
critical path task. Dependency interferences are tasks, or parts of tasks representing waiting
time by a CP task for data produced by non-CP tasks. Other types of interferences can be
defined and traced, to refine the level of understanding on the parallel execution.

The proposed strategy relies on an application-centric information: the application CP. By
decomposing the list of elements determining latency into CP and interferences, we propose
the novel concept of Longest-Latency Path as an equivalent to CP in levels B through E. Indeed,
interferences are introduced by different phenomena, mainly: i) sharing of a finite number of
hardware resources (processor, memory, interconnects, peripherals, etc.); ii) the nature of the
application itself (task heterogeneity, scenario-based diversity in the actor characterization, task
dependencies, etc.); iii) the often unknown memory access time by tasks, that prevents timing
determinism [25].
With respect to the example proposed in Figures 2, 3 and 4, in level A no interference arises,

since CP can run freely from the rest of the application (see Figure 4A). From B to D (see Figures
4B,4C, and 4D), the two main types of interference that can be observed are associated to:



(A) Infinite Homogeneous PEs (B) Finite Homogeneous PEs

(C) Finite Heterogeneous PEs

(D) Real Architecture

(E) PathTracer

Fig. 4. Gantt chart with tasks execution times for each level of architectural information. From level C, PE 2
is of a different type than PE 1, and considered twice as slow as PE 1 (for each task).

• scheduling: when a CP actor execution is delayed due to other tasks that precede it in
scheduling are mapped in the same PE (in Figure 4B, DPPb3 cannot be executed since DPPa2
and TPPa, not in CP, are still running);
• dependency: when the execution of a CP instance has to wait for tokens coming from other
tasks that are not present in the CP (as shown in Figure 4C, StrO2 is waiting for a token from
DPPb2).

Based on these notions of CP and LLP, the next section explains the PathTracer design flow that
computes a LLP from an srDAG and architectural information.

4 FINDING THE LLP: THE PATHTRACER DESIGN FLOW
This paper aims at providing a practical method to extract level E information of Section 3. In this
section, the design flow for estimating LLP for a parametric application described as a task graph is
proposed. As depicted in Figure 5, the flow starts from the design of the dataflow application and
the modeling of the target architecture (1, detailed in Section 4.1). Next phases can be performed in
a loop for each scenario (values of parameters), starting from the scheduling step (2, described in
Section 4.2). The application execution is monitored (3, see Section 4.3). A user that wants to apply
the proposed PathTracer flow needs to carry out the 3 hardware (HW)- and software (SW)-specific
steps by utilizing tools in order to schedule, map and monitor the DF-based application onto a
heterogeneous system. After that, an automated chain of scripts analyzing system execution latency
can be launched. At first, this process provides a list of CP candidates based on DAG analysis,
estimates the longest one, and then evaluates interferences to the estimated CP in order to build
the LLP that approximates the response time of the functionality. Indeed, while CP is the list of
tasks causing response time in an idealized architecture with an unlimited number of PE, LLP is
the list of tasks and communications determining response time in a real MPSoC, including many
interferences of different kinds (as discussed in Section 3). The input list provided by the user for
these phases consists of:



• the architectural information (number of PEs, and types, corresponding to the names, of
PEs);
• the application srDAG with parameter values indicating how to explore it (note that when
using the PREESM tool, this srDAG is generated from higher-level application description);
• the monitoring information including number of tasks executions and time measurements
for individual tasks (this information is also provided by PREESM);
• the selected statistical metrics (e.g. average) on which to base the timing characterization
and the LLP analysis.

Thus, depending on the chosen statistical metric, the timing cost of the actor and edge instances
are extracted from measurements (4, see Section 4.4). In parallel, the CP candidates analysis
explained in Section 4.5 is performed (5). Following to this method, the CP is obtained starting
from the monitored actor times for a desired execution (6, see Section 4.6). Finally, the LLP analysis
is performed (7, see Section 4.7). In the rest of this section, these PathTracer flow steps are detailed.

HW-/SW-agnos�c stepHW-/SW-specific step

Fig. 5. Design flow implementing the PathTracer method.

4.1 HW/SWModeling for LLP Analysis
In order to feed the LLP analysis, the model of the HW system and the application have to be
provided to the scheduler. The architectural information consists of the specified number of PEs of
different types (already known at level C, Section 3). On the other hand, the application is modeled
as a srDAG (as in Section 3).

4.2 Scheduling Scenarios
In contexts in which instantaneous system requirements imply the reconfiguration of the applica-
tion, functional changes can lead to application graphs with different parameter values, numbers
of actor executions, numbers of messages and sizes of messages. For this reason, it can be useful
for the user to identify specific operating modes (scenarios) of the application. The LLP analysis
can then be focused separately on the srDAG structures associated with each individual scenario.
This procedure gives the system designer data on the impact of parameter values on the execution
in terms of latency speedup, and interferences. After a task characterization on multiple PE types
from single-core executions, the proposed flow relies on the scheduling and mapping algorithm of
the compilation tool (in our case PREESM) in order to generate and evaluate solutions, dependent
on the number of PEs, on the scheduling strategy, and on time characterization of the actors and
the communication cost. Moreover, in order to provide the most flexibility in executing actors, the
HW configuration corresponds to the exploitation of all the PEs presenting in the HW target. In
terms of interferences, this setup corresponds to the worst-case configuration, since the execution
of the actors and their data exchanges are most likely to interfere with each other.

4.3 Monitoring: Measuring Local Tasks Timings
Due to the timing variability of the srDAG iterations, multiple measurements are required for their
post-characterization. Indeed, starting and ending times of the tasks are obtained by a system
monitoring, and used to obtain a CP linked to the particular running process. This CP takes part
in the LLP evaluation, and computed as proposed in Section 4.6. Moreover, the measures feed the



latency evaluation of the srDAG. Please note that measurements with both cold and warm caches
may be necessary to provide later analysis with realistic timings.

4.4 Task Post-Execution Latency Characterization and Relevant Executions
Depending on the objective of the exploration, the design flow makes it possible to choose the
latency metric of interest. This metric can be i) the post-characterization of the time contributions
for DAG actors and edges, or ii) a specific task-level monitored execution that more than the others
represents the response time evaluated with respect to the chosen metric. In this second case,
average latency, median latency or Worst-Case Execution Time (WCET) of all executions can be
chosen. In the evaluation of the PathTracer method, the choice is made to concentrate on average
latency. This choice is motivated by the fact that the considered applicative algorithms are often
ported in soft real-time systems. Moreover, the static nature of their dataflow structure makes the
time variations of the considered systems limited, with under 5% of latency standard deviation
(Section 5.2). Average latency is thus a good tool for system analysis in this soft real-time context.

4.5 Extracting the CP Candidates

In srDAG
Out all CP Candidates
Pros no application knowledge is needed
Cons poor scalability

Algo

Algorithm 1: CP Candidates extraction among all DAG paths.
1 Procedure f_nxt(starting_node,Links,Paths)
2 for 𝑖 ← 1 to size(Links) do
3 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 = get_target(starting_node,Links[i]);
4 if 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 then
5 update_paths(Paths);
6 𝑃𝑎𝑡ℎ𝑠 = f_nxt(next_node,Links,Paths);
7 end
8 end
9 return 𝑃𝑎𝑡ℎ𝑠 ;

10 end
11 𝐴𝑙𝑙_𝑆𝑜𝑢𝑟𝑐𝑒𝑠 = find_all_sources(srDAG);
12 𝐴𝑙𝑙_𝐸𝑑𝑔𝑒𝑠 = find_all_edges(srDAG);
13 for 𝑖 ← 1 to size(All_Sources) do
14 𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = f_nxt(All_Sources[i],All_Edges,CP_Candidates);
15 end
16 return𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

Table 3. Overview of the Complete CP Candidates Analysis.

Starting from the application srDAG, several ways can be considered to obtain CP candidates. In
this work, complete and selective analyses have been evaluated (see Tables 3 and 4). The complete
analyses does not require a-priori knowledge of the application and provides the user with all
the paths present in the graph. However, this could not always be convenient since scalability
issues may occur. To avoid these, in the selective analysis, the evaluation is limited by setting
the maximum number of paths per source to be considered. Moreover, being familiar with the
application favors the reduction of computational complexity by selecting sources and sinks of the
paths that have to be analyzed in priority.

4.5.1 Description of the Algorithms. Starting from each graph source actor (i.e. without predecessor),
the search algorithm performs a depth-first walk (lines 14 and 16 in Algorithms 1 and 2, present in
Tables 3 and 4 respectively) until all paths for each sink actor has been found (see procedure f_nxt,
lines from 1 to 10 in Algorithm 1). The heuristic version of such procedure evaluates only N paths



In srDAG, selected sources/sinks
Out selected CP Candidates
Pros tractable complexity
Cons application knowledge is needed

Algo

Algorithm 2: CP Candidates extraction among selected paths.
1 Procedure f_nxt_N(starting_node,Links,Paths,N)
2 if 𝑠𝑖𝑧𝑒 (𝑃𝑎𝑡ℎ𝑠 ) < 𝑁 then
3 for 𝑖 ← 1 to size(Links) do
4 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 = get_target(starting_node,Links[i]);
5 if 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 then
6 update_paths(Paths);
7 𝑃𝑎𝑡ℎ𝑠 = f_nxt_N(next_node,Links,Paths,N);
8 end
9 end

10 end
11 return 𝑃𝑎𝑡ℎ𝑠 ;
12 end
13 𝑆𝑒𝑙_𝑠𝑟𝐷𝐴𝐺 = sel_graph(srDAG,Sel_Sources,Sel_Sinks);
14 𝑆𝑒𝑙_𝐸𝑑𝑔𝑒𝑠 = sel_edges(Sel_srDAG);
15 for 𝑖 ← 1 to size(Sel_Sources) do
16 𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠_𝑖 = f_nxt_N(Sel_Sources[i],Sel_Edges,CP_Candidates,N);
17 𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 = append_paths(CP_Candidates,CP_Candidates_i);
18 end
19 return𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ;

Table 4. Overview of the Selective CP Candidates Analysis.

for each selected input (see f_nxt_N, lines from 1 to 12 in Algorithm 2). Procedures sel_graph and
sel_edges (lines 13 and 14) are used to select only the part of the srDAG affected by the paths with
the chosen sources (Sel_Sources) and sinks (Sel_Sinks) with their associated edges (Sel_Edges),
instead of considering all the sources (All_Sources), sinks (All_Sinks) and edges (All_Edges).

4.5.2 Complexity of the Algorithms. A full exploration of the srDAG can easily lead to an explosion
of the investigation timing depending on the number of nodes and links among them. Indeed,
Algorithm 1 presents a complexity ofO(s · e · n), where s = All_Sources, e = All_Edges, and n is the
maximum length of the paths in the srDAG. Hence, to make the analysis tractable on large graphs,
the search space should be strategically pruned. The analysis can be limited to O(s′ · e′ · n′), with
s′ ≤ s, e′ ≤ e, n′ ≤ n, s′ = Sel_Sources, e′ = Sel_Edges, and n′ the maximum length of the paths in
the limited srDAG. The space complexity can be reduced to O(s′ · e′′ · n′′) (with e′′ ≤ e′, n′′ ≤ n′)
by limiting the walk to only N CP candidates per source. In the current version of PathTracer, the
parameters s′ and n′′ that limit the complexity of the analysis are given as inputs by the designer,
while e′ and e′′ are obtained in dependence on these. This choice of the number of considered CP
candidates gives a control to the designer of a trade-off between modeling accuracy and simulation
time. Indeed, if the discovered CP is substancially smaller than the real CP, interferences will be
over-estimated and the model will loose its capacity to analyse latency causes. The current version
of PathTracer prunes randomly the candidate paths. More advanced heuristics, based e.g. on forking
and joining points in the DAG, could be imagined to make the pruning more efficient.



4.6 Choosing the Most Probable CP

In CP Candidates, measured execution time tags
Out CP, CP latency
Pros analysis of runtime latency variability
Cons poor accuracy, running information needed

Algo

Algorithm 3: Detection of the CP among the CP Candidates.
1 𝑚𝑎𝑥_𝑑𝑖 𝑓 𝑓 = 0;
2 for 𝑖 ← 1 to size(CP_Candidates) do
3 𝑝𝑎𝑡ℎ_𝑙𝑎𝑡 = 0;
4 for 𝑗 ← 1 to length(CP_Candidates[i]) do
5 𝑎𝑐𝑡𝑜𝑟_𝑙𝑎𝑡 = 𝑀𝑜𝑛_𝐴𝑐𝑡𝑜𝑟_𝐿𝑎𝑡𝑠 [𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 [𝑖, 𝑗 ] ];
6 𝑝𝑎𝑡ℎ_𝑙𝑎𝑡 = 𝑝𝑎𝑡ℎ_𝑙𝑎𝑡 + 𝑎𝑐𝑡𝑜𝑟_𝑙𝑎𝑡 ;
7 end
8 𝑒𝑛𝑑_𝑠𝑡𝑎𝑟𝑡_𝑑𝑖 𝑓 𝑓 = get_diff(Gantt,CP_Candidates[i]);
9 if 𝑖 == 1 then
10 𝑝𝑎𝑡ℎ_𝑝𝑟𝑜𝑐_𝑟𝑎𝑡𝑖𝑜 = 𝑝𝑎𝑡ℎ_𝑙𝑎𝑡/𝑒𝑛𝑑_𝑠𝑡𝑎𝑟𝑡_𝑑𝑖 𝑓 𝑓 ;
11 else
12 𝑝𝑎𝑡ℎ_𝑝𝑟𝑜𝑐_𝑟𝑎𝑡𝑖𝑜 = 𝑝𝑎𝑡ℎ_𝑙𝑎𝑡/𝑚𝑎𝑥_𝑑𝑖 𝑓 𝑓 ;
13 end
14 if 𝑒𝑛𝑑_𝑠𝑡𝑎𝑟𝑡_𝑑𝑖 𝑓 𝑓 >𝑚𝑎𝑥_𝑑𝑖 𝑓 𝑓 then
15 𝑚𝑎𝑥_𝑑𝑖 𝑓 𝑓 = 𝑒𝑛𝑑_𝑠𝑡𝑎𝑟𝑡_𝑑𝑖 𝑓 𝑓 ;
16 end
17 if 𝑝𝑎𝑡ℎ_𝑝𝑟𝑜𝑐_𝑟𝑎𝑡𝑖𝑜 > 𝐶𝑃_𝑝𝑟𝑜𝑐_𝑟𝑎𝑡𝑖𝑜 then
18 𝐶𝑃_𝑙𝑎𝑡 = 𝑝𝑎𝑡ℎ_𝑙𝑎𝑡 ;
19 𝐶𝑃_𝑝𝑟𝑜𝑐_𝑟𝑎𝑡𝑖𝑜 = 𝑝𝑎𝑡ℎ_𝑝𝑟𝑜𝑐_𝑟𝑎𝑡𝑖𝑜 ;
20 𝐶𝑃 = 𝐶𝑃_𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 [𝑖 ];
21 end
22 end
23 return𝐶𝑃 and𝐶𝑃_𝑙𝑎𝑡 ;

Table 5. Overview of the A-Posteriori CP Analysis.

Among the CP candidates collected in the previous phase, the critical (longest) one can be detected
with strategies tailored to the available system-level information. In the proposed method (see
Table 5), details of the monitored execution are exploited: scheduling, mapping, starting and ending
times of each actor (available at level E). CP provides an estimation of the response time with
a poor accuracy, that needs to be integrated in an LLP by adding interferences (as will be seen
in Section 4.7). However, this method makes it possible to examine latency variability of the CP
tasks during the execution. Among the paths provided as input (CP_Candidates), Algorithm 3 of
Table 5 detects the CP as that path with the maximum difference (max_diff) between the end time
of its last actor and the start time of its first one (by the procedure get_diff). As a next step, the
Gantt chart describing scheduling/mapping of the real execution (Gantt) is explored. In addition,
the processing ratio (path_proc_ratio) between the latency due to the all of the actors in the path
(path_lat) and the one due to the whole path execution (end_start_diff) determines the choice of
the CP. If more paths with the same end-to-start difference are present, the choice falls on that
one with the largest processing ratio. The logic behind this decision aims to reduce the impact
of the communication links (not considered in this version of the PathTracer) that can occur in
the time windows present among executions of connected CP actors. Communication times have
been ignored because all experiments have been conducted on an MPSoC with shared memory
for which inter-PE communications use loads/stores which latencies are measured within actor
execution time.



4.7 Finding the LLP

In CP, CP latency, execution times of actors, Gantt Chart
Out LLP, LLP latency
Pros high accuracy
Cons medium complexity

Algo

Algorithm 4: LLP extraction based on the detected CP.
1 𝑘 = 1;
2 𝐶𝑃_𝑙𝑎𝑡 = 0;
3 𝐶𝑃_𝑖𝑛𝑡 = 0;
4 for 𝑖 ← 1 to length(CP) do
5 for 𝑗 ← 1 to size(NonCP_Actors) do
6 if !is_present(NonCP_Actors[j],LLP,k) then
7 if get_pe(NonCP_Actors[j]) == get_pe(CP[i]) then
8 𝑎𝑐𝑡𝑜𝑟_𝑠𝑐ℎ𝑒𝑑_𝑖𝑛𝑡 =

get_sched(CP[i],NonCP_Actors[j],Gantt,LLP,k);
9 𝐶𝑃_𝑖𝑛𝑡 = 𝐶𝑃_𝑖𝑛𝑡 + 𝑎𝑐𝑡𝑜𝑟_𝑠𝑐ℎ𝑒𝑑_𝑖𝑛𝑡 ;

10 end
11 end
12 end
13 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒𝑝_𝑖𝑛𝑡 = get_dep(CP[i],Gantt,Sel_Edges,LLP,k);
14 𝐶𝑃_𝑖𝑛𝑡 = 𝐶𝑃_𝑖𝑛𝑡 + 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒𝑝_𝑖𝑛𝑡 ;
15 𝐶𝑃_𝑙𝑎𝑡 = 𝐶𝑃_𝑙𝑎𝑡 + get_lat(CP[i]);
16 𝐿𝐿𝑃 [𝑘 ] = 𝐶𝑃 [𝑖 ];
17 𝑘 = 𝑘 + 1;
18 end
19 𝐿𝐿𝑃_𝑙𝑎𝑡 = 𝐶𝑃_𝑙𝑎𝑡 +𝐶𝑃_𝑖𝑛𝑡 ;
20 return 𝐿𝐿𝑃 and 𝐿𝐿𝑃_𝑙𝑎𝑡 ;

Table 6. Overview of the Selective LLP Analysis. See Algorithm 5 (6) for details about get_sched (get_dep).

Algorithm 5: Procedure associated with the scheduling interference.
1 Procedure get_sched(CP_Actor,NonCP_Actor,Gantt,LLP,k)
2 𝑎𝑐𝑡𝑜𝑟_𝑠𝑐ℎ𝑒𝑑_𝑖𝑛𝑡 = 0;
3 if is_in_btw(NonCP_Actor,CP_Actor,Gantt,LLP,k) then
4 𝑎𝑐𝑡𝑜𝑟_𝑠𝑐ℎ𝑒𝑑_𝑖𝑛𝑡 = lat_in_btw(NonCP_Actor,CP_Actor,Gantt,LLP,k);
5 if 𝑎𝑐𝑡𝑜𝑟_𝑠𝑐ℎ𝑒𝑑_𝑖𝑛𝑡 then
6 𝐿𝐿𝑃 [𝑘 ] = 𝑁𝑜𝑛𝐶𝑃_𝐴𝑐𝑡𝑜𝑟 ;
7 𝑘 = 𝑘 + 1;
8 end
9 end

10 return 𝑎𝑐𝑡𝑜𝑟_𝑠𝑐ℎ𝑒𝑑_𝑖𝑛𝑡 ;
11 end

Adding the interference to the CP analysis leads to a better awareness about the factors deter-
mining response time, exploiting the information of the level E presented in Section 3. However,
this further investigation increases the evaluation time and the complexity of the analysis. Indeed,
for each element of the CP, an identification of potential interferences is required (see Table 6). The
different types of interferences have specific weights, and one of them often dominates over the
others (e.g., in the case of overlapping, only that one due to the scheduling is counted in PathTracer
analysis). Thus, a selective evaluation (see Algorithm 4 in Table 6) is desirable to reduce the time
and complexity of the analysis. In this work, interferences due to scheduling and dependency
(defined in the Section 3 and described more in details in Algorithms 5 and 6) have been added to
the selective LLP analysis. In the case of overlapping in time (i.e. when interference phenomena



Algorithm 6: Procedure associated with the dependency interference.
1 Procedure get_dep(LLP_Actor,Gantt,Sel_Edges,LLP,k)
2 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒𝑝_𝑖𝑛𝑡 = 0;
3 𝑎𝑐𝑡𝑜𝑟_𝑐ℎ𝑎𝑖𝑛_𝑑𝑒𝑝_𝑖𝑛𝑡 = 0;
4 𝐷𝐴𝐺_𝑝𝑟𝑒𝑑_𝐴𝑐𝑡𝑜𝑟𝑠 = get_DAG_preds(LLP_Actor,Sel_Edges);
5 for 𝑖 ← 1 to size(DAG_pred_Actors) do
6 if is_in_btw(DAG_pred_Actors[i],LLP_Actor,Gantt,LLP,k) then
7 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒𝑝_𝑖𝑛𝑡 = lat_in_btw(DAG_pred_Actors[i],LLP_Actor,Gantt,LLP,k);
8 if 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒𝑝_𝑖𝑛𝑡 and !is_present(DAG_pred_Actors[i],LLP,k) then
9 𝐿𝐿𝑃 [𝑘 ] = 𝐷𝐴𝐺_𝑝𝑟𝑒𝑑_𝐴𝑐𝑡𝑜𝑟𝑠 [𝑖 ];

10 𝑘 = 𝑘 + 1;
11 𝑎𝑐𝑡𝑜𝑟_𝑐ℎ𝑎𝑖𝑛_𝑑𝑒𝑝_𝑖𝑛𝑡 = 𝑎𝑐𝑡𝑜𝑟_𝑐ℎ𝑎𝑖𝑛_𝑑𝑒𝑝_𝑖𝑛𝑡 + 𝑎𝑐𝑡𝑜𝑟_𝑑𝑒𝑝_𝑖𝑛𝑡 +

get_dep(DAG_pred_Actors[i],Gantt,Sel_Edges,LLP,k);
12 end
13 end
14 end
15 return 𝑎𝑐𝑡𝑜𝑟_𝑐ℎ𝑎𝑖𝑛_𝑑𝑒𝑝_𝑖𝑛𝑡 ;
16 end

occur simultaneously), only one contribute of interference is counted in the LLP, prioritizing the
contribution of scheduling interference over dependency interference. Moreover, the dependency
interference is computed in a recursive manner, considering the chain of interdependent tasks
(performed in order of execution given by the srDAG) that interfere with the CP. Also in this
case, simultaneous contribution are handled to occur only one at a time (i.e. excluding the sum
of several parallel interference contributions in the same time window). Figure 6 shows how LLP
contributes to three Gantt charts representing the real execution of one DAG iteration of three
different applications mapped on a heterogeneous 8-PEs MPSoC, in which PEs with index from 1
to 4 are less performing in terms of Instruction Set Architecture (ISA) than PEs with index from 5
to 8. LLP is represented as a succession of the execution time contributions of tasks associated with
the CP (in teal color), scheduling interference (in orange) and dependency interference (in purple).
The considered application mappings show different characteristics in terms of LLP. Indeed, Figure
6A shows a work-dominated application, that is, where the CP contribution in the LLP is lower
than the interferences. In Figure 6B, the LLP is the result of a balanced mix of both contributions
due to CP and interferences. Finally, Figure 6C depicts an LLP dominated by the CP (or span).



(A) Work-Dominated Application (interferences cause latency)

(B) Balanced Work and Span Application

(C) Span-Dominated Application (CP causes latency)

Fig. 6. Example of one iteration of DAG execution, represented as Gantt charts with real measured timings, of
work-dominated, balanced work and span, span-dominated applications mapped on a heterogeneous MPSoC.
These proposed execution views are associated with three DAGs respectively composed of 22, 74 and 172
actors (as will be explained in Section 5). LLP tasks are highlighted in teal, orange and purple, depending on
the type of contribution, as tasks associated with: CP, scheduling interferences, and dependency interferences
respectively.

5 EXPERIMENTAL RESULTS AND PATHTRACER ASSESSMENT
In this section, a comparison among the approaches described in Section 3 to analyze LLP is proposed.
The flow described in Section 4 is assessed with 3 large scale PiSDF applications evaluated in several



scenarios and mapped onto an ODROID-XU3 board [24]. As explained before, PiSDF [15] is a DF
MoC that models communication between tasks and algorithmic semantics handled by using
high-level parameters. By using this MoC, the user can vary the consumption/production rates
to obtain different structures of the srDAG. Indeed, each configuration of the PiSDF parameters
represents a specific scenario of the application, having a certain number of actor instances. The
PiSDF graphs of the chosen applications have been designed in PREESM [47], which embeds a non-
preemptive ASAP multi-core list scheduler targeting latency minimization [33]. The monitoring
process consists of 101 executions with the highest execution priority available for a process in the
Linux environment for each evaluated scenario. Among these, the execution that best fits the mean
value of the 100 measures (excluding the 1st execution to avoid typical initial events, such as cache
warming effect) is selected to represent the response time of the scenario and the characterization
of the srDAG instances. About CP candidates analysis, only 50 random paths per graph source are
explored (i.e. the selective analysis as in Algorithm 2); we demonstrate that this amount of paths
represents a good trade-off between complexity and DAG exploration for the use-case applications.
Regarding the target platform, the experimental setup processor is a Samsung Exynos 5422

composed of 8 ARM cores in a big.LITTLE configuration: 4 cores are of type Cortex-A7 with a
cluster frequency up to 1.4GHz, and other 4 cores of type Cortex-A15 with a cluster frequency up to
2GHz. In the experiments, both clocks have been set at their maximum. All the 8 PEs present in the
HW target have been used for mapping the tasks. This choice potentially leads to a high amount
of interferences. The motivation for forcing the architecture to its maximum performance is to
reduce the variations between different iterations of the same application. The dataflow nature of
the applications, in which flowing data is written and read once, combined with these architectural
choice leads to limited timing variations: latency standard deviation on the considered applications
is ranging from 0.3% to 6.5% with an average of 2.8%. This latency stability makes the measured
systems usable in a wide range of soft real-time systems.

5.1 Use-case Applications
This study exploits realistic use-case applications with functional code. In the context of image/video
processing, the selected applications show distinct features in terms of actors, firing, and parallelism.
These have been evaluated each in 6 different scenarios depending on their parameters in order to
change the dataflow graph structure: CP candidates, pipeline actor stages, data parallel tasks.

5.1.1 Example of a Work-Dominated Application — Video Stabilization. This application is work-
dominated for the considered architecture parallelism, thanks to data concurrency. This property
means that the response time is influenced more by the number of PEs and architecture properties
rather than by application limitations. Video stabilization reduces the effects of undesired fast
camera movements due to a shaking camera during video recording. Post-processing techniques
can analyze image motion, leading to the generation of a new video in which shaky movements are
removed. The author thanks Karol Desnos for providing the PiSDF version of the Video Stabilization
application. The proposed solution1 has the DAG as reported in Table 7.

5.1.2 Example of a Balanced Work and Span Application — Stereo Matching. For the considered
platform, the Stereo Matching application has complex behaviors in terms of response time: latency
is influenced by both application CP and architecture number of PEs. From the comparison of two
images from two different poses of the same scene, the Stereo Matching application obtains the
scene depth information in the form of a disparity map. Indeed, disparity map pixels represent
the distance between the locations of the same pixel in the two regularized views. The considered
implementation2 is detailed in terms of actors and edges in Table 7.

5.1.3 Example of a Span-Dominated Application — Scale Invariant Feature Transform (SIFT) Point
Computation. This application is span-dominated as its response time in the architecture considered
1github.com/preesm/preesm-apps/tree/master/org.ietr.preesm.stabilization
2github.com/preesm/preesm-apps/tree/master/stereo/org.ietr.preesm.stereo

github.com/preesm/preesm-apps/tree/master/org.ietr.preesm.stabilization
github.com/preesm/preesm-apps/tree/master/stereo/org.ietr.preesm.stereo


is strongly characterized by its CP. In the context of computer vision, the SIFT is an algorithm used
to detect features of an image. Keypoints are extracted by the comparison between corresponding
points of the input image and of the same image evaluated in its blurred versions and at different
resolutions. In details, the evaluated implementation3 [27] present actor and edge instances as in
Table 7.

S STABILIZATION STEREO SIFT
actors edges actors edges actors edges

1 9 41 24 80 101 550
2 13 57 28 94 118 645
3 15 65 32 102 135 740
4 22 93 38 136 152 835
5 73 297 74 331 172 951
6 127 513 218 1099 222 1229

Table 7. Instances of the edges and actors in the 6 scenarios of the use-case applications.

5.2 Experimental Results
In this section, we demonstrate the insights a system designer can gain on MPSoC workloads using
PathTracer. The latency evaluations possible at the knowledge levels A-E presented in Section 3
for the use-case applications are discussed. In particular, the task characterization for the a-priori
knowledge levels A and B has been obtained by the average of the execution times associated to the
different types of PEs present on the target board. In Figure 7, a comparison of the knowledge levels
presented in Section 3 in terms of response time estimation is proposed. Figure 7 also includes two
small plots for each scenario examined. These plots provide additional detail regarding the response
time (Execs) and histogram over time (Hist) of the 100 measurements taken for the assessment. In
the plots, the execution chosen to be analyzed by PathTracer (the average one) and its place on the
histogram is highlighted, respectively. Figure 8 shows the percentage error with respect to level D,
expressed as average (Avg) and standard deviation (StD).

5.2.1 Video Stabilization. Starting with the image stabilization application, Figure 7A shows an
inversely proportional trend between CP and real latency, which indicates work domination.
Indeed, when increasing the number of tasks, the latency estimates at level A decrease, while the
interference grows. Compared to the level D (trace of the real latency) along all the scenarios, this
leads to a poor accuracy when having only the knowledge of the level A. As reported in Figure
8, its error in terms of latency average and standard deviation is -36.1% and 44.4% respectively.
Regarding the other a-priori knowledge levels (B and C), the estimates are more realistic since
the exploitable parallelism in the application is higher than the number of the used PEs. Indeed,
work domination is effective except in the first scenario (with 9 actors in total, but less than 8 with
equivalent activities in parallel). Nevertheless, in these two levels, the error presents a mean value
and a standard deviation equal to -2.0% and 22.2% (level B), and -33.1% and 2.9% (level C).

3github.com/preesm/preesm-apps/tree/master/SIFT

github.com/preesm/preesm-apps/tree/master/SIFT


(A) Video Stabilization latency measurements and model-based evaluations from knowledge levels A to E, as
well as Scheduling Interferences (SI) and Dependency Interferences (DI). Level D is the real measured latency
while level E is the one evaluated by PathTracer.

(B) Stereo Matching latency measurements and model-based evaluations from knowledge levels A to E, as
well as Scheduling Interferences (SI) and Dependency Interferences (DI). Level D is the real measured latency
while level E is the one evaluated by PathTracer.



(C) SIFT Point Computation latency measurements and model-based evaluations from knowledge levels A to
E, as well as Scheduling Interferences (SI) and Dependency Interferences (DI). Level D is the real measured
latency while level E is the one evaluated by PathTracer.

Fig. 7. Latency estimates at different knowledge levels presented in Section 3. For 6 scenarios of each
application, the execution is profiled for 100 measurements (displayed over time in Execs and as a histogram
in Hist). Units are 105 [𝜇𝑠] in small plots.
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Fig. 8. Error of latency evaluation at the different levels with respect to the reference level D. For each level,
percentage error in terms of standard deviation (StD) and average (Avg) along the scenarios is reported for
the 3 applications: Video Stabilization (1), Stereo Matching (2) and SIFT Point Computation (3).

These results are explained by i) the wrong hypothesis in level B of a homogeneous MPSoC which
leads to a large variations of the estimate around the average value, and ii) from the ignorance in
level C of scheduling delays and interferences which cause underestimated response times. On
the other hand, PathTracer level E achieves a highly accurate estimation, having an error with
an average and a standard deviation respectively of -1.2% and 0.3%, demonstrating the interest of
the PathTracer method to extract fine MPSoC execution behavior. The standard deviation of the
PathTracer modeling error for a given iteration of the stabilization application is much lower than



the standard deviation of the execution latency between iterations that is ranging between 2% and
6.5% depending on the values of the stabilization parameters.

5.2.2 Stereo Matching. In the stereo matching application, the behavior is more subtile as both
work and span act on latency. Activity associated to the CP and interferences from the rest of
application work both influence execution time, as can be seen in all the levels in Figure 7B.
Regarding the error on the latency estimates depicted in Figure 8, the levels A and B suffer from a
lack of architecture knowledge. Indeed, they show an error of 11.9% (16.6%) and 14.0% (15.3%) in
terms of average (standard deviation) respectively. On the other hand, estimations based on level C
shows a decreasingly accurate estimate as the amount of work grows, with an mean error of -15.8%
and a standard deviation of 14.1%. On the contrary, estimates obtained from the PathTracer (level
E) follow the measured response times (Avg: -2.4%, StD: 2%). The good performances of PathTracer
validate the heuristics composing the method. While not exploring all paths, PathTracer can still
locate the causes of latency in the different applications. The standard deviation of the modeling
error of PathTracer for the stereo matching application is reasonably higher than the standard
deviation of the execution latency itself, ranging between 0.3% and 1.7% depending on the values
of the stereo matching parameters.

5.2.3 SIFT Point Computation. As shown in Figure 7C, even if interferences do not dominate in
this third application where CP dictates latency, PathTracer can still reduce the latency estimate
error with respect to the other levels (A, B and C). Indeed, PathTracer presents the following
characteristics: Avg = −5.0% and StD = 2.7% (see Figure 8). On the contrary, results based on the
a-priori levels (A, B and C) show an error with mean values of 8.9%, 8.9% and -31.3%, and deviations
of 10.2%, 10.2% and 9.1% respectively. The standard deviation of the modeling error of PathTracer
for the SIFT point computation application is also a fraction higher than the standard deviation of
the execution latency itself, ranging between 0.3% and 2.3% depending on the values of the SIFT
parameters.

5.3 Analysis of the interferences
One can see in Figure 8 that levels A, B and C all have rather poor accuracy when attempting
to match application latency. This is interesting because it means that adding knowledge on the
heterogeneity of the platform without incorporating knowledge on interferences and effects due
to concurrent actors on the platform is not sufficient to efficiently match the MPSoC behavior.
This effect demonstrates the complexity of the problem and the need for advanced system-level
information to understand the application data flow. Another conclusion from Figure 8 is that
PathTracer is capable to match system latency. This element shows that the chosen two types of
modeled interferences, discussed hereunder, are well adapted to the problem. It also shows that the
LLP computed for the applications is good, and that all the rest of the application can be discarded
while still computing accurate latency estimation.

In this assessment of PathTracer, two types of interference have been evaluated. Indeed, the
current LLP analysis of PathTracer evaluates only the effects due to first-order actor scheduling and
actor dependencies, as detailed in Sections 3 and 4.7. Other interferences appear in the Gantt charts
such as synchronization delays and data transfer delays. The choice fell on these two types since, in
the context of signal processing, actor latency is expected to dominate communication latency. This
hypothesis is important to explain the high accuracy of PathTracer when modeling the causes of
latency. The hypothesis makes sense because the considered systems aim at processing signals with
optimized processing latency and, if communication latency were dominating, the system would
be inefficient, spending its time communicating data and not processing. Figure 7 also shows the
subdivision of the interference for the applications and scenarios of Section 5.2 (SI and DI indicate
scheduling and dependency interferences respectively). The interference of Video Stabilization
grows with the amount of work of the actors and is mainly due to scheduling. Such an analysis
is actually a method to determine that the application is work-dominated. This derives from the
strategy applied by PREESM, that favors the mapping on the faster PEs until the parallelism does



not give any advantage. On the contrary in SIFT Point Computation, the dependency interference
affects the CP until the last scenarios. However, the CP contribution mainly determines the response
time, since the span dominates the execution. In Stereo Matching, both scheduling and dependency
interferences grow with work. In the 5-th scenario the dependency interference starts to have
a significant weight. As expected by an application in which coexist work and span effects, the
combination of both types leads to an increase with the number of the actors.

5.4 Managing complexity in DAG exploration
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Fig. 9. Evaluation time and error of latency evaluation at the different N values (1, 5, 10, 20, 30, 40 and 50)
with respect to the reference level D. Results are referred to the the Stereo Matching application, which
has 2 source actors and 2 initialization actors evaluated as source nodes. Figure 9A reports high evaluation
times due to the low-perfomance machine used (CPU: AMD A6-5200, RAM: 8-GB DDR3@1333MHz, storage:
1-TB HDD). In Figure 9B, percentage error in terms of standard deviation (StD) and average (Avg) along the
scenarios is reported.

In this section, an analysis of the impact of the parameter N, i.e., the number of DAG paths evaluated
for each actor source (as described in Section 4.5), is proposed. The analysis is presented in terms
of evaluation time and estimation error, and focuses on the steps of the PathTracer flow influenced
by the value of 𝑁 (i.e., the last three steps in Figure 5 of Section 4). The examined use-case is
the Stereo Matching application presented in the previous sections, since this application shows
response times dependent on a combination of CP and interferences. This application feature
indicates greater variability in DAG (e.g., CP contribution in LLP) along scenarios. Figure 9A shows
how, as the number N of evaluated paths varies, the evaluation time becomes critical, especially
for as the number of instances in the DAG increases. Nevertheless, low values of N still lead to
the identification of an LLP that maintains accuracy in terms of response time for the scenarios
examined (as depicted in Figure 9B). On the other hand, the weight of interference on the LLP
decreases as N increases. This effect is related to the CP search strategy, which identifies CP as
the path with the highest latency contribution associated with its tasks (see Section 4.5). As N
increases, the LLP is characterized by an equal or greater weight of CP at the expense of interference.



However, in the cases examined, this variation in contribution is very small (as illustrated in Figure
10), thus leading to suboptimal but very close solutions in identifying the causes of response time.
In addition to knowledge of the PiSDF, the choice of N can be made by successive iterations as a
tradeoff between evaluation time and the magnitude of LLP error.

N1 N5 N10 N20 N30 N40 N50

55

60

65

70

75

80

85

90

95

100

No. of Evaluated DAG Paths [unit]

C
P
co
n
tr
ib
u
te

in
L
L
P
[%

]

24 28 32 38 74 218

Fig. 10. CP contribute in percentage with respect to different N values (1, 5, 10, 20, 30, 40 and 50) along the
scenarios of the Stereo Matching application.

6 CURRENT LIMITATIONS OF PATHTRACER
PathTracer is intended as a proof of concept of the benefits brought by extracting an LLP and
explaining its components for the characterization of the average latency of MPSoC workloads. This
section discusses promising future works for each step of the PathTracer design flow as proposed in
Section 4. A first limitation of current version is associatedwith the scaling of themethod. PathTracer
takes an srDAG as an input (see Section 4.1) and the size of this graph may rise very fast depending
on application parameters and exposed concurrency. PathTracer has been successfully tested on
srDAG with more than a thousand actors but method modifications are needed to scale to larger
application graphs. In case of reconfigurable applications, one srDAG analysis is required for each
scenario to be analyzed (i.e. for each parameter values combination, see Section 4.2). In this regard,
the use of design environments for describing applications through parametrized DF MoCs, as used
in this paper, is strongly recommended. In addition to the scheduling and mapping PathTracer
phases, the monitoring phase generates start and end times related to single elements of the srDAG
(Section 4.3) and limits the analysis to non-preemptive executions. The analysis of monitored
times is performed according to the same metric (e.g. average) for all instances of the srDAG (as
mentioned in Section 4.4), without taking into account the statistical behavior of the specific tasks.
The approach will gain at being combined with statistical actor time and data transfer analysis [60].
In parallel to the analysis of the monitored times, PathTracer explores the topology of the srDAG
(see Section 4.5). PathTracer uses a depth-first search [16] and does not include yet an algorithm
aimed at dynamically identifying the routes into the srDAG (as in route-finding problems [7]), since
elements of the srDAG not present in the identified path are still counted as possible interferences.
Nevertheless, this step of PathTracer suffers time complexity issues and will benefit from such
optimizations. In the current version of PathTracer, LLP detection considers communication costs
as embedded inside tasks costs. This hypothesis is valid in the case of shared memory MPSoCs
because cache accesses and cache management operations (write-back, invalidate) are entangled
with processing operations. When considering architectures with distributed memories, such as
multiple networked systems, communications will need to be considered separately.

Finally, although LLP analysis is based on scheduling and dependency interferences (see Sections
4.7), some higher-order combinations of both can rise during execution, such as the following ones:



• scheduling affected by dependency: such interferences appear when an actor that interferes
with CP through scheduling interference has to wait for a token from other tasks, which
affects its execution with a dependency interference;
• dependency affected by scheduling: such interference appears when an actor that interferes
with dependency interference has to wait for the execution of other tasks, which affect its
execution with a scheduling interference.

These second-order interferences are not evaluated yet by PathTracer while, in some real cases,
they do have a non-negligible impact, especially when the CP estimate is underperforming.

7 CONCLUSION
This paper has introduced the concept of Longest-Latency Path (LLP), as well as the PathTracer
method to automatically compute LLP from an application dataflow representation. PathTracer
aims at explaining factors that determine MPSoC execution latency. The design flow of PathTracer
provides execution insights on applications described as a dataflow graph, as well as on monitored
execution times. As shown by experimental results, PathTracer generates high-accuracy latency
estimates based on average execution behaviors and helps determine bottlenecks as well as causes
of speedup limitations. PathTracer and LLP computation have been evaluated on realistic, func-
tional video processing applications and results show that, using PathTracer, a designer can study
whether the heterogeneous MPSoC latency speedup is limited by the application (span-dominated
implementation) or by the architecture parallelism (work-dominated implementation) and pinpoint
the actors and messages interfering with the CP.

Experimental results show that models not considering interference when evaluating execution
latency suffer from prediction errors of tens of percents. PathTracer on the contrary reaches an
accuracy of a few percents. These results encourage further studies on methods to extend the
applicability of LLP analysis to larger scale applications and to earlier design steps.
Finally, timing analyses are especially useful in the context of runtime management since, for

the dynamic handling of task scheduling and mapping, runtime managers rely on profiling of the
system execution in order to apply adaptation strategies [57]. PathTracer provides response time
analysis based on measured metrics and promising future works include estimating LLP at runtime,
from compile-time a-priori of application behavior.
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