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Polyhedra as invariants

Invariants for dynamic systems
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Polyhedra as invariants

Invariants for control-flow graphs

start loop head loop exit

end

fail

i := 0
j := 1

i < n
i := i+ 1
j := j+ 2

i ≥ n

j ≥ 3n+ 1000

j < 3n+ 1000

Cousot & Halbwachs, 1978

Halbwachs, 1979
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Polyhedra as invariants

Loop nests

for(int i=0; i<n; i++) { // 0 ≤ i ≤ n
for(int j=i; j<n; j++) { // 0 ≤ i ≤ j ≤ n
t[i][j] = 42;

}
}
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Polyhedra as invariants

Loops

assume(n > 0);
i = 0; j = n;
while(i < j) { // 0 ≤ i ≤ j ≤ n ∧ i+ j = n
i++;
j--;

}
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Polyhedra as invariants

Curse of dimensionality

Costs tend to increase exponentially with number of variables.
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Double description

Double description

Generators
Convex hull of
▶ vertices
▶ rays
▶ lines

Constraints
Solution set of a system of
▶ inequalities
▶ equalities
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Double description

Duality

constraints ↔ generators

faces ↔ vertices

convex hull ↔ intersection

inclusion ↔ reverse inclusion

Any worst case on one description is a worst-case on the dual for a dual
operation!
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Double description

Redundancy of constraints


x ≥ 0
y ≥ 0

x+ y ≤ 1
x+ 2y ≤ 2

The last constraint is redundant: all points satisfying the other constraints
satisfy it.
It can be safely removed.
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Double description

Witness of redundancy

(1) −x ≤ 0
−y ≤ 0

(2) x +y ≤ 1
x +2y ≤ 2

Farkas lemma: semantic consequence ⇐⇒
positive combination of original inequalities (plus slack)
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Double description

Unicity of representation

If the polyhedron has nonempty interior (= is not flat)

Unique set of irredundant constraints
(up to scaling and rearranging: 2x− 2 ≤ 0 same as x ≤ 1)

Each constraint defines a true face of the polyhedron.
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Double description

Empty interior

No canonicity 
x ≤ y+ z

y+ z ≤ t
t ≤ x
0 ≤ x
t ≤ 1

equivalent to 
x ≤ y+ z

y+ z ≤ t
t ≤ x
0 ≤ x
x ≤ 1
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Double description

Affine span

Extract a system of equalities defining the affine span
x = y+ z = t

0 ≤ x
t ≤ 1

Orient the equations of the affine span into a rewriting system (variable
ordering: x, y function of z, t): x −→ t, y −→ t− z.
Canonify: {

x = y+ z = t
0 ≤ t ≤ 1
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Double description

Chernikova’s algorithm

Step
Inputs: one polyhedron P as generators, one inequality I
Output: P ∩ I as generators

Constraints to generators
Process all constraints sequentially from full polyhedron

Generators to constraints
Dually

Le Verge, A Note on Chernikova’s algorithm (1996)
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Double description

Chernikova in action
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Double description

Distorted hypercube

Very common in program analysis (known intervals).
l1 ≤ x1 ≤ h1
...

...
...

ln ≤ xn ≤ hn

2n constraints
2n vertices

All libraries computing with double description explode.
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Double description

Avoiding blowup

Halbwachs, Merchat, Gonnord (2006): factor polyhedra into products

Same principle in ETHZ’s ELINA library (2017)

Our solution: constraints only
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Restricted polyhedra

Octagons

system of ±v1 ± v2 ≤ C and ±v ≤ C
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Restricted polyhedra

Templates

fixed set of normal vectors
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Restricted polyhedra

Exact solving

Can solve for the least inductive invariant in a template linear constraint
domain.

See as optimization (minimization) problem on the right-hand sides b.

“Does there exist an inductive invariant with bi less than C?”
▶ Arbitrary polynomial arithmetic on the edges: reduction to ∃∀ formula

in real closed fields.
▶ Linear arithmetic, ∃, ∧, ∨ on the edges: problem is Σ2

p-complete.
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Constraints only, Fourier-Motzkin
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Constraints only, Fourier-Motzkin

Constraint-only representation

Easy

▶ intersection

Moderately easy
LP = linear programming, n = number of constraints
▶ emptiness check (1 LP)
▶ redundancy elimination (n LP)

How?
▶ projection
▶ convex hull
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Constraints only, Fourier-Motzkin

Fourier-Motzkin

S



x ≤ . . .
...

x ≤ . . .

x ≥ . . .
...

not depending on x
...

not depending on x

▶ Combine each x ≤ . . . with each x ≥ . . . :

f1(y, z, . . . ) ≤ x ≤ f2(y, z, . . . ) −→ f1(y, z, . . . ) ≤ f2(y, z, . . . )

▶ Keep the inequalities not depending on x.

Resulting system ≡ ∃x S
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Constraints only, Fourier-Motzkin

Fourier-Motzkin

Pros
▶ Easy algorithm
▶ Easy proof of correctness (nice if doing Coq)

Cons
▶ Generates a huge volume of redundant constraints

(Worst-case output n2/4 for one projection.
Can it actually go double exponential with number of projections if
not removing redundancies?)

▶ If projecting several variables: chose an ordering on the canonical
basis, not much geometrical.
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Constraints only, Fourier-Motzkin

Redundancy elimination by linear programming

“Is C redundant with respect to C1 ∧ · · · ∧ Cn.”
▶ Primal “Find x satisfying C1 ∧ · · · ∧ Cn but not C.” x exists iff C is

irredundant.
▶ Primal as optimization version C is l(x, y . . . ) ≤ a, optimize l over

C1 ∧ · · · ∧ Cn and compare to a.
▶ Dual “Find λi ≥ 0 such that C =

∑
i λiCi.”

λ exist iff C is redundant.

If done for each of n constraints, quite costly.
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Our contributions

Ray-tracing, fast redundancy elimination

Maréchal & Périn (2017)
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Our contributions

Parametric linear programming for projection

Parameters appearing linearly in the objective function: line of sight to face

Maréchal, 2017
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Our contributions

Parametric linear programming for convex hull

Parameters appearing linearly in the objective function: line of sight to face

Maréchal, 2017
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Our contributions

Fast parametric linear programming

▶ Parallel exploration of the region graph
▶ Use of floating-point for exact solving
▶ Elimination of redundant constraints of region using ray-tracing
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Our contributions

Floating-point for exact solving

The simplex algorithm does not simply give a numeric solution!

It gives a vertex as the intersection of n constraints.
▶ The vertex can be recomputed exactly and checked if a true solution or

not.
▶ In the basis defined by the constraints, the objective function should be

“trivially” at an optimum (all coefficients negative / positive). This can
be computed exactly.

Our solution
▶ Call off-the-shelf floating-point linear programming solver (exploration

in floating-point)
▶ Reconstruct in exact precision (linear arithmetic Ax = b) the vertex and

optimality witness.
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Our contributions

Reconstruction example

Maximize x+ y subject to 
5x +y ≤ 10
x +4y ≤ 25/3
...
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Our contributions

Solution reconstruction

Floating-point simplex returns coordinates (untrusted) and “the optimum is
at the intersection of 5x+ y = 10 and x+ 4y = 25/3” (active constraints).

Solve exactly: x = 5/3, y = 5/3.

Check that the solution is truly a solution.
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Our contributions

Optimality check

Scaled system, first line by λ = 4/19, second line by µ = 3/19:{
15/19x +3/19y ≤ 90/(3 · 19)
4/19x +16/19y ≤ 100/(3 · 19)

thus (summing) x+ y ≤ 10/3.
Proves optimality.

λ and µ obtained by solving a linear equation system “how to combine the
active constraints to form the optimization direction”.
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Our contributions

Floating-point solving, to summarize

“Search in floats, check in rationals”
▶ solve in floating-point (simplex)
▶ reconstruct the exact solution (exact linear equation solving)
▶ reconstruct the optimality argument (exact linear equation solving)

Be ready to (very rarely) fall back to exact solving if the checks fail.
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Our contributions

Parallel solving

Explore regions in parallel.
Needs fast “this region is already being explored” check.
Implemented as C++ library, useful for polyhedra in higher dimensions with
many faces.
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Other applications
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Other applications

Over-approximation of nonlinear systems

▶ Construct products of constraints, e.g. x+ y ≤ 3, 2x+ y ≤ 5 yields
2x2 + 3xy+ y2 ≤ 15.

▶ Replace higher degree monomials by extra dimensions, e.g. xy by vxy.
▶ Project out the extra dimensions.

Maréchal et al., 2016
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Other applications

Gratuitous advertisement

https://github.com/VERIMAG-Polyhedra/VPL

Alexis Fouilhé · Alexandre Maréchal
Sylvain Boulmé · David Monniaux · Michaël Périn · Hang Yu
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