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Abstract

This paper addresses the computation of frequency-dependent dispersion curves (i.e., k(ω)) and wave
modes within the framework of the Wave Finite Element Method (WFEM) and in the context of high-
dimensional periodic unit cell models. Numerous applications, ranging from phononics to vibroacoustics,
now rely on dispersion analyses or wave expansion over a subset of eigensolutions –complex wavenumbers
and Bloch waves– resulting from the resolution of an eigenvalue problem with a T-palindromic quadratic
structure (T-PQEP). To exploit the structure of finite element models, various structure-preserving lin-
earizations such as the Zhong-Williams and the (S+S−1)-transform have already been developed to achieve
partial wave resolution of large T-PQEP, primarily targeting the dominating (least decaying) waves. In this
paper we derive an alternative linearization of the T-PQEP for the k(ω) problem, which leads to enhanced
targeting of the eigenvalues around the unit circle and reduces the inaccuracies induced by root multiplicity.
A specific form of the problem is then proposed as an optimal compromise between ease of implementation,
numerical stability, convergence and accuracy enhancement. The performance of our proposed linearization
is compared against existing ones across various iterative eigensolvers, since the generalized eigenvalue prob-
lems involve complex non-hermitian matrices, which are not extensively included in eigensolvers. Results
indicate that the proposed linearization should be favored for the WFEM, as it provides numerical enhance-
ments in dispersion and wave vectors computation for large eigenvalue problems, as well as for further wave
expansion applications.

Keywords: Wave propagation, Wave Finite Element Method, Periodic structures, Palindromic quadratic
eigenvalue problem

1. Introduction

Periodic media are widely studied in physics, whether in the field of electromagnetism and acoustics
–photonic and phononic crystals [1, 2]– or structural mechanics –composite materials, aircraft rib-skin
structures [3], architected materials–. Their applications, at various scales, are diverse in engineering, since
the advent of additive manufacturing promotes their industrial and commercial deployment. Some examples
are photonic crystal fibers (PCF) [4], gradient index (GRIN) phononic crystals [5] (acoustic metamaterials)
and locally resonant materials (LRM) [6]. Their study is realized mostly through numerical simulations, and
it is of vital importance to develop a mature comprehension of the singular properties that arise in these
complex structures which lead ultimately to the design of lightweight materials and structures as well as
controlling wave propagation or vibroacoustic properties efficiently.

The numerical analysis of periodic media is mainly based on the examination of dispersion curves or band
diagrams. These curves reveal band-gaps, where elastic waves are strongly attenuated, or do not propagate
at all at certain frequencies. This analysis is performed for a single unit cell, representative of the entire
periodic structure. Dispersion curves are often constructed by defining a wave vector – in the case of a 1D
waveguide, the wavenumber k ∈ C – and solving an eigenvalue problem to find the ω frequencies. This
approach is called ω(k) and it is widespread in the guided wave literature in forms such as the plane wave
expansion (PWE) [7], or the reduced Bloch mode expansion (RBME) [8, 9, 10], both in the photonic and
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phononic crystals field. However, the ω(k) problem has a limitation, since it does not take into account
the wave spatial attenuation associated to the imaginary part of the wavenumber, which is essential to
analyze dynamic motion in damped waveguides, both in a wave approach (complex band diagrams and
Bloch modes [1], wave scattering through a coupling element [11]) and in a vibration approach (frequency
response functions of finite waveguides [12, 13] and waveguide assemblies with joints, defects [14, 15] or
piezoelectric actuators [1, 16], transient analysis [17] and vibroacoustic simulations [18]).

To deal with this wave spatial attenuation, a common strategy is to find the complex wavenumbers k
by fixing the frequency ω, and so, generate complex band diagrams. This approach is called k(ω). Among
the existing methods for wave propagation problems in the literature, the Wave Finite Element Method
(WFEM) is capable of finding – following its initial formulation [19] –, from a finite element description of
a unit cell, these complex wavenumbers k. The main equation of the WFEM is a T-palindromic quadratic
eigenvalue problem (T-PQEP) [20] with the eigenpair (λ,ϕ). This eigenvalue problem has a symplectic
spectrum, i.e., the eigenvalues come in reciprocal pairs (λ, 1/λ) that represent positive- and negative-going
free wave modes. For the many applications of the WFEM mentioned before, the eigenpairs for which
|λ| ≈ 1 – i.e., the propagative waves – are of interest. In the complex plane, these solutions lie near the
unit circle. But the spectrum sparsity that comes from large differences between the eigenvalues of the
propagative and evanescent waves (concentrated around |λ| ≪ 1 and |λ| ≫ 1) poses a challenge to the
numerical solution of the eigenvalue problem [21, 22]. Nonetheless, the eigensolutions or free wave modes
can be used to describe the dynamic motion of the periodic waveguide, and – in the same way as modal
decomposition for modal analysis – a wave basis truncation can be done [11, 23] to approximate this motion
with a selected set of waves – referred to as the wave approach (WA) or wave expansion – keeping the
propagative modes and neglecting the majority of evanescent waves that do not contribute to the dynamic
motion of the waveguide. Moreover, for large numerical models, the abundance of evanescent modes could
significantly alter the numerical precision of the eigensolutions. Thus, it is preferable to perform a partial
eigensolving instead of a full eigensolving that implies unnecessary higher computational burden.

The T-PQEP has received much attention by researchers on vibration of fast trains [20, 24, 25, 26] that
worked on special linearizations of the eigenvalue problem for better accuracy and convergence [27, 28].
Although – to the authors’ knowledge – there is no specific method to find the solutions of this eigenvalue
problem around the unit circle in the complex plane, a workaround is to obtain the partial spectrum with
either the linearization proposed by Zhong and Williams [29] or the (S + S−1)-transform proposed by
Huang et al. [30]. These formulations are based on the same linearization of the eigenvalue problem, i.e.,
µ = λ + 1/λ, which preserves a symplectic structure. The stated purpose in the respective papers and
preceding work [28, 27] were to improve the numerical condition of the eigenvalue problem (precision,
convergence and computation time), developing structure preserving algorithms (SPA) that take benefit
of the symplectic properties of the problem. These two linearizations are used constantly in the WFEM
literature [22, 12, 31, 32] to build the mentioned set of selected waves, but apart from the GTSHIRA
algorithm [30, 33] based upon the Huang et al. linearization, they were developed for a full eigenvalue
problem resolution. Although very similar in their derivation, these linearizations are slightly different in
their final form and the original eigenpair (λ,ϕ) recovery procedure, because Zhong-Williams uses a singular
value decomposition (SVD) [21] to perform a linear combination of the µ-related eigenvectors while Huang
et al. propose a more direct linear combination using the λ eigenvalues. However, these two linearizations
provide repeated µ eigenvalues, and recently this was found to be prone to numerical errors for waveguides
with cyclic symmetry in their cross-section [34] (λ multiplicities higher than one).

These two linearizations in µ = λ+1/λ are commonly used with partial iterative eigensolving techniques,
but their structure (generalized eigenvalue problem (GEVP) with both complex non-hermitian matrices)
is not commonly suitable for existing commercial eigensolvers. For instance, some eigensolvers such as
scipy.sparse.linalg.eigs() in Python and geneig() from the KrylovKit.jl package in Julia require a
positive definite complex-hermitian matrix. Specialized eigensolvers for sparse matrices like SLEPc (Scalable
Library for Eigenvalue Problem Computations) can address this particular GEVP, yet the matrices of the
GEVP discussed in these article are not sparse but dense. General use eigensolvers capable to address the
problem will be used in these article – namely, eigs() in MATLAB, eigs() from the Arpack.jl package
in Julia and partiaschur()/partialeigen() from the ArnoldiMethod.jl package in Julia – in order to
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evaluate their performance and robustness across the existent and the proposed T-PQEP linearizations. To
summarize, the computation of complex wavenumbers for large-scale periodic structures still faces some
unresolved numerical issues to this day.

In this paper, a novel µ(ϕ) linearization is established for the partial resolution of the T-PQEP. The
parameter ϕ represents a rotation in the complex plane and aims, firstly, to avoid the condition of repeated
µ eigenvalues, and secondly, to increase convergence by closing the gap between the µ(ϕ) partial spectrum
and the desired λ spectrum. This rotation parameter ϕ is introduced here in the context of k(ω)-spectral
forms of the wave propagation problem, for which the eigenvalues with |λ| ≈ 1 represent the propagative
waves of interest. Moreover, the η linearization – obtained for the rotation of ϕ = π/2 – is developed, since
it can be described and implemented in a concise way. The proposed µ(ϕ) linearization ensures accuracy
and robustness to different iterative eigensolvers. In Section 2, a state-of-the-art review of the WFEM
quadratic eigenvalue problem and their linearizations are presented. In Section 3, the proposed µ(ϕ) and η
linearizations, as well as their derivation are explained in detail. In Section 4, two numerical examples are
used to show the advantages – both in convergence and precision – of the proposed linearization over the
existent ones, comparing also the three mentioned partial eigensolvers from different scientific computing
packages. Conclusions are presented in Section 5.

2. The T-palindromic quadratic eigenvalue problem (T-PQEP)

The Wave Finite Element Method (WFEM) [19, 13], begins with a numerical finite element model
description of the unit cell of a periodic waveguide, involving its mass, damping and stiffness matrices M,
C, and K, all being real symmetric and of size nd, the number of degrees of freedom of the unit cell. The
size of the unit cell is d, that represents the distance between its left and right boundaries, which have the
same mesh in order to numerically assemble the unit cells forming a waveguide.

(k − 1)-th UC (k)-th UC (k + 1)-th UC

-∞ . . . . . . ∞

Figure 1: Infinite 1D periodic waveguide.

In harmonic regime, the equation of motion is written Dq = f , where q ∈ Cnd are the nodal displacements,
f ∈ Cnd the nodal forces, and D = −ω2M + jωC +K is the complex symmetric dynamic stiffness matrix
with ω ∈ R the angular frequency. The degrees of freedom of a unit cell are separated into three parts, L
and R for those at left and right boundaries and I for the inner ones. Accordingly, D,q and f are partitioned
and indexed by L,R and I. Considering that external loads will be applied only at the side boundaries of
the unit cell, i.e., fI = 0 for the internal nodes, the condensed equation of motion can be written as:[

DLL DLR

DRL DRR

]{
qL

qR

}
=

{
fL
fR

}
(1)

where Djk = Djk − DjID−1
II DIk ∀j, k ∈ {L, R}, DLL and DRR being complex symmetric and DLR =

DT
RL.
An infinite waveguide can be assembled from the unit cell, as depicted in Figure 1. Free wave propagation

is found when qR = λqL and fR = −λfL, with λ = exp(ikd) being the propagation constant and k ∈ C
the complex wavenumber. The complex displacement and force vectors at the interfaces are of size n, the
number of degrees of freedom at the left and right boundaries. The internal force equilibrium at each of
the interfaces of an assembled infinite waveguide, written λfL + fR = 0, gives us the following quadratic
eigenvalue problem (QEP): (

λDLR + (DLL +DRR) +
1

λ
DRL

)
ϕ = 0 (2)
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The 2n eigenvalues λ are the propagation constants, and the 2n eigenvectors ϕ ∈ Cn are the nodal
displacements at a side boundary from which the Bloch waves (wave modes of free wave propagation in
periodic media) can be recovered.

Notice that replacing λ by its reciprocal 1/λ and transposing Eq. (2) yields the same eigenvalue problem.
Thus, Eq. (2) is called the T-palindromic quadratic eigenvalue problem [30, 35, 29] and its eigensolutions
provide the propagation constants and their corresponding Bloch modes. This also means that the 2n
eigenvalues occur in n pairs (λ, 1/λ), and that they form a symplectic spectrum [36]. Half of the spectrum
contains eigenvalues with |λ| < 1 associated to positive-going waves and the other half contains eigenvalues
with |λ| > 1 associated to negative-going waves. Here and hereafter, damped waveguides are considered for
the sake of simplicity, i.e., there are eigenvalues with |λ| ≈ 1, but no eigenvalue with |λ| = 1.

To solve the T-PQEP (2), several linearizations have been proposed in the literature. It is worth briefly
mentioning the transfer matrix approach, which is a standard eigenvalue problem with a symplectic transfer
matrix, and the NL linearization that comes from the structural dynamics field [37, 38] and was adapted
for the WFEM in different forms [19, 29, 39, 16]. However, these linearized forms involve λ eigenvalues,
and cannot be used with iterative eigensolvers to obtain just a few propagative solutions |λ| ≈ 1. Two
well-known linearizations present this advantage of partial eigensolving, and they will be discussed in the
following.

2.1. Zhong & Williams linearization

Following the advances in the WFEM field, Zhong and Williams [29] proposed a linearization of the T-
PQEP that preserves its symplectic structure. Although there is no mention about a partial resolution of the
eigenvalue problem, it was immediately known [40] that this linearization allowed to obtain the propagative
waves via partial eigensolving techniques [13, 21, 32, 34].

The Zhong-Williams GEVP is expressed as:[
DLR −DRL −(DLL +DRR)
DLL +DRR DLR −DRL

]{
qL

qR

}
= µ

[
0 DLR

−DRL 0

]{
qL

qR

}
(3)

where µ = λ+ 1/λ, the propagation constants are given by λ =
µ±

√
µ2−4

2 , and both matrices of Eq. (3)
are complex skew-symmetric. It is important to note that the 2n µ eigenvalues give us 4n λ eigenvalues,
but, since each of the n symplectic pairs of eigenvalues (λ, 1/λ) produce a single µ, the n values of µ are
repeated. Hence, each pair of the 2n eigenvectors associated to the same µ in Eq. (3) will be used in a
linear combination to retrieve the eigenvectors ϕ of the original T-PQEP (2). These linear combinations are
mentioned in the original paper [29] but are explained in detail by Duhamel et al. [13] and Waki et al. [21].
The latter proposes a singular value decomposition (SVD) to obtain the weights of the linear combination
and correct some low-frequency issues related to nearly parallel eigenvectors.

Finally, it is important to note that this linearization µ = λ + 1/λ permits not only to preserve the
symplectic structure of the T-PQEP, but to obtain the propagative waves (|λ| ≈ 1) efficiently by using a
partial eigensolver (e.g., ARPACK [41]) and extracting only a few solutions of interest, which are the µ
eigenvalues of smallest absolute value.

2.2. Huang et al. linearization

Another linearization that is used in the WFEM community [22, 31, 42] is the one proposed by Huang
et al. [30], which is founded on the previous works of Patel [28] and Lin [27]. It is based on the

(
S+ S−1

)
-

transform, where S = L−1M is a symplectic matrix. To derive their proposed GEVP, the following lin-
earization in λ is needed:

(M− λL) z =

([
DRL 0

− (DLL +DRR) −I

]
− λ

[
0 I

DLR 0

]){
qL

1
λDRLqL

}
(4)

With matrices M and L from Eq. (4) and the standard symplectic matrix J, it can be verified that:
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MJMT = LJLT =

[
0 −DRL

DLR 0

]
with J =

[
0 I
−I 0

]
(5)

which is the required condition for M−λL to be a symplectic pencil (see Patel definition 1.3 in Ref. [28]).
Now, setting z = JLTzs and rewriting the linearization in λ and 1/λ as follows :{

MJLTzs = λLJLTzs

LJLTzs =
1
λMJLTzs

(6)

using the identity of Eq. (5), left multiplying by LM−1 the linearization in 1/λ and adding these two
equations, the obtained matrix pencil is written as:

(MJLT + LJMT)−
(
λ+

1

λ

)
LJLT (7)

Eq. (7) is multiplied by −1 to preserve the l.h.s. matrix of the Zhong-Williams GEVP. Finally, the
Huang et al. GEVP is written as follows:[

DLR −DRL −(DLL +DRR)
DLL +DRR DLR −DRL

]{
qR

−qL

}
= µ

[
0 DRL

−DLR 0

]{
qR

−qL

}
(8)

where µ = λ+ 1/λ and the propagation constants are given by λ =
µ±

√
µ2−4

2 , as in the Zhong-Williams
GEVP. The eigenvectors zs = [zT1 , z

T
2 ]

T were also derived from zs = −L−TJz, and both matrices of the
GEVP are complex skew-symmetric.

There are only subtle differences between the Zhong-Williams and Huang et al. GEVPs of Eq. (3) and
Eq. (8): The eigenvectors change their indexes and sign, and the r.h.s. matrix change the L and R indexes.
Nonetheless, the advantage of this second linearization is that the original eigenvectors ϕ of the T-PQEP (2)
are recovered directly from a linear combination (see Theorem 2.2 in Ref. [30]) between the two halfs of
zs, i.e., z1 and z2. The eigenvectors z1 + λz2 and z1 + 1

λz2 are associated to the 1/λ and λ eigenvalues
respectively.

3. A novel µ(ϕ) linearization for partial eigensolutions of the T-PQEP

The proposed linearization of the T-PQEP (2) derived here aims to enhance convergence and precision
of the eigenpairs computation when a partial eigensolver is used. Since the eigenvalues of interest lie near
the unit circle in the complex plane (|λ| ≈ 1), the µ(ϕ) linearization is based on the standard Huang et
al. linearization that is used in the WFEM literature. In fact, the ϕ parameter of the µ(ϕ) linearization
represents a rotation of the µ = λ + 1/λ function in the complex plane, and if no rotation is applied, the
µ(ϕ = 0) linearization is equivalent to the the standard Huang et al. one. Different rotation values (ϕ ̸= 0)
permit to explore the influence of ϕ finding the solutions of the T-PQEP, and the particular rotation of
ϕ = π/2 was found to present advantageous conditions compared with the standard (ϕ = 0) linearizations.

3.1. Physical motivation for the ϕ rotation

The primary insight to develop the µ(ϕ) linearization was to understand how propagative waves in
elastic waveguides evolve in the frequency domain by looking at their propagation constants λ ∈ C located
in the complex plane. To recall some physical meanings, the expression for the propagation constant is
λ = exp(ikd), with k ∈ C, so that the real part of the wavenumber is ℜ(k) = arg(λ)/d and the imaginary
part of the wavenumber is ℑ(k) = − ln(λ)/d. The imaginary part ℑ(k) is related to the spatial decay
γ = exp(−ℑ(k)d), whereas the real part ℜ(k) is related to the wavelength Λ = 2π/ℜ(k).

In non-dispersive media, it can be seen for propagative elastic waves that the smaller their frequency,
the larger their wavelength, because the constant phase velocity cp is expressed as cp = Λf . This can be
understood for a single wave mode at f = 0 Hz as if there was no motion, and so the wavelength Λ is
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infinite. The same applies for dispersive media at low or cut-on frequencies. Since the wavelength shortens
as frequency increases, ℜ(k) begins to increase away from zero, and thus, arg(λ) is also near zero at cut-on
frequencies. Hence, by inference, the first propagation constants λ at low frequencies will appear at the point
1 in the complex plane. A typical evolution through the frequency domain at low – or cut-on – frequencies
of a propagative wavemode can be seen in Figure 2.
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Figure 2: Propagation constants of a propagative mode evolving in the frequency domain.

It has been shown that both Zhong-Williams and Huang et al. use the µ = λ + 1/λ linearization. To
form a set of selected waves with mainly propagative waves (|λ| ≈ 1), it is common to use this linearization
and search for the first few eigensolutions with the smallest |µ|. Aiming to understand the reason why it
works, the function |µ| = |λ+ 1/λ| was plotted on the complex plane (see Figure 3a). It was noticed that,
although the unit circle is entirely covered by this function before reaching |µ| = 2, the global minima of
the function are located at the points −i and i.

ℜ(𝜆)

−2.0 −1.0 0.0 1.0 2.0

ℑ
(𝜆

)

−2.0

−1.0

0.0

1.0

2.0
|𝜇| = |𝜆 + 1/𝜆|

(a)

ℜ(𝜆)
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(b)
0.0

0.5
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Figure 3: Contour plots of the |µ| and |η| functions of λ. The |η| function can be seen as the |µ| function rotated by an angle
of ϕ = π/2 in the complex plane. The sought propagative solutions shown in Figure 2 are marked here as black diamonds. A
global minimum of the |η| function is coincident with these propagative solutions at the point 1 in the complex plane.

Ideally, these global minima should have been at the points 1 and −1, because it has been shown in
Figure 2 that propagative waves begin to evolve from their origin at the point 1. This was the main
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motivation for the proposed µ(ϕ) linearization. The ϕ parameter can be seen as a rotation of the |µ|
function in the complex plane. For instance, if ϕ = π/2 – which is called the η linearization in this paper –,
a rotation of π/2 in clockwise sense is applied to the |µ| function. The |η| function is shown in Figure 3b.
This rotated function |η| has now its global minima at the points 1 and −1. By approaching the targeted
|µ(ϕ)| values to the partial λ spectrum of our interest, improved convergence should be expected within the
iterative eigensolver, and ultimately, enhanced accuracy of the eigenpairs.

3.2. Derivation of the µ(ϕ) linearization

Based on the previous works of Lin [27], Patel [28] and Huang et al. [30], the proposed µ(ϕ) linearization
of the T-PQEP (2) is derived here. From the symplectic pencil M − λL of Eq. (4), the ML linearization
Mz = λLz can be rewritten as L−1Mz = λIz or M−1Lz = 1

λ Iz. With S = L−1M, the so-called
(
S+ S−1

)
-

transform would consist on the matrix pencil S + S−1 − µI with µ = λ + 1/λ. Here, a different linear
combination is introduced, by stating λ∗ = eiϕλ (i.e., the λ eigenvalues are rotated in the complex plane
by an angle ϕ in the anti-clockwise sense and denoted as λ∗) and developing µ∗ = λ∗ + 1/λ∗ (i.e., the µ
eigenvalues are rotated in the complex plane by an angle ϕ in the clockwise sense and denoted as µ∗). The
µ(ϕ) linearization can be written as:

µ(ϕ) = λeiϕ +
e−iϕ

λ
(9)

From the roots of this equation, the propagation constants λ can be retrieved as:

λ =
µ±

√
µ2 − 4

2eiϕ
(10)

Notice that, if a first root corresponds to λ =
µ+

√
µ2−4

2eiϕ
, then the reciprocal propagation constant from

the symplectic pair 1
λ =

µ−
√

µ2−4

2eiϕ
ei2ϕ is the second root of the same equation multiplied by ei2ϕ, i.e, the

second root is not anymore the reciprocal eigenvalue (obtained with a µ = λ+1/λ linearization) but rather
an out of phase reciprocal eigenvalue. This means that the µ(ϕ) linearization will produce a λ eigenvalue
that is of our interest, and a fictitious, out of phase reciprocal eigenvalue ei2ϕ/λ with no physical meaning.
The fictitious eigenvalue will be easily filtered out because both 1/λ and ei2ϕ/λ have the same norm, and
for eigenvalues with the same norm, the one associated with a physically meaningful eigenvector will be the
correct one. This condition will be advantageous to recover the λ related eigenvectors ϕ, as it will be seen
in the next subsection.

To obtain the corresponding matrices of the GEVP, the obtained linearization of the eigenvalue problem
is developed as:

(eiϕS+ e−iϕS−1)z =

(
λeiϕ +

e−iϕ

λ

)
Iz (11)

which can be further developed as:

(eiϕL−1M+ e−iϕM−1L)z = µ(ϕ)Iz (12)

If L−1 is taken out as a factor and z = JLTzs is set, the obtained linearization is:

L−1(eiϕM+ e−iϕLM−1L)(JLTzs) = µ(ϕ)I(JLTzs) (13)

(eiϕMJLT + e−iϕL(L−1M)−1JLT)zs = µ(ϕ)LJLTzs (14)

With S = L−1M being symplectic, the property S−1 = JSTJ−1 can be used to preserve the symplectic
structure as follows:

(eiϕMJLT + e−iϕLJ(MTL−T )J−1JLT)zs = µ(ϕ)LJLTzs (15)
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and simplifying, the obtained linearization is:

(eiϕMJLT + e−iϕLJMT)zs = µ(ϕ)LJLTzs (16)

Finally, multiplying Eq. (16) by −1 to preserve the r.h.s matrix of the Huang et al. linearization, the
obtained GEVP is written as:[

DLRe
−iϕ −DRLe

iϕ −(DLL +DRR)e
−iϕ

(DLL +DRR)e
iϕ DLRe

−iϕ −DRLe
iϕ

]{
qR

−qL

}
= µ(ϕ)

[
0 DRL

−DLR 0

]{
qR

−qL

}
(17)

Eq. (17) represents the µ(ϕ) linearization proposed in this paper. The introduced original contribution
is the ϕ parameter representing a clockwise rotation of the |µ| function in the complex plane, as it was
shown in Section 3.1. In the previous section it has been mentioned that selecting ϕ = π/2 will be the more
convenient value to improve computation performance. This particular rotation value was the initial idea
behind the proposed µ(ϕ) linearization, and it yields a particularly easy form of the eigenvalue problem.
Denoting η = −iµ(π/2), the resulting eigenvalue problem is written as:[

−(DLR +DRL) DLL +DRR

DLL +DRR −(DLR +DRL)

]{
qR

−qL

}
= η

[
0 DRL

−DLR 0

]{
qR

−qL

}
(18)

Now the l.h.s. matrix of the GEVP is complex symmetric and the r.h.s. one is complex skew-symmetric.
The η eigenvalues and the corresponding propagation constants λ are written as:{

η = λ− 1
λ

λ =
η±

√
η2+4

2

(19)

The procedure to recover the λ-related eigenvectors is generalized in the next paragraphs for the µ(ϕ)
linearization, and can be readily applied for this particular η linearization. Finally, it is worth mentioning
that the proposed linearization µ(ϕ) also preserves the symplectic structure of the T-PQEP (2) – because
of the symplectic property used to derive Eq. (15) –, not loosing the numerical improvements achieved with
the Zhong-Williams and Huang et al. linearizations.

3.3. Eigenvector recovery

It has been shown that the 2n µ eigenvalues lead to 4n λ eigenvalues. When ϕ = 0 – i.e., the Huang
et al. linearization – µ gives us λ and 1/λ, and so there are n values of µ that are repeated. But, from
Eq. (10), a µ(ϕ) value will give us λ and ei2ϕ/λ, i.e., an out of phase reciprocal eigenvalue. Overall, this
linearization will produce 2n λ eigenvalues that are of our interest, and 2n ei2ϕ/λ out of phase reciprocal
eigenvalues. This condition gives us the benefit of choosing directly the correct 2n eigenvalues, because the
symplectic pairs will give us a set of out of phase eigenvalues with the same norm as their reciprocals.

To compare the two sets of eigenpairs, an eigenvector error metric ϵ is needed, aiming to evaluate the
accuracy of the obtained eigenpairs from whichever linearization of the T-PQEP (2). A particular solution of
the T-PQEP would consist in the eigenvalue λ – the propagation constant –, and its associated eigenvector
ϕ – a nodal displacement vector qL –. Nodal forces fL and fR can then be derived from Eq. (1) as:{

fL = (DLL + λDLR)qL

fR = (DRL + λDRR)qL

(20)

With the left and right force vectors, the internal equilibrium at the interfaces is expressed as λfL+fR = 0.
A nodal force vector f can also be written as a resultant force vector with the three Cartesian components
fx, fy, fz, denoted f∗. The relative error ϵ can then be computed dividing the residual norm λf∗L + f∗R by
the norm of the force vector f∗R, which is affected by λ just once. The eigenvector error metric ϵ is expressed
more generally with the relative error between the two original force vectors:

ϵ =
||λfL + fR||

||fR||
(21)

8



Now that an error metric has been established, the eigenvector recovery procedure can be detailed in the
following steps:

1. Compute the 2r ≤ 2n eigenpairs (µ, zs) with an eigensolver on Eq. (17).

2. Compute the 4r eigenpairs (λ, zs) using Eq. (10).

3. Form two sets of r eigenvalues λ which have the same norm and verify |λ| < 1 – i.e., positive-going
waves – and their corresponding ϕ+ = z1 +

1
λz2 eigenvectors.

4. For each of the r pairs of ϕ+ corresponding to the same |λ|, compare their errors on the T-PQEP (2)
computing ϵ from Eq. (21).

5. Normalize the r chosen ϕ+ eigenvectors with the smallest ϵ.

6. Repeat steps 3, 4 and 5 for negative-going waves (|λ| > 1) and collect the r chosen ϕ− eigenvectors.

4. Numerical examples

In this section, two numerical models are presented and their dispersion characteristics are evaluated
by means of the three different partial eigensolving strategies discussed in the paper, namely the Zhong-
Williams, the Huang et. al. and the µ(ϕ) linearizations. Moreover, three different partial eigensolvers are em-
ployed to assess their performance on the three different linearizations of the eigenvalue problem, namely the
eigs() function in MATLAB, eigs() from the Arpack.jl package and partialschur()/partialeigen()
from the ArnoldiMethod.jl package in Julia. It is important to mention that, with the three GEVP hav-
ing complex non-hermitian matrices at both sides, there is a limitation in the use of some other partial
eigensolvers, e.g., scipy.sparse.linalg.eigs() in Python or geneig() from the KrylovKit.jl package in
Julia.

4.1. Finned tube heat exchanger

The selected waveguide aims to demonstrate the influence of cyclic symmetry – and the corresponding
increase in the λ multiplicities – on the dispersion characteristics, for which the Zhong-Williams linearization
has been improved recently [34], in order to avoid the cyclic symmetry-related issues. It is an industrial
finned tube heat exchanger (U-shaped fins welded to the tube). This type of structures is likely to be
inspected by guided waves for damage detection [43, 44], and its numerical modeling helps in the selection of
wave modes and frequency ranges before in situ non-destructive testing. A numerical finite element model
built with Gmsh [45] is depicted in Figure 4a.
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Figure 4: Unit cell of the finned tube heat exchanger. The unit cell is meshed with quadratic tetrahedra and its size is
d = 5 mm. The number of degrees of freedom at the interfaces is n = 1314. The tube is made of aluminum, with Young’s
modulus E = 69 GPa, Poisson’s ratio ν = 0.35, density ρ = 2700 kg/m3 and loss factor η = 0.001.
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4.1.1. Dispersion characteristics

Solving Eq. (2) gives us the propagation constants λ and the nodal displacements ϕ. As it has been
shown, from the propagation constants λ = exp(ikd), the wavenumbers k ∈ C are obtained. The imaginary
part of the wavenumber ℑ(k) = − ln(|λ|)/d is a measure of the attenuation per unit length called attenuation
constant [46], it is denoted α and measured in nepers per meter (1 Np ≈ 8,686 dB). To understand its
physical meaning, it can be seen that a linear attenuation α = 10 dB/m is equivalent to a reduction in
nodal displacements to 31.6% of the displacements one meter forward. Figure 4b shows the phase velocities
cp = ω/ℜ(k) of the first 40 Bloch modes as well as their degree of attenuation, colored by the attenuation
constant. It can be appreciated that the modes corresponding to the longitudinal fins, which are triggered
and get converted around 2.5 to 3.5 kHz, are slightly less propagative than the tube modes. The transition
between α values is strong during these triggers or cut-ons , and the rest of the evanescent waves do not
propagate beyond one or two unit cells.

From the ϕ nodal displacements, the Bloch modes in the waveguide can be recovered. Six propagative
Bloch modes are illustrated in Figure 5, with colored stress fields (positive stresses in blue, negative stresses
in red). For compressional and flexural waves, the stress field is σzz, and for torsional waves, the stress field
is τzθ, being z the axial direction of the waveguide. The modes are illustrated for an assembly of 100 unit
cells (L = 50 cm).

Compression

f = 4 kHz, cp = 5.06 m/ms

(a)

Torsion

f = 2 kHz, cp = 1.17 m/ms

(b)

Bending

f = 2 kHz, cp = 0.87 m/ms

(c)

Polarized bending

f = 4 kHz, cp = 1.38 m/ms

(d)

Fin bending

f = 4 kHz, cp = 0.36 m/ms

(e)

Fin bending

f = 4 kHz, cp = 0.39 m/ms

(f)

Figure 5: Propagative Bloch modes of the heat exchanger model.

4.1.2. Eigenvalue problem linearizations

The three linearizations suitable for partial eigensolving are: Zhong-Williams, presented in Eq. (3) and
denoted µZW ; Huang et al., presented in Eq. (8) and denoted µH ; and the η linearization presented in
Eq. (18). These linearizations are tested with three eigensolvers: eigs() in MATLAB; eigs() from the
Arpack.jl package and partialschur()/partialeigen() from the ArnoldiMethod.jl package in Julia.

Dispersion results are presented in Figure 6 in the form of phase velocities cp = ω/ℜ(k) calculated in the
[0, 10] kHz frequency range with 200 iterations. The dispersion curves are colored by the eigenvector error
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Figure 6: Dispersion curves for different eigensolvers and linearizations of the T-PQEP.

ϵ presented in Eq. (21). Overall computation time of the partial eigensolver altogether with the eigenvector
recovery part for each one of the nine combinations are presented in the upper-right corner in a hh:mm:ss
format.

Some important notes can be drawn from Figure 6. Firstly, that the µZW linearization is more than
three times slower than µH regardless of the eigensolver, and this is caused by the SVD computation to
find the weights of the linear combination with the µ related eigenvectors (see Ref. [21] for more details).
Secondly, that µH perform well – with lower eigenvector errors ϵ than µZW across the whole frequency
range – whereas µZW present high errors in the low frequency range for the bending mode, which is not an
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axisymmetric mode and, therefore, necessitates of two similar eigenvectors but differing in spatial phase in
the cross-section (see Ref. [34], where this multiplicity-related issue was studied in detail). Thirdly –now
introducing the proposed linearization– that η is around two times faster than µH , it does not present any
issues related to cyclic symmetric waveguides like those of µZW , its eigenvector errors ϵ are lower than those
of the µZW – at low frequencies and for the local fin modes – and just slightly higher than the µH errors.
Lastly, that the eigensolver from the ArnoldiMethod.jl package in Julia gives correct results only with the
η linearization (both only partialschur() and combined partialschur()/partialeigen() were tested),
the other dispersion curves being polluted by non-convergent solutions across the whole frequency range.
This will be explored further with the second numerical model.

Since it has been shown that µH is more efficient than µZW because the linear combinations do not
necessitate an SVD, a comparison between the standard µH and the µ(ϕ) linearization is now treated. A
parametric analysis of the rotation ϕ influence on the µ(ϕ) linearization performance is shown in Figure 7,
where the time reduction factor is the relationship between µH and µ(ϕ) eigensolving times (e.g., the time
reduction factor obtained from Figures 6 (b) and (c) is 00:21:46 / 00:09:21 = 2.33) and the number of required
solutions to the eigensolver (eigs() in MATLAB, taken as a standard eigensolver) is varied from 10 to 40.
It should be noted that µ(0) represents the µH linearization, and µ(π/2) represents the η linearization.
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Figure 7: Rotation ϕ impact on the numerical performance of the µ(ϕ) linearization. The selected eigensolver is eigs() from
MATLAB. The highest reduction factors (better performance) correspond to ϕ = π/2, which is the η linearization.

It can be seen that there is a distinguishable trend in the rotation influence, with the numerical per-
formance increasing as the ϕ rotation approaches to the η linearization (ϕ = π/2), for which the highest
reduction factors are found. This confirms the motivation that was depicted in Figures 2 and 3, which was to
close the gap between the partial λ spectrum of interest and the targeted minima of the |µ(ϕ)| linearizations
to improve convergence. However, it is important to note that this gap is efficiently closed only when the
partial λ spectrum is concentrated around the point 1 in the complex plane. For instance, with a periodic
unit cell, this means that the propagative waves evolving in the frequency domain do not approach to the
Brillouin edge at ℜ(k) = π/d (point −1 in the complex plane). If this occurs, as µ(π/2) do not close a
partial spectrum gap, it would perform just slightly faster than µ(0), and thus its advantage could be almost
not noticeable.

4.2. Homogeneous beam

The selected waveguide for this second example, although a simple homogeneous beam, aims to demon-
strate the benefit of the proposed µ(ϕ) linearization, where the ϕ parameter can be chosen to simply avoid
the condition of repeated µ eigenvalues, and consequently improve the eigensolutions. Also, this example
serves to validate a forced response computation with a numerical finite element model of an assembled
waveguide. The numerical model of the unit cell, built with Gmsh [45], is depicted in Figure 8a.
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Figure 8: Unit cell of the homogeneous beam. The unit cell is meshed with quadratic triangles and its length is d = 3 mm.
The beam thickness is t = 10 mm. The number of degrees of freedom at the interfaces is n = 42. The beam is made of steel,
with Young’s modulus E = 210.0 GPa, Poisson’s ratio ν = 0.3, density ρ = 7850 kg/m3 and loss factor η = 0.002.

4.2.1. Dispersion characteristics

Dispersion curves are presented in Figure 8b in the form of phase velocities cp = ω/ℜ(k) calculated in
the [0, 400] kHz frequency range. These curves are colored by the eigenvector error ϵ presented in Eq. (21).
The dispersion results were generated after solving the T-PQEP (2) with the proposed µ(ϕ) linearization of
Eq. (17) by utilizing the eigensolver from the ArnoldiMethod.jl package in Julia, requiring 16 eigenpairs –
8 in each direction of propagation –. This particular eigensolver can address a GEVP with both complex
non-hermitian matrices, but repeated eigenvalues may be undesirable (as described in their documentation)
for the eigendecomposition in their implementation. To the left, it can be appreciated that the µ(0) = µH

linearization has remarkably high eigenvector errors ϵ and even noticeable errors in the eigenvalues – which
provide cp –. This has been circumvented by slightly shifting the ϕ parameter away from zero. The choice
of a δϕ = 10−6 has been proven to be useful and generate correct dispersion curves with low eigenvector
errors ϵ.

With the µ(ϕ) linearization, we have that for ϕ ̸= nπ with n ∈ N the sought µ eigenvalues are not
repeated. This condition of a simple spectrum enhances the numerical computation and convergence of
the iterative eigensolver, although performance is not improved with ϕ ≈ 0. However, the ϕ impact on
performance was also tested for this small model (n = 42) and it was found that η performs around 44% faster
than µH , which, despite not being of great advantage, reinforces the motivation of the µ(ϕ) linearization of
approaching the targeted |µ| values to the partial λ spectrum of interest.

4.2.2. Forced response

The forced response of structural waveguides is one of the main applications of the WFEM [13, 21, 12],
since the wave expansion can be used to describe dynamic motion of assemblies, both subjected to harmonic
or transient loads [17], and to extremal or distributed loads [47].

Aiming to validate the proposed µ(ϕ) linearization and present its advantages over the existent ones,
the vibration response of an homogeneous beam is presented. The waveguide is formed by the assembly of
100 unit cells, i.e., an homogeneous steel beam with length L = 300 mm and thickness t = 10 mm. The
beam is subjected to Dirichlet-Dirichlet boundary conditions: an uniform vertical harmonic displacement of
amplitude 10−5 mm is applied on the left side, and a clamped condition is applied on the right side. The
frequency response functions (FRF) of the displacement at the middle of the beam calculated with three
different linearizations and with the same eigensolver (from ArnoldiMethod.jl) are shown in Figure 9.

It can be seen that the errors on the dispersion results from Figure 8b have an impact on the FRF
calculated with the µ(0) = µH linearization, whereas the µ(δϕ) linearization does not present any issue,
being perfectly overlapped with the FRF provided by the FE model.

In summary, the ϕ parameter has been advantageous to circumvent the issues of the eigensolver included
in the ArnoldiMethod.jl package, improving dispersion curves and frequency response functions by slightly
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Figure 9: Frequency response function (FRF) of the cantilever beam.

avoiding the repeated µ eigenvalues with a δϕ ≈ 0. In fact, since both Zhong-Williams and Huang et al.
linearizations provide repeated µ eigenvalues, this particular eigensolver would not have provided any useful
results unless the µ(ϕ) linearization had been used – which has also been the case for the heat exchanger
model, in Figure 6 –.

5. Conclusions

The two existent linearizations for partial eigensolving of the WFEM eigenvalue problem, namely the
Zhong-Williams and Huang et al. ones, provide repeated µ eigenvalues. It has been shown that the Zhong-
Williams linearization may present numerical issues in some cyclic symmetry cases. Moreover, these lin-
earizations are generalized eigenvalue problems with both complex non-hermitian matrices, and their partial
eigensolving is not widely implemented (e.g., scipy.sparse.linalg.eigs() in Python and geneig() from
the KrylovKit.jl package in Julia do not consider it). This inconvenient has drawn attention to the per-
formance of some remaining capable eigensolvers such as eigs() in MATLAB, eigs() from Arpack.jl and
partialschur()/partialdecomp() from ArnoldiMethod.jl in Julia, which were tested in this paper on the
mentioned linearizations.

In this work, a novel µ(ϕ) linearization was established. It avoids the condition of repeated µ eigenvalues
while preserving the symplectic structure of the eigenvalue problem in the same manner as the existent
linearizations. This has proved to be advantageous for convergence and computation time in the heat
exchanger numerical example, a homogeneous waveguide in which the sought eigenvalues were located around
the point 1 in the complex plane. Firstly, the Huang et al. linearization provides faster and better results
than Zhong-Williams. Secondly, the proposed η linearization performed more than two times faster than
the Huang et al. linearization and does not suffer the numerical instabilities of the Zhong-Williams’ one.
Moreover, for a simple homogeneous beam model, it has been shown that even slightly avoiding the repeated
eigenvalues with µ(δϕ) is useful to improve the band diagram and forced response computation precision
when using the ArnoldiMethod.jl package in Julia. Hence, this µ(δϕ) permits us to keep eigensolvers
performing well in WFEM problems, despite having issues related to repeated eigenvalues for a complex
non-hermitian GEVP.

In summary, the proposed µ(ϕ) linearization includes the standard Huang et al. linearization (with ϕ =
0), whereas taking ϕ = π/2 gives the proposed η linearization, which has been proved to be advantageous.
This rotation parameter ϕ could lead to further explorations and be an added value to theWFEM practice. In
that sense, the authors recommend the η linearization as a faster, numerically stable to iterative eigensolvers
and general purpose scheme for their dispersion analyses involving high-dimensional unit cell models.
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