
HAL Id: hal-04750222
https://hal.science/hal-04750222v1

Submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flavors of abstract interpretation
David Monniaux

To cite this version:
David Monniaux. Flavors of abstract interpretation. École thématique. European joint conferences
on theory and practice of software - Invited tutorial, Luxembourg, Luxembourg. 2024. �hal-04750222�

https://hal.science/hal-04750222v1
https://hal.archives-ouvertes.fr

Flavors of abstract interpretation

David Monniaux

CNRS / VERIMAG

April 9, 2024

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 1 / 82

Introduction

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 2 / 82

Introduction

Why abstract interpretation

Over-approximations of behavior of programs.
(And also under-approximations.)

▶ Prove that programs satisfy specifications.
▶ Study program behavior.
▶ Enable optimizations in compilers.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 3 / 82

Introduction

Abstract interpretation in a nutshell

What can happen in the program: R (undecidable as per Rice’s
theorem)
What we compute: R♯

Soundness: R ⊆ R♯

Program takes a step from R to R′

We compute: R♯′

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 4 / 82

Introduction

Limits of this tutorial

Vast topic

Will skim over many aspects

Focus on numerical abstraction because easier to visualize
(But will talk about other kinds of abstraction)

Will not cover underapproximations
Will not cover termination analysis

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 5 / 82

Vanilla: finite lattices

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 6 / 82

Vanilla: finite lattices Mapping to finite state

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 7 / 82

Vanilla: finite lattices Mapping to finite state

Rule of signs
Abstract integers into {-,0,+}.
To each z ∈ Z, associate s(z) = + if z > 0, s(z) = - if z < 0, s(0) = 0.

⊤ = {-,0,+}

x y x+ y
- - -
- 0 -
- + ⊤
0 - -
0 0 0
0 + +
+ - ⊤
+ 0 +
+ + +

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 8 / 82

Vanilla: finite lattices Mapping to finite state

Refinement for known constants

x x+ 1
- {-, 0}
0 +
+ +

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 9 / 82

Vanilla: finite lattices Mapping to finite state

From variable to state

Finite number of variables: abstract each variable separately.
Concrete state: (x1, . . . , xn)
Abstract state: (α(x1), . . . , α(xn))

Transform concrete → into abstract →♯

e.g. (x, y)
y:=x+y−−−−→ (x′, y′) defined by (x, y) → (x, x+ y)(

x♯, y♯
) y:=x+y−−−−→

(
x♯, y♯′

)
for all y♯′ in the plus abstract table.

e.g. (+, -) →♯ (+,+)
(+, -) →♯ (+,0)
(+, -) →♯ (+, -)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 10 / 82

Vanilla: finite lattices Mapping to finite state

Control locations

The control location is just another variable, often not abstracted.

If instruction from control location p to control location p′ is
y := x+ y,:
(p, x, y) → (p′, x′, y′)
and proceed as above

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 11 / 82

Vanilla: finite lattices Mapping to finite state

Simple data abstractions

Abstraction
To each s ∈ Σ attach α(s) ∈ Σ♯.
To each S ⊆ Σ, define α(S) = {α(s) | s ∈ S}.

Replace P (Σ) (infinite) by P
(
Σ♯

)
(finite).

Soundness
σ → σ′ =⇒ α(σ) →♯ α(σ′)

Most precise: σ♯ →♯ σ♯′ iff
∃σ, σ′ α(σ) = σ♯ ∧ α(σ′) = σ♯′ ∧ σ → σ′

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 12 / 82

Vanilla: finite lattices Mapping to finite state

Reachability analysis

Reachable states for →♯ are computable, because finite state, if →♯ is
decidable.

Worklist graph traversal algorithm:
▶ start from initial state σ♯

0, add σ♯
0 to worklist

▶ until worklist empty, take σ♯ from worklist, if not marked as
“reached”, mark it and add all its successors to worklist

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 13 / 82

Vanilla: finite lattices Mapping to finite state

Note on algorithmic results

Reachability in the abstract is uniquely defined.

The above algorithm computes the same set of abstract states
regardless of worklist ordering.

Choices of ordering =⇒ cost of analysis issue only
(e.g. order worklist using reverse postorder)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 14 / 82

Vanilla: finite lattices Mapping to finite state

Collecting by program point

We collect abstract states (p, v♯1, . . . , v
♯
n). We can group them by

control location (program point) p.

For each program point, compute a set of reachable abstract states
(v♯1, . . . , v

♯
n) where v1, . . . , vn ∈ {-,0,+}.

In other words, to each p, associate R♯(p) ⊆ {-,0,+}n
similar to collecting R(p) reachable program states at control
location p.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 15 / 82

Vanilla: finite lattices Smaller lattices

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 16 / 82

Vanilla: finite lattices Smaller lattices

Independent abstraction between variables

Instead of any R♯(p) ⊆ {-,0,+}n
consider only Cartesian products

∏n
i=1 R

♯(p, i) where
R♯(p, i) ⊆ {-,0,+}

In other words: R♯(p) is either
▶ ⊥ “location is unreachable”
▶ a map from 1 . . . n to P ({-,0,+}) \ {}

“Smashed bottom” = “if one variable cannot contain a value, then the
instruction is unreachable”

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 17 / 82

Vanilla: finite lattices Smaller lattices

Difference between dependent and independent
abstraction

1: y := x
2: if x = 0:
3: if y ̸= 0:
4: here

Variables: x, y

Dependent
R♯(2) = {(-, -), (0,0), (+,+)}
R♯(3) = {(0,0)}
R♯(4) = ∅

Independent
R♯(2) = {-,0,+} × {-,0,+}
R♯(3) = {0} × {-,0,+}
R♯(4) = {0} × {-,+}

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 18 / 82

Vanilla: finite lattices Smaller lattices

Powerset lattice

To each program location and each variable, attach a nonempty
subset of {-,0,+}.

-,0,+

-,+-,0 0,+

0- +

∅

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 19 / 82

Vanilla: finite lattices Smaller lattices

A simpler lattice

To each program location and each variable, attach an element of
this lattice L♯

⊤

0- +

⊥
n variables, take “smashed bottom” product lattice

(
L♯
)n

(one ⊥ = ⊥
everywhere)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 20 / 82

Vanilla: finite lattices Smaller lattices

What this means, variable per variable

Concretization function
γ maps a lattice element to the values it represents.
γ(⊤) = Z γ(-) = (−∞, 1] γ(0) = {0} γ(+) = [1,+∞)

Abstraction function
α(∅) = ⊥
For S ⊆ (−∞, 1], S ̸= ∅, α(S) = -
For S ⊆ [1,+∞), S ̸= ∅, α(S) = +
α({0}) = 0
α(S) = ⊤ otherwise

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 21 / 82

Vanilla: finite lattices Smaller lattices

Abstraction for a vector of variables

Concretization
γv(l

♯
1, . . . , l

♯
n) = {x1, . . . , xn | ∀i xi ∈ γ(l♯i)}

Abstraction
αv(A) = {a♯1, . . . , a♯n}
a♯i =

⊔
x1,...,xn∈A α(xi)

α, γ form a Galois connection.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 22 / 82

Vanilla: finite lattices Invariant inference algorithm

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 23 / 82

Vanilla: finite lattices Invariant inference algorithm

An algorithm for inferring invariants

Worklist graph traversal algorithm:

▶ start from initial state
(
p0, σ

♯
0

)
, set R♯(p0) := σ♯

0, add p0 to
worklist

▶ until worklist empty, take p in worklist; for each transition
p

op−→ p′:
▶ compute y♯ := R♯(p′) ⊔ op♯(R♯(p))
▶ if y♯ ̸= R♯(p′), set R♯(p′) := y♯ and add p′ to the worklist

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 24 / 82

Vanilla: finite lattices Invariant inference algorithm

Termination and soundness

Termination
At every iteration, at least one R♯(p) increases, within a finite domain

Soundness
When it terminates, for any transition p

op−→ p′: op♯(R♯(p)) ⊑ (R♯(p′)).
Consequence: if (p, σ)

op−→ (p′, σ′), α(σ) ∈ R♯(p), then α(σ′) ∈ R♯(p′).

In other words, the R♯(p) define inductive invariants.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 25 / 82

Vanilla: finite lattices Invariant inference algorithm

Optimality

Assuming
▶ op♯ is monotone
▶ ⊔ computes least upper bound

Then this algorithm computes the least fixed point.
R♯(p) everywhere for least inductive invariant expressed by α.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 26 / 82

Vanilla: finite lattices Invariant inference algorithm

Optimal only among inductive invariants

i = 6 ;
do { i −=2 ; } while (i ̸= 0) ;

p1 p2 p3
i := 6

i := i− 2; i ̸= 0

i = 0

Concrete reachable states at p2: {6, 4, 2}.
α({6, 4, 2}) = {+}

Abstract reachable states at p2: {-,0,+}
(because 1 → −1, 1 abstractly reachable but not concretely)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 27 / 82

Vanilla: finite lattices Examples from the real world

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 28 / 82

Vanilla: finite lattices Examples from the real world

Constant propagation

⊤

0

⊥

-1-2…MIN_INT +1 +2 … MAX_INT

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 29 / 82

Vanilla: finite lattices Examples from the real world

Example: CompCert

CompCert (2022 ACM System Software Award)

“Value analysis” computes fixed point in a (complicated) finite lattice
with points-to analysis:
▶ constant propagation
▶ local strength reduction of instructions with known parameters

Distinguishes pointers
▶ points into local stackframe, at known or unknown offset
▶ points out of local stackframe

▶ points into global variable, at known or unknown offset

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 30 / 82

Vanilla: finite lattices Examples from the real world

“Is matched by”

CompCert has predicates:
▶ pointer p is matched by abstract pointer p♯ [according to block

classification C]
▶ pointer v is matched by abstract value v♯ [according to block

classification C]

γ(v♯) = {v | vmatch(C, v♯, v)}

Proofs that if ∀i, vmatch(C, vi, v
♯
i),

vmatch(C, op(v1, . . . , vn), op♯(v
♯
1, . . . , v

♯
n))

Fixed-point proof: if fixed-point iterations converge within N steps,
then the result is inductive.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 31 / 82

Vanilla: finite lattices Examples from the real world

Example: forward dataflow analysis

Finite set P1, . . . , Pn of predicates over program states = subsets of
program states
Abstract element: S♯ ⊆ {1 . . . n}
γ(S♯) =

∩
i∈S♯ Pi

S♯ ⊑ S♯′ iff S♯′ ⊆ S♯

Note: opposite direction, dataflow analysis usually presented with
opposite ordering as abstract interpretation

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 32 / 82

Coffee: paths and direction

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 33 / 82

Coffee: paths and direction

Convex polyhedra

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 34 / 82

Coffee: paths and direction

Convex polyhedra: widening

(Possibility: thresholds = linear inequalities found in program)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 35 / 82

Coffee: paths and direction

Convex polyhedra

Two overapproximations: the abstraction + the widening!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 36 / 82

Coffee: paths and direction

Note about Galois connections

α(S) is the best overapproximation of S in the abstract domain.

A disc has no best overapproximation as a convex polyhedron.

Cannot define α in general.

“Constructive” views of abstract interpretation often just define γ.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 37 / 82

Coffee: paths and direction

Absolute value

y = abs (x) ;
i f (y >= 1) {

a s s e r t (x ! = 0) ;
}

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 38 / 82

Coffee: paths and direction

Intervals

Intervals:

/ ∗ −1000 <= x <= 2000 ∗ /
i f (x < 0) y = −x ; / ∗ 0 <= y <= 1000 ∗ /
e l s e y = x ; / ∗ 0 <= y <= 2000 ∗ /

i f (y >= 1) { / ∗ 1 <= y <= 2000 ∗ /
a s s e r t (x ! = 0) ; / ∗ −1000 <= x <= 2000 ! ! ! ∗ /

}

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 39 / 82

Coffee: paths and direction

Polyhedra
Branch x ≥ 0

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 40 / 82

Coffee: paths and direction

Other branch
Branch x < 0

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 41 / 82

Coffee: paths and direction

After first test

y = |x| = union of the two red lines. Not a convex.
Convex hull = pink polyhedron

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 42 / 82

Coffee: paths and direction

At second test
Note: includes (x, y) = (0, 1).

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 43 / 82

Coffee: paths and direction

Disjunction

Possible if we do a union of two polyhedra:
▶ x ≥ 0 ∧ y = x
▶ x < 0 ∧ y = −x

But with n tests?

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 44 / 82

Coffee: paths and direction

Sources of imprecision

▶ Need to distinguish each path and compute one polyhedron
for each.

▶ But 2n paths.
▶ Too costly if done naively.
▶ Use SMT-solving to distinguish individual paths (as e.g. PAGAI

tool, see Henry’s PhD thesis)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 45 / 82

https://theses.hal.science/tel-01485202

Coffee: paths and direction

Forward analysis, reminder

Compute I♯p at all position p in forward direction (next-state)
γ(I♯p) contains all memory/variable states reachable at control
position p

To prove that an undesirable control position p is unreachable: check
I♯p = ⊥

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 46 / 82

Coffee: paths and direction

Forward / backward analysis

Compute I♯p at all position p by combined forward/backward

We want:
γ(I♯p) contains all memory/variable states at control position p
reachable (from program start) and co-reachable from error location

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 47 / 82

Coffee: paths and direction

Compute back from error location

/ ∗ false ∗ /
i f (x >= 0)

y = x ; / ∗ x = 0 ∧ x ≥ 1 ≡ false ∗ /
e l se

y = −x ; / ∗ x = 0 ∧ −x ≥ 1 ≡ false ∗ /
i f (y >= 1) { / ∗ x = 0 ∧ y ≥ 1 ∗ /

a s s e r t (x ! = 0) ; / ∗ x = 0 ∗ /
}

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 48 / 82

Coffee: paths and direction

Forward / backward

More generally: compute forward from program start, then
backward from error location, possibly forward again.

Forward restricted to postcondition
y♯′ = forward(op, x♯, x♯′)

∀x, x′, x ∈ γ(x♯) ∧ x
op−→ x′ ∧ x′ ∈ γ(x♯

′
) =⇒ x′ ∈ γ(y♯

′
)

Backward restricted to precondition
y♯ = backward(op, x♯′, x♯)

∀x, x′, x′ ∈ γ(x♯
′
) ∧ x

op−→ x′ ∧ x ∈ γ(x♯) =⇒ x ∈ γ(x♯)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 49 / 82

Coffee: paths and direction

Why restrictions to precondition/postcondition

(See optional parameter in e.g APRON)

backward(op, x♯′, x♯) = backward(op, x♯′) ⊓ x♯ would be valid.
But less precise!

Precondition: x ∈ [0, 3], postcondition ⊤, instruction: assume x ≤ y.

Backward analysis of assume x ≤ y from ⊤ in the interval domain:
⊤, intersection with x ∈ [0, 3] is x ∈ [0, 3]

Backward analysis knowing x ∈ [0, 3] yields x ∈ [0, 3] ∧ y ∈ [0,∞)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 50 / 82

https://antoinemine.github.io/Apron/doc/

Fudge: widenings

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 51 / 82

Fudge: widenings

Bounded interval analysis

Elements of the lattice: pairs of integers (a, b), a ≤ b, or ⊥

α(S) = (min S,max S)

γ((a, b)) = a . . . b

(a, b) ⊑ (a′, b′) is ≤ a ≤ b ≤ b′

(note: ⊑ a kind of decidable inclusion, we need
l ⊑ l′ =⇒ γ(l) ⊆ γ(l′))

Finite height lattice, largest [MIN_INT, MAX_INT]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 52 / 82

Fudge: widenings

On an example

i = 0 ;
while (i < 1 0) {

i ++ ;
}

1 2 3

4

i := 0
i < 10

i := i+ 1i ≥ 10

First iteration: [0, 0] goes through i < 10, [1, 1] at line 3, ⊔ at line 2
yields [0, 1]
Ensuing iterations at line 2: [0, 2], [0, 3], [0, 4], …, [0, 10]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 53 / 82

Fudge: widenings

Objection

What if we have to iterate to ⊤ = [MIN_INT, MAX_INT]?

231 or even 263 iterations.

Need a way to accelerate!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 54 / 82

Fudge: widenings

Standard widening operator on intervals

Ascending right bounds [0, 1], [0, 2]…try [0, MAX_INT] (or [0,+∞)).

[0, MAX_INT] indeed an inductive invariant for

i = 0 ;
while (i < 1 0) {

i ++ ;
}

Obviously not the strongest! (which is [0, 10])

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 55 / 82

Fudge: widenings

Thresholds

(Reinvented several times)
▶ Notice (syntactically or by dynamic recording) that there is a

i < 10 ≡ i ≤ 9 comparison.
▶ Widen to 9 then 10 instead of MAX_INT

Gets i ∈ [0, 10]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 56 / 82

Fudge: widenings

Narrowing step

i = 0 ;
while (i < 1 0) {

i ++ ;
}

1 2 3

4

i := 0
i < 10

i := i+ 1i ≥ 10

If at location 2, we come from 1 or 3:
▶ either we start the loop, i ∈ [0, 0]
▶ either we have already gone through the loop, 2 → 3 → 2, thus

executing i < 10; i := i+ 1 from i ∈ [0, MAX_INT]: getting
i ∈ [1, 10]

Thus at 2, i must be in [0, 10]!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 57 / 82

Fudge: widenings

A more mathematical view

We have an inductive invariant S: f(S) ⊆ S.

f (concrete semantics) is monotone (more states in precondition,
more states in the outcome): f(f(S)) ⊆ f(S)
f(S) is also an inductive invariant, and maybe f(S) ⊊ S!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 58 / 82

Fudge: widenings

Narrowing works

i = 0 ;
while (t r u e) {

i ++ ;
i f (i >= 1 0) i = 0 ;

}

1 2 5 6
i := 0 i := i+ 1 i ≥ 10

i := 0

i < 10

Widening: i ∈ [0,MAX_INT]
Narrowing: i ∈ [0, 9]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 59 / 82

Fudge: widenings

Narrowing is foiled

i = 0 ;
wh i l e (t r u e) {

i f (∗) {
i ++ ;
i f (i >= 1 0)

i = 0 ;
}

}

1 2 5 6
i := 0 i := i+ 1 i ≥ 10

i := 0

i < 10

Because of the self-loop, the “next iteration” operator satisfies
S ⊆ f(S) and thus narrowing never narrows.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 60 / 82

Fudge: widenings

Wider precondition

i = [0 , 9] ;
wh i l e (t r u e) {

i f (∗) {
i ++ ;
i f (i >= 1 0)

i = 0 ;
}

}

1 2 5 6
i := 0 i := i+ 1 i ≥ 10

i := 0

i < 10

No iterations needed, we have the invariant [0, 9] straight from the
start!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 61 / 82

Fudge: widenings

Non-monotonic behavior

Precondition i = 0: analysis computes i ∈ [0, MAX_INT]
Precondition i ∈ [0, 9]: analysis computes i ∈ [0, 9]

A more precise precondition leads to a less precise analysis
result!
Counter-intuitive for end users.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 62 / 82

Fudge: widenings

(Other cause of non-monotonic behavior)

A long time ago in a galaxy far, far away.

In the Astrée analyzer.

Rewriting system + intervals y ∈ [0, 10]
y → x+ 1
z → 3× y

Straight computation for t := z+ 1 yield ⊤.
Full rewriting of t := z+ 1 yields t := 3(x+ 1) + 1, yields ⊤.
Partial rewriting (forget y → x+ 1) yields t := 3y+ 1,
yields t ∈ [1, 31].

Partial propagation of information for efficiency → non-monotonic
behavior.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 63 / 82

https://www.astree.ens.fr/

Fudge: widenings

(Other cause of non-monotonic behavior)

A long time ago in a galaxy far, far away.
In the Astrée analyzer.

Rewriting system + intervals y ∈ [0, 10]
y → x+ 1
z → 3× y

Straight computation for t := z+ 1 yield ⊤.
Full rewriting of t := z+ 1 yields t := 3(x+ 1) + 1, yields ⊤.
Partial rewriting (forget y → x+ 1) yields t := 3y+ 1,
yields t ∈ [1, 31].

Partial propagation of information for efficiency → non-monotonic
behavior.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 63 / 82

https://www.astree.ens.fr/

Blackcurrant: accelerated solving

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 64 / 82

Blackcurrant: accelerated solving

The problem on which narrowing failed

1 i = 0 ;
2 wh i l e (t r u e) {
3 i f (∗) {
4 i ++ ;
5 i f (i >= 1 0)
6 i = 0 ;
7 }
8 }

Write the interval analysis symbolically (forget handling of possibly
empty intervals): [−l1, h1] = [0, 0],
[−l2, h2] = [−max(l1, l8),max(h1, h8)], [−l5, h5] = [−(l2 − 1), h2 + 1],
[−l6, h6] = [−l5,min(h5, 9)], [−l7, h7] = [−max(l6, 0),max(h6, 0)],
[−l8, h8] = [−max(l2, l7),max(h2, h7)].

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 65 / 82

Blackcurrant: accelerated solving

In a nutshell

l2 = max(0,max(l2,max(l2 − 1, 0)))

h2 = max(0,max(h2,max(min(h2 + 1, 9), 0)))

(separated equations on this simple examples, in general not)

Any solution in (l2, h2) yields an inductive invariant in intervals.
How to solve such equations? (Outside of SMT-solving them.)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 66 / 82

Blackcurrant: accelerated solving

Descending policy iterations

(Many publications in E. Goubault’s group, see also P.L. Garoche,
P. Roux)

“min(a, b) must be equal to either a or b”

h2 = max(0,max(h2,max(min(h2 + 1, 9), 0))) can become
▶ h2 = max(0,max(h2,max(h2 + 1, 0))): h2 = +∞ as only solution

(no real solution)
▶ h2 = max(0,max(h2,max(9, 0))): h2 = 9 as only solution

Thus h2 = 9 as only solution!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 67 / 82

Blackcurrant: accelerated solving

Heuristic for descending iterations

h2 = max(0,max(h2,max(h2 + 1, 0))) and
h2 = max(0,max(h2,max(9, 0))) correspond to the original program
with one guard (test) over-approximated:
i < 10 means the interval for i
▶ either is the same (the bound has no effect, the test is always

taken)
▶ or is truncated by 9

Heuristic: tests are likely to be useful, not always taken, thus try the
second case first!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 68 / 82

Blackcurrant: accelerated solving

Solving the simplified system

Ordinary abstract interpretation
Run a regular abstract interpreter on a simplified program (simpler
interpretation of guards/tests).

Exact solving
Least solution of h2 = max(0,max(h2,max(h2 + 1, 0))): by
monotonicity, least solution of

h2 ≥ 0

h2 ≥ h2

h2 ≥ h2 + 1

Solve by linear programming: no real solution.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 69 / 82

Blackcurrant: accelerated solving

Downward iterations

Assume we solve and get h2 = +∞.
Evaluate max(0,max(h2,max(min(h2 + 1, 9), 0))) with h2 = +∞,
get 9.
The solution of the simplified system is not a solution of the original
system.

Flip the choice for min to a number yielding a lower value in the
current solution!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 70 / 82

Blackcurrant: accelerated solving

Downward policy iteration

“Strategy” or “policy” iteration by similarity with approach for
solving Markov decision processes and games.

▶ Pick argument for min or even inf occurring in the equation
system (= simplify tests and reductions).

▶ Solve the simplified problem exactly or approximately.
▶ Replace the solution into the original problem, check if solution.
▶ If not solution, switch to other choices for min or inf and restart.

All intermediate systems over-approximate the original, thus their
solved solutions over-approximate the least solution of the original
system.
Can stop at any point and remain sound!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 71 / 82

Blackcurrant: accelerated solving

Treatment of relational abstract domains

x ≤ A

y ≤ B

x+ y ≤ C

can be reduced with e.g. x+ y ≤ A+ B thus C′ = min(C,A+ B)

min or inf operations occur explicitly or implicity in bound
computations (e.g. dual linear programming = take a minimum over
Farkas witnesses)

Also to be treated by downward policy iteration!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 72 / 82

Blackcurrant: accelerated solving

Take-home message

Downward policy iteration
▶ computes downward sequence of simpler fixed-points
▶ sequence may be stopped at any time, producing a valid

inductive invariant
▶ not guaranteed to converge to least fixed-point (= least

inductive invariant in the abstract domain) but often does
▶ good heuristic choice of initial “policy” (choice of

min-argument) matters

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 73 / 82

Blackcurrant: accelerated solving

Max-policies

h2 = max(0, h2,min(h2 + 1, 9))

Each max operator has value one of its arguments, add also −∞
▶ h2 = −∞
▶ h2 = 0
▶ h2 = h2

▶ h2 = min(h2 + 1, 0)

Start with h2 = −∞.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 74 / 82

Blackcurrant: accelerated solving

Max-policy iterations

(Many publications from H. Seidl)

1. h2 = −∞ replaced in max(0, h2,min(h2 + 1, 9)):
max(0,−∞,min(−∞+ 1, 9) = 0 > −∞, pick 0 (2nd argument)
instead

2. h2 = 0 replaced in max(0, h2,min(h2 + 1, 9)):
max(0, 0,min(0+ 1, 9)) = 1 > 0, pick 1 (3rd argument) instead

3. h2 = min(h2 + 1, 9); solve for least solution and get h2 = 9

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 75 / 82

Blackcurrant: accelerated solving

Max-policy iterations in a nutshell

Replace a least fixed-point computation by an ascending sequence of
fixed-point computations

Must go on until no “improvement” possible.

Converges to strongest inductive invariant in domain / least fixed
point

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 76 / 82

Blackcurrant: accelerated solving

Another example

i = 0 ;
wh i l e (t r u e) {

i ++ ;
i f (i == 1 0)

i = 0 ;
}

Widening to +∞, narrowing does not help.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 77 / 82

Blackcurrant: accelerated solving

Guided static analysis

Idea: replace an invariant computation over the full program by a
sequence of invariant computations over partial programs.
Partial program = subset of control-flow graph

i = 0 ;
wh i l e (t r u e) {

i ++ ;
i f (i == 1 0)

i = 0 ;
}

1 2 5 6
i := 0 i := i+ 1 i = 10

i := 0

i < 10

i > 10

At node 2: ⊥

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 78 / 82

Blackcurrant: accelerated solving

Guided static analysis

Idea: replace an invariant computation over the full program by a
sequence of invariant computations over partial programs.
Partial program = subset of control-flow graph

i = 0 ;
wh i l e (t r u e) {

i ++ ;
i f (i == 1 0)

i = 0 ;
}

1 2 5 6
i := 0 i := i+ 1 i = 10

i := 0

i < 10

i > 10

At node 2: [0, 0]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 78 / 82

Blackcurrant: accelerated solving

Guided static analysis

Idea: replace an invariant computation over the full program by a
sequence of invariant computations over partial programs.
Partial program = subset of control-flow graph

i = 0 ;
wh i l e (t r u e) {

i ++ ;
i f (i == 1 0)

i = 0 ;
}

1 2 5 6
i := 0 i := i+ 1 i = 10

i := 0

i < 10

i > 10

At node 2: [0, 0]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 78 / 82

Blackcurrant: accelerated solving

Guided static analysis

Idea: replace an invariant computation over the full program by a
sequence of invariant computations over partial programs.
Partial program = subset of control-flow graph

i = 0 ;
wh i l e (t r u e) {

i ++ ;
i f (i == 1 0)

i = 0 ;
}

1 2 5 6
i := 0 i := i+ 1 i = 10

i := 0

i < 10

i > 10

At node 2: [0, 9]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 78 / 82

Blackcurrant: accelerated solving

Guided static analysis

Idea: replace an invariant computation over the full program by a
sequence of invariant computations over partial programs.
Partial program = subset of control-flow graph

i = 0 ;
wh i l e (t r u e) {

i ++ ;
i f (i == 1 0)

i = 0 ;
}

1 2 5 6
i := 0 i := i+ 1 i = 10

i := 0

i < 10

i > 10

At node 2: [0, 9]

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 78 / 82

Fiore di latte: conclusion

Plan

Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 79 / 82

Fiore di latte: conclusion

An intriguing problem

Given a class of programs (with unreachability assertions) and an
abstract domain, is the existence of inductive invariants suitable for
proving unreachability decidable?

E.g. for template polyhedra, intervals etc. decidable because
existence of invariants expressible in a decidable arithmetic theory
(real closed fields, Presburger…)

How about general convex polyhedra, for linear programs? (if
nonlinear: undecidable)

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 80 / 82

https://arxiv.org/abs/1709.04382

Fiore di latte: conclusion

More generally: relative completeness

Design methods that will not “lose” inductive invariants if they exist
in the abstract domain.

E.g. certain analyses on abstractions of functions/maps/arrays can be
expressed as syntactic transformation without losing completeness

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 81 / 82

https://hal.science/hal-03214475/
https://hal.science/hal-03214475/

Fiore di latte: conclusion

Conclusion

▶ devil in the details
▶ widenings lead to non-monotonicity and brittleness
▶ rough lattices (intervals…) can regain precision by splitting

along paths and/or using forward/backward
▶ exact methods in some cases

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 82 / 82

	Introduction
	Vanilla: finite lattices
	Mapping to finite state
	Smaller lattices
	Invariant inference algorithm
	Examples from the real world

	Coffee: paths and direction
	Fudge: widenings
	Blackcurrant: accelerated solving
	Fiore di latte: conclusion

