
Data abstraction, arrays, maps, and completeness, aka
“Cell morphing”

Julien Braine Laure Gonnord David Monniaux

CNRS / VERIMAG

April 23, 2023

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 1 / 24

Arrays and maps

Array of elements of D: map from Z to D (implement bound check independently)
More generally: maps from I to D, for any I

Occurs:
▶ arrays
▶ array-like data structures (hash tables…)
▶ memory seen as an array of bytes
▶ structure field seen as an array indexed by the object
▶ array of processes, local variables in process indexed by process id
▶ participants in a protocol (indexed by participant id)

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 2 / 24

More arrays and maps

Set of elements from S: map from S to {0, 1}
Multiset of elements from S: map from S to N
Relation between elements of A and B: map from A× B to {0, 1}

Can talk of contents of data structures (multiset of elements in an array, etc.)
Can talk of “who points where”

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 3 / 24

Invariants on single arrays

Often of the universal form
▶ ∀k, P(i, j, . . . , k, t[k]) e.g. ∀k, 0 ≤ k < n =⇒ t[k] ≥ 0
▶ ∀k1k2, P(i, j, . . . , k1, k2, t[k1], t[k2]) e.g. ∀k, 0 ≤ k1 ≤ k2 < n =⇒ t[k1] ≤ t[k2]

“At all positions (or pairs of positions) in the array, a certain relationship holds between
the elements at these positions, these positions, and the rest of the program variables”

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 4 / 24

Other properties

Neighbors
∀k, P(k, t[k− 1], t[k], t[k+ 1])

Multidimensional arrays
∀i, j P(i, j, t[i, j])

Index set = Z2

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 5 / 24

Invariants on multiple arrays

Such as
▶ ∀k, P(i, j, . . . , k, t1[k], t2[k]) e.g. ∀k, 0 ≤ k < n =⇒ t1[k] = t2[k]
▶ ∀k, P(i, j, . . . , k1, k2, t1[k1], t2[k2]) e.g.

∀k, 0 ≤ k < n ∧ k2 = n− k1 =⇒ t1[k1] = t2[k2]

Or “the multiset of elements in t1 is the same as in t2”

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 6 / 24

Horn clauses

int a[N];
for(int i=0; i<N; i++) {

t[i] = 42;
}

Loop initialization ∀N, a, L(N, a, 0)
Loop exit ∀N, a, i, L(N, a, i) ∧ i ≥ N =⇒ E(N, a)

Loop execution ∀N, a, i, L(N, a, i) ∧ i < N =⇒ L(N, a[i 7→ 42], i+ 1)

we may wish to prove ∀Nai, E(N, a) ∧ 0 ≤ i < N =⇒ a[i] = 42

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 7 / 24

Une seule solution : la bonne abstraction !

abstract interpretation = look for solutions within an abstract domain
abstract domain = restrict the shape of invariants
e.g. “look for an invariant on tuples of integer variables in products of intervals”

Thus “look for invariants of the form ∀k, P(i, j, . . . , k, t1[k], t2[k])” is abstract
interpretation
abstract domain = {{i, j, t1, t2 | ∀k, P(i, j, k, t1[k], t2[k])} | P ⊆ Z× Z× D× D}

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 8 / 24

The Galois connection

For P♯ ⊆ Z× Z× Z× D, γ(P♯) ⊆: Z× Z× (Z → D)

γ(P♯)(N, i, a) ≡ ∀k, P♯(N, i, k, a[k])

Of course α(P) =
∧

P♯|P⊆γ(P♯) P
♯

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 9 / 24

Our goal

Implement abstraction by syntactic transformation from Horn clause to Horn clauses.

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 10 / 24

Substituted Horn clauses

int a[N];
for(int i=0; i<N; i++) {

t[i] = 42;
}

Loop initialization ∀N, a (∀k L♯(N, 0, k, a[k]))
Loop exit ∀N, a, i

(
∀k, L♯(N, i, k, a[k])

)
∧ i ≥ N =⇒

(
∀k, E♯(N, k, a[k])

)
Loop execution ∀N, a, i,

(
∀k, L♯(N, i, k, a[k])

)
∧ i < N =⇒(

∀k, L♯(N, i+ 1, k, a[i 7→ 42][k])
)

we may wish to prove ∀N, a, i,
(
∀k, E♯(N, k, a[k])

)
∧ 0 ≤ i < N =⇒ a[i] = 42

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 11 / 24

Quantifiers on the right hand side are easy

Loop initialization ∀N, k, ak L♯(N, 0, k, ak)
Loop exit ∀N, a, i, k

(
∀k′, L♯(N, i, k′, a[k′])

)
∧ i ≥ N =⇒ E♯(N, k, a[k])

Loop execution
∀N, a, i, k

(
∀k′, L♯(N, i, k′, a[k′])

)
∧ i < N =⇒ L♯(N, i+ 1, k, a[i 7→ 42][k])

Note: we still have quantifiers on the left.

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 12 / 24

Instantiating the quantifiers on the left hand side

Loop initialization ∀N, k, ak L♯(N, 0, k, ak)
Loop exit ∀N, a, i, k L♯(N, i, k, a[k]) ∧ i ≥ N =⇒ E♯(N, k, a[k])

Loop execution ∀N, a, i, k L♯(N, i, k, a[k]) ∧ i < N =⇒ L♯(N, i+ 1, k, a[i 7→ 42][k])

Note: this is sound but could it be incomplete?

P(k1, x) ∧ P(k2, x) =⇒ Q(x)
implies
(∀kP(k, x)) =⇒ Q(x)

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 13 / 24

Further processing

One can even get rid of arrays by “Ackermannization”

Loop initialization ∀N, k, ak L♯(N, 0, k, ak)
Loop exit ∀N, i, k, ak L♯(N, i, k, ak) ∧ i ≥ N =⇒ E♯(N, k, ak)

Loop execution ∀N, a, i, k, ak L♯(N, i, k, ak) ∧ i < N ∧ k 6= i =⇒ L♯(N, i+ 1, k, ak)
∀N, a, i, ai L♯(N, i, i, ai) ∧ i < N =⇒ L♯(N, i+ 1, i, 42)

Note: now purely scalar problem, ready for Horn solvers!

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 14 / 24

Instantiation strategy

Collect all indices i such that a[i] appears.
Use all of them for instantiating.

Is this complete? (= is the resulting system equivalent to the original?)

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 15 / 24

A simple example (I)

Two properties defining singletons:
P(a) is true iff ∀k, a[k] = 0
Q(a) is true iff ∀k 6= 1, a[k] = 0 ∧ a[1] = 1

In other words:
P♯(k, x) ≡ (x = 0)
Q♯(k, x) ≡ (x = 0 ∧ k 6= 1) ∨ (x = 1 ∧ k = 1)
P = γ(P♯), Q = γ(Q♯), P♯ = α(P), Q♯ = α(Q).

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 16 / 24

A simple example (II)

Not abstracted
A Horn clause
∀a, P(a) ∧ Q(a) =⇒ R(a[0])
(Obviously the left hand side is false, so the least solution for R is false. Thus some
solutions can satisfy ∀x, ¬R(x).)

Abstracted
∀a,

(
∀k, P♯(k, a[k])

)
∧
(
∀k, Q♯(k, a[k])

)
=⇒ R(a[0])

(So far so good, the left hand side is false.)

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 17 / 24

A simple example (III)

Instantiated
∀a, P♯(0, a[0]) ∧ Q♯(0, a[0]) =⇒ R(a[0])

Ackermannized
∀a0, P♯(0, a0) ∧ Q♯(0, a0) =⇒ R(a0)
(The left hand side is obviously true for a0 = 0. Thus no solution can satisfy ∀x, ¬R(x).)
The instantiation scheme is incomplete!

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 18 / 24

Reason for incompleteness: holes

∀a,
(
∀k, P♯(k, a[k])

)
∧
(
∀k, Q♯(k, a[k])

)
=⇒ R(a[0])

that is
∀a,

(
∀k, (P♯ ∧ Q♯)(k, a[k])

)
=⇒ R(a[0])

(P♯ ∧ Q♯)(k, x) ≡ x = 0 ∧ k 6= 1
“There is a hole at k = 1”

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 19 / 24

α not surjective / γ not injective

There are multiple P♯ (and not only ∅) such that γ(P♯) is ∅.

A non minimal P♯ can “propagate” and induce overapproximation.

Would need a reduction function (ρ(P♯) = α ◦ γ(P♯)) but how could I define it in Horn
clauses…

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 20 / 24

Syntactic restrictions

Linear Horn clauses
Only one unknown predicate on the left hand side (P(n, i, a) ∧ i 6= n =⇒ R(n, i, a) is
ok, P(n, i, a) ∧ Q(n, i, a) ∧ i 6= n =⇒ R(n, i, a) is not)

No global predicates on arrays
Only access arrays at individual locations a[i], a[j 7→ 42][i] etc.
No “global” predicates (a = a′, etc)

Theorem: the abstraction is then complete!

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 21 / 24

Intuition of the proof

“Everything happens in the image by α.”

“There are no holes in arrays.”

“All partials arrays can be extended into full arrays.”

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 22 / 24

Completeness in other words

Source = Horn clause problem with predicates on arrays
Question: solve this problem within an abstract domain (γ(P♯))

Replacement + instantiation + (optional) Ackermannization
= solve the question
(if syntactic restrictions not obeyed: may or may not solve the question even if there is
a solution)

Implement an abstraction by syntactic transformation.

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 23 / 24

Experimental results

https://github.com/vaphor

Tends to generate “hard” problems for Horn clause solvers (Z3, Eldarica…)

Can prove the correctness of some classical sorting algorithms (multiset is invariant +
result is sorted) by inferring the necessary invariants.

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 24 / 24

https://github.com/vaphor

Completeness theorem

Past work
https://hal.science/hal-03214475v2
https://hal.science/tel-03771839v1
https://hal.science/hal-01337140v1
https://hal.science/hal-02948081v2
https://hal.science/hal-03321868v1

Work in progress
Clean up the completeness proof when some of the syntactic restrictions are removed.

Monniaux (CNRS / VERIMAG) Data abstraction, arrays, maps, and completeness, aka “Cell morphing” April 23, 2023 25 / 24

https://hal.science/hal-03214475v2
https://hal.science/tel-03771839v1
https://hal.science/hal-01337140v1
https://hal.science/hal-02948081v2
https://hal.science/hal-03321868v1

