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Abstract. In this paper, we introduce two elicitation approaches for the deter-
mination of lex-cel necessary winners (i.e., the elements that are ranked highest
according to lex-cel) in a social ranking problem, when the knowledge about
preferences over the coalitions is incomplete, and the initially accessible input is
a subset of an existing total preorder. The first approach is preorder-driven, and
elicitates enough of the underlying total preorder to determine the lex-cel nec-
essary winners. The second approach is element-driven and guides comparisons
based on strategically-located coalitions. Finally, we present experimental results
and discuss the performance of each approach depending on various parameters
and scenarios.

1 Introduction

The concept of social ranking has been recently introduced in the literature to address
the problem of ranking individual elements based on their contribution in establishing
the position of groups or coalitions within a society [1]. To generate a social rank-
ing, a ranking over sets of objects (such as groups, team’s squads, winning and losing
coalitions within a voting body, etc.) is taken as input. This generates a ranking over
individual elements (such as group members, team’s players, voters, etc.) that reflects
their overall influence within the ranking over sets.

In [2], a social ranking solution called lexicographic excellence (lex-cel) is identified
as the only one satisfying a set of appealing properties. According to this rule, individual
elements are ranked based on their occurrences in the highest positions of the ranking
over coalitions (note that this ranking may contain equivalences) as follows. First, one
counts the number of occurrences of each element (i.e., the number of sets containing
the element) in every equivalence class of the ranking over sets. When comparing two
elements, one must focus to the number of occurrences in the best equivalence class of
sets, the greater number of occurrences being the better element. In case the number
of occurrences in the best equivalence class is the same, attention shifts to the number
of occurrences in the second-best equivalence class of sets, with the higher number
determining the better element. If parity persists, the third-best equivalence class is
considered, and so on, until all the equivalence classes are examined (of course, in case
of a tie in each equivalence class of sets, the two elements are declared indifferent). For
instance, in a situation with only two individual elements 1 and 2 and a ranking over
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sets such that the set {1, 2} and the singleton {2} are in the best equivalence class and
both are strictly better than the singleton {1}, the lex-cel places 2 above 1, as 2 occurs
twice in the best equivalence class, while 1 occurs just once.

Generalizations of lex-cel have been proposed in [3,4], considering the size of coali-
tions in addition to the occurence of elements in the sets, and in [5], under variable do-
mains of coalitions. Other social ranking solutions, based on different criteria, have been
proposed, for instance, in [6,7,8,9]. As noticed in [10], however, generating a complete
ranking over individual elements may not be necessary. In such cases, the objective may
be to select only the most important ones. As a motivating example, the authors of [10]
consider the problem of identifying the most influential scientists within an academic
association based on the number and quality of their publications and taking into ac-
count the contributions of scientists to multi-authored publications. They first propose
to establish a ranking over groups of scientists according to a predefined bibliometric
criterion, then they adopt a property-driven approach to argue that most influential sci-
entists across different groups are the elements with the highest position according to
lex-cel computed on the ranking of groups.

In this paper we apply the lex-cel method to identify the most significant elements
(also called “winners”) in the presence of partial information. Indeed, we observe that
the process of acquiring the necessary information to compute the lex-cel is often highly
time-consuming, as one can argue that collecting and processing data to compare any
possible pair of groups of a finite set becomes quickly unaffordable in practice. So, the
main contribution of this paper is to provide elicitation procedures aiming at identifying
winners (according to lex-cel) using a subset of the ranking relation over coalitions. In
other words, our goal is to find a procedure to determine the winner(s) of the lex-cel by
asking a minimum number of questions to an expert (e.g., the director of the academic
association) about pairwise comparisons among groups.

Our approach bears similarity with works in computational social choice that deal
with determining possible and necessary winners [11,12,13] when only a partial pref-
erence profile, composed of partial orders, is given in input. Adaptive elicitation ap-
proaches have been proposed that refine the partial profile in an iterative manner until a
necessary winner is identified or regret drops below a threshold [14,15,16].

We start by presenting some preliminary notions and concepts, then introduce the
problem at hand. We describe, first, a preorder-driven elicitation method to determine
the lex-cel necessary winners by reconstituting the underlying total preorder, and, sec-
ond, an element-driven method, based on a strategic choice of coalitions to compare.
Finally, we present experimental results and discuss the performance of each method
depending on various scenarios.

2 Preliminaries

Given a finite set E = {1, . . . , n}, a binary relation ≿E over E is a subset of the
Cartesian product E × E . In the following, given two elements i, j ∈ E , the fact that
(i, j) ∈ ≿E is also denoted by i ≿E j. A binary relation ≿E over E that is reflexive
and transitive is called preorder over E , and the pair (E ,≿E) is a preordered set.
The set of all total preorders on E is denoted by R(E). In the remaining of the paper
a preorder may also be referred to as a preference relation. A total preorder that is
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also antisymmetric is called a linear order. An extension of a preorder ≿E is a total
preorder ≿∗

E∈ R(E) such that ≿E⊆≿∗
E . If an extension is a linear order it is also called

linear extension.
Given a total preorder ≿E over E , we denote by ∼E the symmetric part of ≿E (i.e.

i ∼E j if i ≿E j and j ≿E i) and by ≻E its asymmetric part (i.e. i ≿E j and not j ≿E i).
A maximal element i ∈ E of a preordered set (E ,≿E) is such that there exists no j ∈ E
verifying j ≻E i; we denote by M≿E the set of all maximal elements of (E ,≿E). Given
a preordered set (E ,≿E), the preordered set restricted to a subset C ⊆ E is defined as
the pair (C,≿C

E ), where ≿C
E ⊆ C × C is such that i ≿C

E j ⇔ i ≿E j for all i, j ∈ C; if
≿C

E is total, the preordered set (C,≿C
E ) is called a chain. A maximal chain is a chain

(C,≿C
E ) such that there exists no D ⊆ E with C ⊆ D and such that (D,≿D

E ) is a chain.
Let X be a finite set. We denote by P(X) the set of non-empty subsets of X , i.e.

P(X) = {A ⊆ X : A ̸= ∅}. The elements of P(X) are called coalitions. A total
preorder ≿P(X)∈ R(P(X)) is called a power relation (when the set P(X) is clear
from the context, a power relation on P(X) is simply denoted by ≿). Consider a power
relation ≿∈ R(P(X)) and two coalitions S, T ∈ P(X) such that S ≿ T (interpreted
as “S is at least as powerful as T w.r.t. the power relation ≿”). The quotient order of ≿
is denoted by Σ1 ≻ Σ2 ≻ · · · ≻ Σl where each equivalence class Σk, k ∈ {1, . . . , l} is
generated by the symmetric part of ≿. This means that all coalitions in Σ1 are “equally
powerful” and are “strictly more powerful” than the sets in Σ2 and so on. We denote
by xk = |{S ∈ Σk : x ∈ S}| the number of occurrences of element x in Σk, for
any k = 1, . . . , l. Let us denote by θ≿(x), for any x ∈ X , the l-dimensional vector
θ≿(x) = (x1, . . . , xl) associated with ≿. This vector is called the occurrence vector
of x, as it indicates the number of occurrences of x in each equivalence class of ≿.

A social ranking R : R(P(X)) → R(X) is a mapping that associates a power
relation ≿∈ R(P(X)) over coalitions with a total preorder R≿ ∈ R(X) over single
elements. Let i, j be two vectors of the same size, the lexicographic total preorder ≥L

is such that i ≥L j if either i = j or there exists t such that it > jt and ir = jr for all
r ∈ {1, . . . , t − 1}. The lexicographic excellence (lex-cel) [2] is a social ranking R

≿
le :

R(P(X)) → R(X) such that for all ≿∈ R(P(X)) and all x, y ∈ X: x R
≿
le y ⇐⇒

θ≿(x) ≥L θ≿(y).

The symmetric and the asymmetric part of R≿
le are denoted by I

≿
le and P

≿
le , respec-

tively. An element x ∈ X such that x R
≿
le y for all y ∈ X is a winner in R

≿
le. There

may be several winners; an axiomatic approach to the problem of selecting the winners
provided by the lex-cel has been studied in [10].

Remark 1. It is easy to show that if ≿ is a linear order over P(X), then θ≿(x) is a 0, 1-
vector and θ≿(x) ̸= θ≿(y) for all x, y ∈ X with x ̸= y; so, R≿

le is a linear order over
X and there is a unique winner in R

≿
le.

Example 1. Let X = {1, 2, 3, 4}, and ≿P(X) (or, simply, ≿) be a preorder represented
by the preference graph of Figure 1 (left-side) and its maximal chains (right-side).

The following power relation ≿∗ is an extension of ≿: 1234 ≻∗ 134 ≻∗ 123 ≻∗

24 ≻∗ 3 ≻∗ 34 ≻∗ 2 ≻∗ 1 ≻∗ 13 ≻∗ 23 ≻∗ 124 ≻∗ 12 ≻∗ 234 ∼∗ 4 ≻∗ 14, from
which we determine the following occurrence vectors: θ≿

∗
(1) = (1, 1, 1, 0, 0, 0, 0,
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The maximal chains of ≿ are:

1234 ≻ 3 ≻ 23 ≻ 124 ≻ 234

134 ≻ 24 ≻ 13 ≻ 124 ≻ 234

134 ≻ 24 ≻ 13 ≻ 4 ≻ 14

34 ≻ 2 ≻ 13 ≻ 124 ≻ 234

34 ≻ 2 ≻ 13 ≻ 4 ≻ 14

123 ≻ 1 ≻ 12 ≻ 4 ≻ 14

Fig. 1: Preference graph and maximal chains of ≿

1, 1, 0, 1, 1, 0, 1), θ≿
∗
(2) = (1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0), θ≿

∗
(3) = (1, 1, 1, 0, 1,

1, 0, 0, 1, 1, 0, 0, 1, 0), θ≿
∗
(4) = (1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 1).

According to lex-cel, we have 3 P
≿∗

le 1 P
≿∗

le 4 P
≿∗

le 2, and the winner in R
≿∗

le is 3.

3 Problem description

We consider social rankings situations where only partial information about the coali-
tions is available; instead of a power relation in R(P(X)), we are given a preorder
≿P(X) . In a way similar to what is done in social choice [11], we define possible and
necessary winners, by considering winners in extensions of ≿P(X).

Definition 1. An element x ∈ X is a lex-cel possible winner on ≿P(X) if there exists

an extension ≿∗
P(X) of ≿P(X) such that x is a winner in R

≿∗
P(X)

le .

Definition 2. An element x ∈ X is a lex-cel necessary winner on ≿P(X) if x is a

winner in R
≿∗

P(X)

le for every extension ≿∗
P(X) of ≿P(X).

Example 2. Let ≿P(X) be the preorder introduced in Example 1. Possible extensions of
≿P(X) (other than ⪰∗) are ⪰a and ⪰b such that 134 ≻a 34 ≻a 2 ≻a 24 ≻a 1234 ≻a

3 ≻a 13 ≻a 123 ≻a 23 ≻a 124 ≻a 1 ≻a 12 ≻a 234 ≻a 4 ≻a 14 and 123 ≻b 134 ≻b

1 ≻b 34 ≻b 12 ≻b 1234 ≻b 2 ≻b 3 ≻b 24 ≻b 23 ≻b 13 ≻b 4 ≻b 14 ≻b 124 ≻b 234.
One can check that 4 is winning in R⪰a

le , 1 is winning in R⪰b

le , but there is no
extension of ⪰ such that 2 is winning. Actually, only 1, 3 and 4 are lex-cel possible
winners of ⪰.

Remark 2. Since an extension of ≿P(X) must exist, the set of lex-cel possible winners
on a preorder ≿P(X) is non-empty.

The problem of generating linear extensions of a partially ordered set (poset) has been
widely studied in the literature [17,18]. However, as it will be better clarified later,
we are not interested in generating the set of lex-cel possible winners. Our goal is to

find a “parsimonious” procedure to elicit the winners in R
≿∗

P(X)

le , where ≿∗
P(X) is the

(unique) true extension of ≿P(X), and the concept of lex-cel possible winner is only
used to guide our elicitation procedures.
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Proposition 1 Consider3 the quotient order Σ1 ≻P(X) . . . ≻P(X) Σl. Each winner in

R
≿P(X)

le belongs to Σ1.

Now, let ≿P(X) be a preorder and let ≿∗
P(X)∈ R(P(X)) be an extension of ≿P(X).

Notice that the maximal coalitions in the (totally) preordered set (P(X),≿∗
P(X)) are

also maximal in the preordered set (P(X),≿P(X)), i.e.M≿∗
P(X) ⊆ M≿P(X) .

Let ≿∗
P(X)∈ R(P(X)) be a power relation, and suppose that it is only partially

known, i.e. only a subset ≿P(X)⊆≿∗
P(X) is initially revealed. Our problem is to gather,

through an elicitation process, sufficient information over ≿∗
P(X) \ ≿P(X) to determine

the set of winners in R
≿∗

P(X)

le . As we are mainly concerned with the cognitive effort
provided by the user, we base our evaluation of an elicitation method’s performance on
the number of queries it submits. Starting from the (input) preorder ≿P(X)⊆≿∗

P(X), we
investigate different elicitation procedures aimed at submitting queries to a user (expert)
about unknown relations between pairs of coalitions. We assume that each query asked
to the user over an arbitrary pair of coalitions (let’s say, coalitions C1 and C2 in P(X))
receives in answer a set of pairs expressing the true value of the relation between the
two coalitions, i.e., C1 ≿ C2 or C2 ≿ C1 (or both, if C1 ∼ C2). A tuple (Ci, Cj)
indicates that Ci ≿∗

P(X) Cj .
Our objective is to minimize the number of queries submitted to the user to deter-

mine a non-empty set of lex-cel necessary winners on the set of revealed relations, that
is finding a set Q ⊆

(
≿∗

P(X) \ ≿P(X)

)
such that:

Q ∈ arg min
R⊆

(
≿∗

P(X)
\≿P(X)

){|R| : NW≿P(X)∪R ̸= ∅} (1)

where NW≿P(X)∪R is the set of lex-cel necessary winners on ≿P(X) ∪R. Problem
(1) is called the NECESSARY WINNER IN SOCIAL RANKING (NWSR) problem. It is
an extension of the social ranking problem, in a context where the user’s preferences
are only partially known. This can be because the user has not yet proceeded to the
comparison of all possible coalitions, as this can prove cognitively taxing. However, it
is assumed that there exists an underlying total preorder over P(X), which is obviously
compatible with the preorder given as input. As the total preorder represents the user’s
preferences, we assume it may be discovered through queries. From the above defini-
tions and propositions, we can now present the different steps of our two elicitation
approaches for NWSR.

4 Elicitation by reconstitution: RECO

A first preorder-based approach aims at reconstituting sufficiently many of the most
preferred coalitions in the underlying total preorder so as to determine the lex-cel nec-
essary winners with certainty. The process is iterative: at each step, we present the user
with two coalitions over which they must express their preference.

Recall that the restriction of a preorder ≿P(X) over P(X) to a collection S ⊆
P(X) is the preorder ≿S

P(X) over S such that C1 ≿S
P(X) C2 ⇔ C1 ≿P(X) C2 for all

3 Proofs for all propositions are available in the Appendix, available at this url

https://arianeravier.github.io/docs/SUM_24.pdf
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C1, C2 ∈ S. With a slight abuse of notation, given a collection of coalitions C ⊆ P(X),
we denote by xC = |{C ∈ C : x ∈ C}| the number of occurrences of element x in the
collection C.

Algorithm 1: Elicitation by reconstitution
Input: A preorder ≿P(X);
Output: A preorder ≿ ⊇ ≿P(X) and a set W of lex-cel necessary winners on ≿;

C ← P(X) ; W ← X ; ≿←≿C
P(X) ;

while |W | > 1 and C ≠ ∅ do
if S ∼ T for all S, T ∈M≿ then

W ← {x ∈W : xM≿ ≥ yM≿ for each y ∈W};
C ← C \M≿;
≿←≿C

P(X);
else

C1, C2 ← SELECT (≿C
P(X)) ;

Newcomp← QUERY (C1, C2);
≿← Transitive Closure(≿ ∪ Newcomp);

return ≿;
return W .

Algorithm 1 takes as input a preorder ≿P(X) and returns an updated preorder ≿
⊇ ≿P(X), as well as a set of winners W . The procedure starts by considering all el-
ements in X as possible winners. As long as there are still several possible winners
and not all the coalitions have been considered and ranked (this is to address the sce-
nario in which there may be several necessary winners, due to equivalences in the total
preorder), two coalitions are selected using SELECT(≿), a subroutine which, given a
preorder ≿ over a set S, selects two coalitions C1, C2 ∈ S such that (C1, C2) /∈ ≿ and
(C2, C1) /∈ ≿. We study different approaches to coalition selection, i.e. different defi-
nitions of SELECT(≿). Using the function QUERY(C1,C2), the user is then asked to
indicate the set of preference relations over C1 and C2 as a set of tuples. The function
Transitive Closure returns the smallest (with respect to the number of related
pairs) transitive superset of the updated ≿. If all maximal elements from the maximal
chains (i.e. all coalitions in M≿) have been evaluated as equivalent, they must belong
to the same equivalence class Σ, which can no longer be extended: we therefore update
our set of possible winners to contain only those who are most represented in Σ (in
accordance with the lexcel), and remove from consideration the elements in M≿, as
they are considered to have been added to the reconstructed order and their impact on
the set of possible winners has been taken into account.

Proposition 2 Algorithm 1 returns a set W of lex-cel necessary winners for the power
relation ≿.

The performance of this approach depends heavily on the manner in which the two
coalitions C1 and C2 are selected at each iteration. We therefore study several different
manners of selecting coalitions, which we will refer to as variants.4

4 The pseudo-code for each variant is available in the Appendix.
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The Complete randomness variant (C-RAND) is a first naı̈ve approach consists
in simply selecting two uncompared coalitions randomly within P(X). However, it
quickly appears that this approach is far from efficient, as we aim at reconstituting the
preorder over the top coalitions, and the complete randomness variant can compare
coalitions regardless of their likelihood to be among the most preferred. As the top
coalition in ≿∗

P(X) is necessarily a maximal element of ≿P(X), restricting the pool of

candidate coalitions to M≿P(X) significantly improves the relevance of the queries.
The Restricted randomness variant (R-RAND) consists in selecting at random two

uncompared coalitions within M≿C
P(X) .

We wish to reduce the impact of randomness on the selection process, and there-
fore introduce new strategies, the first of which shares the lexicographic approach of
lex-cel. The Restricted maximal length variant (R-MAX LEN) makes the hypoth-
esis that longer maximal chains are more likely to be informative. It uses a vector
Γ = (γ1, . . . , γs), where s is the number of maximal chains in ≿P(X) and γi is the
i-th longest maximal chain in ≿P(X). We define MΓ = (m1, . . . ,ms) an s-sized vec-
tor such that mi is one of the maximal elements of γi.

Remark 3. Note that randomness may still play a part in this variant. Indeed, let ≿P(X)

be the preorder presented in Example 1, the associated set of maximal elements is then
such that M≿P(X) = {1234, 134, 34, 123}. As all maximal chains are of identical
length, the tie-breaker is the order in which they have been given as input. Therefore, in
this particular instance, the first comparison will be between 1234 and 134.

Finally, we try to focus on a maximization of a query’s informativity by exploiting prop-
erties specific to lex-cel; this gives rise to the Restricted minimal nonempty intersection
(R-MIN INT) variant. We can define a category of queries we call informative with
regards to a set of lex-cel possible winners. Given a preorder ≿P(X) over which we
can determine a set of lex-cel possible winners W , a query over a pair of coalitions
C1, C2 ∈ P(X) is said to be informative if, provided C1 and C2 are the top coalitions
among C, the recovered preference over them allows for the reduction of the set W .
A query is maximally informative when the preference it uncovers can reduce W to a
single element: the lex-cel necessary winner has then been uncovered.

For an element x to be removed from W in favour of another element y ∈ W ,
simply by comparing C1 and C2 as top coalitions among C, implies that ∃C ∈ {C1, C2}
such that x /∈ C yet y ∈ C. This means the intersection of C1 and C2 must be smaller
than the largest of the two coalitions. The result of the query must then lead to the
placement of the coalition containing y before any containing x. We therefore seek
to minimize the intersection of pairs of candidate coalitions, in order to minimize the
number of elements that may remain in W after submission of the query. Note that if
this intersection set is empty, then the query is considered non-informative, for when
none of the candidates are present in the k-th equivalence class, the k-th component of
both their occurrence vectors will be 0, and will not allow the lexicographic relation to
discriminate between the candidates.
Example 3. Let ≿P(X) be the preorder presented in Example 1. The set M≿P(X) is
therefore such that M≿P(X) = {1234, 134, 34, 123}. We have that |1234 ∩ 134| =
|1234∩ 123| = 3, |1234∩ 34| = |134∩ 34| = |134∩ 123| = 2 and |123∩ 34| = 1. The
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minimal non-empty intersection is of size 1, and the relative comparison will therefore
be between 123 and 34.

The existence of informative queries highlighted in the restricted lexicographic vari-
ant leads us to observe that eliciting by reconstituting the total preorder may not always
be an efficient approach. Indeed, there exist coalitions which will bring no information
to lex-cel, and any query about their placement in the total preorder is therefore su-
perfluous. A second approach to elicitation suggests to focus directly on the elements
themselves, and only submit to the user targeted queries over key informative coalitions
which will help determining the preference over elements without needing to discover
the entire preorder.

5 Elicitation through prospection: PROSP

A second element-based approach aims at directly discerning the preference over the
individual elements themselves. To do so, it considers the likelihood of certain elements
within the population to be a lex-cel necessary winner, then determines key coalitions,
the preference between which will be decisive during the application of lex-cel to assess
the dominance of an element over another.5

Given a total preorder ≿∗
P(X) , and x, y ∈ X , we denote by Cx,−y the most highly

ranked coalition in ≿∗
P(X) verifying that x ∈ Cx,−y and y /∈ Cx,−y .

Proposition 3 Given a total preorder ≿∗
P(X) , let x, y ∈ X be present in a best coali-

tion C∗ ∈ ≿∗
P(X). It holds that x R

≿∗
P(X)

le y if Cx,−y ≻∗
P(X) Cy,−x.

Remark 4. Given a total preorder ≿∗
P(X), let x, y ∈ X be present in a best coalition

C∗ ∈ ≿∗
P(X). If Cx,−y ∼∗

P(X) Cy,−x, then neither Cx,−y nor Cy,−x will be decisive in
the comparison of x and y. As such, Cx,−y and Cy,−x may be removed from consider-
ation, and their values updated.

For any x ∈ X , let Px = {C ∈ P(X) : x ∈ C}. For any pair x, y ∈ X , x ̸= y, let
Px,y = {Px ∪ Py} \ {Px ∩ Py} be the set of coalitions in P(X) containing either x
or y, but not both elements. M≿

x,y denotes the set of maximal elements in ≿Px,y

P(X), that

can then be partitioned into two disjoint subsets M≿
x,−y = {C ∈ M≿

x,y : x ∈ C} and

M≿
y,−x = {C ∈ M≿

x,y : y ∈ C}.
At each step, the procedure determines the set W of lex-cel possible winners in

the current preorder, then selects the two deemed most likely to be more preferred
amongst them, and determines coalitions which would play a key role in establishing
a preference between the two elements. The user is only presented queries relative to
these key coalitions.

From Proposition 1, we know that, in order to be a winner, an element x ∈ X must
be present in a top coalition of the total preference relation. While the exact set of the
top coalitions is unknown, we proceed using M≿

P(X), as we know all top coalitions
must belong to that set.

5 The pseudo-code for PROSP is presented in the Appendix.
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Determining the most likely lex-cel possible winners: the global lex-cel. In order to
minimize the number of queries to the user, we try and determine the possible winners
most likely to perform better. As a lex-cel necessary winner is one of the most present
elements in the top coalitions of the total preorder, and since the higher a coalition is
placed within a maximal chain, the most likely it is to be among the top coalitions, we
study the presence of each lex-cel possible winner in each position. To do so, we present
a generalisation of lex-cel, applicable to any set of maximal chains.

Let A≿P(X) be the set of all maximal chains in ≿P(X). We denote by l the size of
a longest maximal chain in A≿P(X) , and by Ak the k-th ranked equivalence class in a
maximal chain A ∈ A≿P(X) , ∀k ∈ {1, . . . , |A|}. For any maximal chain A ∈ A≿P(X)

and for any element i ∈ X , we denote by iAk = |{C ∈ Ak | i ∈ C}| the number of
occurrences of i in the k-th equivalence class of the maximal chain A. We then denote
by ϑ≿P(X)(i) the l-dimensional vector

ϑ≿P(X)(i) = (
∑

A∈A≿P(X)

iA1 , . . . ,
∑

A∈A≿P(X)

iAl ).

Definition 3. The global lexicographic-excellence (global lex-cel) is the binary rela-
tion R

≿P(X)

gle such that, for any preorder ≿P(X) , and for any i, j ∈ X:

i R
≿P(X)

gle j ⇐⇒ ϑ≿P(X)(i) ≥L ϑ≿P(X)(j)

Example 4. Let ≿P(X) be the preorder presented in Example 1. All maximal chains in
≿P(X) are of length at most l = 5, therefore we determine the l-sized vectors asso-
ciated with every element in the population: ϑ≿P(X)(1) = (4, 1, 5, 3, 3), ϑ≿P(X)(2) =
(2, 4, 2, 3, 3), ϑ≿P(X)(3) = (6, 1, 5, 0, 3), and ϑ≿P(X)(4) = (5, 2, 0, 6, 6), from which
we can determine the following total preorder over X:

3 R
≿P(X)

gle 4 R
≿P(X)

gle 1 R
≿P(X)

gle 2.

Using the global lex-cel, we determine a preliminary total preorder over X , from which
we select the two best elements as the pair driving the current iteration of the procedure.
Querying the user. We submit queries to determine the top coalition C ∈ M≿P(X)

x,y .

Depending on whether C is in M≿P(X)

x,−y or M≿P(X)

y,−x , we are then able to determine the
preference relation between x and y.

Proposition 4 Given a total preorder ≿∗
P(X) . Let ≿P(X) be a preorder such that

≿P(X)⊆ ≿∗
P(X). Let x, y ∈ X be the two best elements in X according to the global

lex-cel. It holds that xR
≿∗

P(X)

le y iff there exists a coalition in M≿P(X)

x,−y preferred to every

coalition in M≿P(X)

y,−x or if M≿P(X)

y,−x = ∅ and M≿P(X)

x,−y ̸= ∅.

We consider that a coalition in M≿P(X)
x,y is more likely to be the most preferred in the

set when its worst position in any maximal chain is still a low position. For this reason,
in stead of the sets M≿P(X)

x,−y and M≿P(X)

y,−x , the procedure uses the vector of coalitions

ordered in ascending worst position in a maximal chain of ≿P(X), denoted by M̂
≿P(X)

x,−y

and M̂
≿P(X)

y,−x respectively.
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We submit to the user a query over the first coalition from each vector. Without
loss of generality, when it is found that a coalition C2 ∈ M̂

≿P(X)

x,−y is dominated by

C1 ∈ M̂
≿P(X)

y,−x , the value of C2 is updated to the next coalition in M̂
≿P(X)

x,−y . In the

event that C1 and C2 are equivalent, they are both replaced in M≿P(X)
x,y by the first

following coalition C ′ in their respective maximal chains such that |{x, y} ∩ C ′| = 1.
If, without loss of generality, there is no such coalition placed after C1 in any maximal
chain, then C1 is simply removed from M≿P(X)

x,y . The sets M̂
≿P(X)

x,−y and M̂
≿P(X)

y,−x are
then redetermined accordingly. This procedure is repeated until a coalition from one of
the sets has been established to be preferred to all others in the complementary set, in
which case, from Proposition 4, we can establish the preference relation between x and
y. If M≿P(X)

x,y becomes empty without having uncovered any preference between any

coalition from M̂
≿P(X)

x,−y and any coalition from M̂
≿P(X)

y,−x , we gather that x and y must
be equivalent. In this case, we flag x as being equivalent to y, and artificially remove y
from the pool of possible winners. If x turns out to be the necessary winner, its flag will
serve as a reminder that it is not the only necessary winner: PROSP will return the set
of elements having been found to be equivalent to x.
Example 5. Let X = {1, 2, 3}. Let the total preorder ≿∗

P(X) be such that 1 ∼ 2 ≻
12 ≻ 13 ≻ 23 ≻ 123 ≻ 3, and let the available preorder ≿P(X)⊆ ≿∗

P(X) contain two
maximal chains 1 ≻ 12 ≻ 13 ≻ 23 ≻ 123 ≻ 3 and 2 ≻ 12 ≻ 13 ≻ 23 ≻ 123 ≻ 3,
from which we obtain the set of lex-cel possible winners W = {1, 2}. It is unnec-
essary to apply the global lex-cel to W , as we can only compare the elements 1 and
2. We easily determine that M≿P(X)

1,2 = {{1}, {2}}. The first query is between {1}
and {2}, to which the answer will be that {1} ∼ {2}. Both elements are removed
from consideration for the remainder of the comparison between elements 1 and 2. The
set M≿P(X)

1,2 is then computed again using the preorder ≿P(X) from which all prefer-
ences concerning either {1} or {2} have been removed. The coalition {1} is replaced
by {1, 3}; the coalition {2} is replaced by {1, 3} as well. Consequently, the updated
set is now M≿P(X)

1,2 = {{1, 3}} which, in turn, means that M≿P(X)

1,−2 = {{1, 3}} and

M≿P(X)

2,−1 = ∅. By construction of the algorithm, this means that 1 is preferred to 2,
i.e. 1 Rle 2, from which we update the set L containing elements found, in previous
steps, to be dominated by another possible winner. In this case, we have L = {2}. Since
W \L = {1}, there is only one possible winner left, which, by definition, means that it
is the necessary winner. The procedure then returns 1 as the necessary winner, which is
indeed the winner for the preorder ≿P(X).

6 Experimental results

We compare the performance of both elicitation methods based on the number of queries
submitted over preorders defined under different constraints. All presented results are
from experiments over 100 to 1000 different preorders (referred to as ”runs”). Unless
specified otherwise, all preorders derived from the total preorder, which serve as input
information for our problem, are generated uniformly at random. By this, we mean a to-
tal order over all coalitions is generated uniformly at random. This order is then turned
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Fig. 2: Number of runs (out of 1000) for which each method submits at most x queries over a
population of size 4

into a preorder by coursing through all coalitions from best to worst, and making each
equivalent to it next preferred with a probability 0.2. Then, coursing through coalitions
of the preorder from most to least preferred, each is added to one of m maximal chains,
with m the number of maximal chains also determined uniformly at random within the
set {1, . . . , 2n

2 }, with n the size of the population. Once a coalition has been added to
an i-th maximal chain, ∀i ∈ {1, . . . ,m − 1}, it may be added to an additional chain
with probability 0.2. 6

In any scenario, we find that the C-RAND variant of RECO is always inefficient, as
it most often submits far too many queries to the user, most of which can be deemed
uninformative. Furthermore, we find that its restricted version, R-RAND, systematically
outperforms it. Indeed, Figure 2 shows that, even when the population contains only 4
elements, C-RAND is significantly outperformed by every other approach over all 1000
runs, as it always requires more queries than any other method: at the threshold of 20
questions, all other variants have solved NWSR on nearly all runs, yet C-RAND has
only solved it for half of the runs. Note that, for a population of size n = 4, there are
2n = 16 coalitions to rank in total, and a worst-case scenario in terms of submitted
queries would compare the worst coalition to all others (2n − 1 = 15 queries), then the
second worst to the rest (2n − 2 = 14 queries), and so on, leading to a maximum of∑

i∈{0,2n−1}(2
n − 1)− i = 120 queries.

The performance of C-RAND only worsens as the size of the population grows. As
such, and for legibility purposes, we will not include the results of this particular variant
in the following sections.

6 Additional results under particular parameters are available in the Appendix.
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Uniformly at random. In the case where the underlying total preorder is generated
uniformly at random, we observe that the performance of the R-MIN INT and R-
MAX LEN variants of RECO never produce the least amount of queries. However, the
performance of the remaining two approaches varies with the size of the population.

Indeed, we observe in Figure 3 that, for a population of size smaller or equal to
6, PROSP yields a smaller number of queries than the R-RAND variant of RECO.
However, for a population of size greater than or equal to 7, the R-RAND variant out-
performs PROSP more and more significantly.

Fig. 3: Number of queries submitted by each method based on the size of the population.

Additive preferences Preferences expressed by a ranking ≿∗ are called additive if
there exists a utility function f : P(X) → N such that ∀C ⊆ X, f(C) =

∑
x∈C f(x)

verifying that, ∀C,D ⊆ X,C ≿∗ D ⇔ f(C) ≥ f(D). Under the hypothesis of an
underlying total preorder expressing additive preferences, Figure 4, testing over 100
runs for each size of X , shows that PROSP yields systematically better results than any
other variant of RECO.
Best-case scenario: a unique lex-cel possible winner. Under any restriction applied
to the studied preorder, we find that PROSP maintains an enticing quality. Indeed, there
exists what may be referred to as a “best-case scenario”, in which the preorder given
as input is such that one could directly determine the lex-cel necessary winner without
soliciting the user. This scenario arises when there is only one true lex-cel possible
winner (an example is provided in the Appendix7).

By construction of RECO, it is essential to determine at least the first coalition of
the total preorder to assess any preference over elements of X . This means that, with
the exception of the very specific scenario in which all maximal chains in the initial
preorder start with the same singleton, we know that at least one query will always be
submitted to the user using any variant of RECO. On the other hand, because prospect-
ing leads us to directly confront key coalitions, PROSP does not need any additional

7 The Appendix will be published as a technical report and is available at this url.

https://arianeravier.github.io/docs/SUM_24.pdf
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Fig. 4: Number of queries submitted by each method over additive total preorders

input from the user in order to determine the lex-cel necessary winner when there is
only one lex-cel possible winner from the start. In simpler terms, PROSP never sub-
mits a query when there is no need for additional information from the user’s expressed
partial preferences, whereas the RECO will (nearly) always submit at least one query.
Discussion of the results. Under no restriction over the type of underlying total pre-
order, the R-RAND variant appears more the more efficient out of all proposed methods.
However, PROSP remains enticing, as it submits fewer queries when the underlying
preorder is additive, and maintains the notable advantage of not submitting any query
when none is necessary.

Conclusions and perspectives

We introduced two elicitation approaches to determine the lex-cel necessary winners
when provided with a preorder over the set of a population’s coalitions. One approach
aims at reconstituting enough of the underlying total preorder to be able to determine
with certainty which elements are the true winners; the second determines key coalitions
in the comparison of elements deemed most likely to be winners by the global lex-
cel. Our experiments suggest that the performance of the different elicitation methods
varies depending on the type of power relation being examined, as the random variant
of RECO seems to fare better when there is no hypothesis on the total preorder’s type,
but PROSP yields better results on additive underlying total preorders. Furthermore,
PROSP has the attractive quality to not submit queries when none is necessary.

Additionally, as both approaches aim to determine the lex-cel necessary winners
with certainty, they require a great number of queries as the size of the population in-
creases, which may still prove strenuous for the user. We believe it would also be perti-
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nent to study approximated resolution methods for this problem, which could guarantee
that the number of submitted queries would remain manageable to the user.

Finally, both approaches operate under the hypothesis that the underlying total pre-
order is available, and any query will provide a fixed preference relation. This is a strong
assumption, which could be made more flexible, and we believe it could be interesting
to study scenarios in which not all queries may lead to a definite preference relation.
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