
Single-cell multi-omics data integration
powered by PCA-like autoencoders
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 4. PCAAE model training

The loss function of the model comprises three terms. The mean squared
error (MSE)  facilitates the extraction and compression of data. The MSE
between the covariance matrix of the latent space and the identity matrix
ensures independent dimensions in the latent space. Finally, L2
regularization is applied to enhance the model's learning process.
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 5. PCAAE training for integration

When integrating datasets from the same omics, the latent
space of one dataset is used as a reference to train
another. This adds a metric to the model's total loss .
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  Introduction   1. Matrix transposition   2. Cells agregation to coarse cells
Single-cell (sc) technologies combined with high-
throughput sequencing are revolutionizing various omics
fields. Each type of omics provides complementary cellular
information, but integrating these data types remains
only partially solved. While integrating data from the same
omics or multiple types derived from the same cells is
routine, the current challenge is integrating data from
different omics that do not originate from the same cell
population. 
here I present the pipeline based on PCAAE [2]
autoencoder to learn gene representation and integrate
scRNA-seq data for multi-omics dataset integration.
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To focus on gene analysis, we transpose the expression matrix so
that the observations are now genes and the features are
cells.

To limit the number of features encoded by the model, we
perform dimensionality reduction by creating linear
combinations of cells.
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  3. PCAAE auto-encoder architecture
The autoencoder
model consists of
N encoders, one
for each
dimension in the
latent space, and a
single decoder.
Each encoder-
decoder pair is
trained
sequentially. 
Kolmogorov-Arnold
Networks (KANs) [3]
are use for encoder
and decoder as
promising alter-
natives of Multi-
Layer Perceptrons
(MLPs)
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  7. Genes selection

X

After training the
model, gene selection
is performed on the
Tchebychev distance
to the centroid in the
latente space. Genes
with high score are
considered to contain
the most significant
information.

  6 . Integration quality 

Value selected

The quality of
integration depends
on the percentage
of shared genes
used during training.
A threshold of 12%
was used to
demonstrate the
quality of the results
with the minimal
number of genes.

  8 . Projection of integrated Genes 

First results demonstrate an
effective integration of two
scRNAseq datasets, with only 12%
of genes used as a link.

We observe that within the green
cluster corresponding to CD14+
monocytes, genes from both
datasets are evenly mixed

It indicates that genes
represented are clustered
according to their function,
rather than their dataset of origin.
Encouraged by this first result

 
We are now extending our
method to integrate RNA and
other omics data (e.g. ATAC). 

More informations
about AI4scMed (project

no. 22-PESN-0002)

UMAP projection of a
gene-based latent
space. Each dot is a
gene colored by the
cell type for which it
is most enriched.
Data: PBMC10k and
PBMC60K from 10x
genomics.
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