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Introduction 1. Matrix transposition 2. Cells agregation to coarse cells

Single-cell (sc) technologies combined with high- Cones Genes
throughput sequencing are revolutionizing various omics Cells
fields. Each type of omics provides complementary cellular
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information, but integrating these data types remains P Z
only partially solved. While integrating data from the same : ” v o %
omics or multiple types derived from the same cells is O d O S
routine, the current challenge is integrating data from

different omics that do not originate from the same cell

. o0 O———ee) O————————() —O——)
populatlon. ExDression matrix o0 Expression matrix Linear Reduced matrix
P Transposed matrix combinaison

here | present the pipeline based on PCAAE [2] | | |
autoencoder to learn gene representation and integrate = 1° focus on gene analysis, we transpose the expression matrix so = To limit the number of features encoded by the model, we

that the observations are now genes and the features are | perform dimensionality reduction by creating linear
cells. combinations of cells.

scRNA-seq data for multi-omics dataset integration.

3. PCAAE auto-encoder architecture

reduced matrix KAN* layers latent space KAN* layers infered matrix The autoencoder

4. PCAAE model training
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= are use for encoder Total training loss
A and decoder as The loss function of the model comprises three terms. The mean squared
Nth promising  alter- error (MSE) facilitates the extraction and compression of data. The MSE
i natives of Multi- between the covariance matrix of the latent space and the identity matrix
Y 0 o v y Layer Perceptrons ensures independent dimensions in the latent space. Finally, L2
Final latent space (MLPs) regularization is applied to enhance the model's learning process.

5. PCAAE training for integration 6 . Integration quality
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8 . Projection of integrated Genes
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, 3 other omics data (e.g. ATAQ).
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