
HAL Id: hal-04749985
https://hal.science/hal-04749985v1

Preprint submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new numerical path to retrieve isolated branches on
large scale nolinear mechanical systems

Samuel Quaegebeur, Thibaut Vadcard, Fabrice Thouverez

To cite this version:
Samuel Quaegebeur, Thibaut Vadcard, Fabrice Thouverez. A new numerical path to retrieve isolated
branches on large scale nolinear mechanical systems. 2024. �hal-04749985�

https://hal.science/hal-04749985v1
https://hal.archives-ouvertes.fr


A new numerical path to retrieve isolated branches on large scale nolinear
mechanical systems

Samuel Quaegebeur1, Thibaut Vadcard1, and Fabrice Thouverez1

Abstract
In the domain of vibrations, the response of a mechanical system is often depicted as the amplitude versus the excitation
frequency, namely the frequency response. For a given value of the excitation frequency, the uniqueness of the solution to
the structural dynamics problem is not ensured in a nonlinear framework. Given this property, continuation techniques
should be employed as a way of computing the entire response of a structure, also called the Nonlinear Frequency
Response Curve (NFRC). It was shown in the literature that some branches of solutions–named isolas–can even be
isolated from the primary response curve of the system. The systematic computation of theses branches of solutions
is challenging and remains an active field of research. In this work, a novel approach is proposed to seek solutions
in another search space to obtain the force amplitude response (FAR) of the system. Providing relevant information
when the excitation frequency is known, the solutions can also be used as initialization points to evaluate traditional
NFRC. The methodology will be shown to be highly versatile and relevant to compute nonlinear solutions. It will be
employed for different mechanical systems and nonlinearities with an increasing level of complexity. The strategy allows
to detect numerous types of isolas (primary, subharmonic, superharmonic, and ultra-subharmonic resonances), even for
an industrial fan blade.
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1 Introduction

Mechanical systems are seldom linear: the material of the structures, its large displacements, its interaction with
others systems (fluid or solid), are sources of nonlinearities which give rise to complex dynamics behaviours. In
a world where optimization is becoming of the utmost importance, especially for environmental considerations,
designing systems while including its inherent nonlinearities is necessary.

Nonlinear systems feature many different behaviours and types of solutions [1]. In this work, the emphasis is
on periodic solutions that are detached from the primary frequency response curve, termed isolas [2]. These types
of solutions have been the subject of many studies in the past decade. They have been observed in experiments
through modal interaction [3], with continuation based control [4] but also through phase-locked-loop techniques [5,
6]. These papers show that isolas exist in real systems, hence it has become important to predict their occurrence
numerically.

Different methodologies, including analytical tools, have been proposed to compute these isolas. The multiple
scales approach has been used in several studies to demonstrate their existence: for impact systems [7] and for two
coupled Duffing oscillators [8]. Using singular theory and averaging method, Habib et al. [9] unveiled relationships
between nonlinear damping and isolated branches. The theory of spectral submanifolds was also successfully
employed to retrieve these detached solutions [10].

Isolas have been widely uncovered through numerical simulations. Many of them use the Harmonic Balance
Method [11] to recast the equations of motion into an algebraic set of equations. With this new system, different
methods have been proposed to retrieve isolas. For low dimensional systems and polynomial nonlinearities, the
Groebner basis was employed to evaluate all the solutions of the problem [12]. Heinze et al. [13] proposed a global
terrain approach. This strategy was applied to large scale systems with friction nonlinearities.

Recently, researchers brought to light a relationship between nonlinear normal modes and isolas [14]. Cenedese
and Haller [15] presented a Melnikov function analysis to detect multiple solutions in the vicinity of a nonlinear
normal mode. This strategy was the successfully employed for the research of isolated solutions for systems featuring
dry friction on a parametric oscillator [16], impact nonlinearities [17] and blade-tip/casing contacts [18].

From the HBM system of equations, the nonlinear frequency response curve (NFRC) of a mechanical system can
be evaluated with continuation algorithm [19]. Moreover, the bifurcation theory [20] has been employed together
with the HBM to retrieve bifurcated branches and isolas [21, 22]. It has also been used with an homotopy procedure
to evaluate different solutions including isolas [13, 23]. Different papers have used the bifurcation theory to locate
and track bifurcations points [24, 25], which may connect primary frequency response curves with isolated solutions
in an augmented space. An extension of such algorithms has been provided for period-doubling bifurcations [26].
Locating the extremums points and tracking them in different dimensions was shown to detect isolas [27, 28]. Using
the HBM and bifurcation tracking, [29] proposes a framework to control the location of isolas.

This paper proposes a new methodology based on the HBM and bifurcation theory to retrieve isolas. Its originality
lies in the search space of the solutions. They are evaluated along the excitation amplitude as a continuation
parameter instead of the excitation frequency. These new curves termed Force Amplitude Responses (FAR) may find
analogy in the so-called S-curve obtained in the continuation based control experiment [4]. However, in this paper, a
numerical methodology is proposed to retrieve these branches of solutions for any kind of resonances. This new
vision of the response of the system provide relevant information for the characterization of nonlinear systems. First,
in many situations, the excitation frequency is known, set by external conditions, however its amplitude is subjected
to changes and can only be estimated. The FAR curve then takes all its meaning and the different solutions of the
problem can be immediately obtained. Conversely, the FAR results provide initialization points for standard NFRC
(when the excitation amplitude is known but not its frequency).

The numerical tools used in this paper are described in Section 2. The derivations of the new methodology are
then provided in Section 3. This approach is used for academic test cases with different nonlinearities in Section 4.
Finally, an industrial test case, featuring blade-tip/casing contacts, is considered in Section 5.
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2 Numerical tools to evaluate the frequency response

This section aims to present the required numerical techniques to compute NFRF as well as to provide an illustrative
example.

2.1 Numerical implementation

As periodic solutions are sought, the HBM is employed and is explained next. The other sections are devoted to
explain how the HBM can be used with the bifurcation theory to obtain bifurcated branches.

2.1.1 Harmonic Balance Method

The motion equations of a nonlinear mechanical system are

Mẍ (t) +Cẋ (t) +Kx (t) + fnl (x, ẋ)− fext (t) = 0. (1)

The matrices M, C, and K are respectively the mass, damping and stiffness matrices. Vectors x, fnl, and fext
denote the displacement of the system, the nonlinear and external forces. The excitation is 2π

ω periodic, ω being the
excitation frequency. In this work, the emphasis is on the research of periodic solutions, thus the displacement is
chosen to be sought as a periodic response in the form of a Fourier series of order Nh. Moreover, to account for
possible subharmonic and ultra-subharmonic resonances, the response uses the positive integer ν,

xν (t) =
a0
2

+

Nh∑
k=1

(
aν,k cos

(
k

ν
ωt

)
+ bν,k sin

(
k

ν
ωt

))
. (2)

The coefficients a0, (aν,k, bν,k)k∈J1,NhK denote the real Fourier coefficients. Substituting Equation Eq. (2) in Eq. (1),

and projecting on the trigonometric basis with the scalar product

⟨f, g⟩ = ω

π

∫ 2π
ω

0

f (t) g (t) dt (3)

gives 
Z0a0 +

(
cfnl,0

− cfext,0
)
= 0

Zν,k

[
aν,k
bν,k

]
+

[(
cfnl,c,ν,k

− cfext,c,ν,k
)(

cfnl,s,ν,k
− cfext,s,ν,k

)] = [0
0

]
,∀k ∈ J1, NhK.

(4a)

(4b)

The matrix Zν,k is the dynamic matrix and is equal to{
Z0 = K

Zν,k = ω2 (∇ν,k ⊗M) + ω (∇ν,k ⊗C) + (I2 ⊗K) ,

(5a)

(5b)

where I2 is the identity matrix of size 2, and

∇ν,k =

[
0 k

ν

−k
ν 0

]
. (6)

In the following, the term ∇f denotes the block diagonal matrix constituted of all (∇ν,k)k∈J0,NhK, with ∇ν,0 = 0. The

terms cfext,1 , cfext,c,ν,k , and cfext,s,ν,k correspond to the projection of the external forces on the functions 1, cos
(
k
νωt

)
,

and sin
(
k
νωt

)
, respectively. A similar operation is applied to the nonlinear forces, denoted by cfnl . However these

forces do not have an analytic formulation in the frequency domain and are thus evaluated through an Alternating
Frequency Time procedure [30]: the displacement is evaluated for a discretized time period through Equation Eq. (2)

Samuel Quaegebeur et al. 3

mailto:samuel.quaegebeur@ec-lyon.fr


A new numerical path to retrieve isolated branches on large scale nolinear mechanical systems

(with a matrix Γ) to compute the nonlinear forces in the time domain. Those are then transformed to the frequency
domain with the matrix Γ−1. Gathering the different terms in Equation Eq. (4) gives the residual

r (c) = Zc+ cfnl
− cfext = 0, (7)

where Z denotes the dynamic stiffness matrix of all harmonics k, and c gathers the different Fourier coefficients[
a⊺0 , · · · ,a

⊺
ν,k,b

⊺
ν,k

]⊺
. The vectors cfnl

and cfext correspond to the projection of the nonlinear and external forces

on the full basis. To solve the nonlinear system of equations Eq. (7), a Newton-Raphson solver is used. To
ensure fast computation, the jacobian of the system is analytically computed. The jacobian matrix of the residual
function Eq. (7), with respect to the unknowns c, is noted Jc. In the following, the derivative of the residual with
respect to ω is noted Jω.

To account for multiple solutions of a nonlinear response, an arc-length procedure [19] is employed. The scalar ω
becomes an additional unknown of the problem, thus a supplementary equation should be included in the set of
equations to have a square system

(c− cp)
⊺
(c− cp) + (ω − ωp)

2 − ds2 = 0, (8)

where the couple (ωp, cp) is a previously obtained solution of the system and ds is the arc-length step. The solution
curve is thus parameterized by the curvilinear abscissa s.

2.1.2 Determination of the bifurcated points

Nonlinear systems have the particularity of admitting several solutions for the same excitation frequency. Some
of these solutions are connected to the primary branch of solution through bifurcation points. Different strategies
exist to evaluate such points: through the Hill method [25], or also by test functions [24]. The former approach is
employed here as it also enables to retrieve the stability of the solution. Hill’s method requires to solve the following
quadratic eigenvalue problem(

Jc +∆1λ+∆2λ
2
)
ϕ = 0, (9)

where Λ and ϕ are the eigenvalues and eigenvectors of the problem. Furthermore, the others terms are defined as∆1 = 2ωs (∇f ⊗M) + I2Nh+1 ⊗C+ Γ−1 ∂fnl
∂ẋ

Γ

∆2 = I2Nh+1 ⊗M.

(10a)

(10b)

Notice that the term Γ−1 ∂fnl

∂ẋ Γ is oftentimes forgotten in the literature [25] but is highlighted by some authors [31, 32].
The eigenvalues (which correspond to the Floquet exponents) are used to determine the nature of the bifurcations
point that is encountered. Bifurcation points are obtained when λ crosses the imaginary axis. If λ = 0, a limit
or branching point is detected. If λ = ±iω2 (where i is the complex number), it is a period doubling bifurcation
point. Otherwise, it corresponds to a Neimark-Sacker bifurcation point. This latter case describes branches of
quasi-periodic solution which are beyond the scope of this paper. Periodic bifurcated branches will be the focus of
this paper.

When a branching point is detected, one must find its exact location before computing the tangent of the different
branches of solutions emerging from this point [20, 33]. These tangents are computed so that each new branch
can be followed through a path following procedure. The computation of the exact location of the branching point
requires to solve the following system

r (c, ω) + γh = 0,

J⊺
ch = 0,

J⊺
ωh = 0,

h⊺h− 1 = 0

(11a)

(11b)

(11c)

(11d)
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where (c, ω,h, γ) are the unknowns of the problems. This problem is solved using a Newton-Raphson procedure.
To ensure fast computation, the jacobian of this problem should be provided, and hence the analytical evaluation
of the hessian tensor of the nonlinear forces is required. The solution of this problem is noted (cs, ωs,hs, γs). The
system of equations Eq. (11) is specific for locating branching points. If one is interested in other bifurcations points,
different system of equations must be solved [25, 26].

2.1.3 Determination of the tangent of the bifurcation points

The tangents of the branches of solutions are then derived, noted by t =
[(

∂c
∂s |cs

)⊺
, ∂ω
∂s |ωs

]⊺
. The tangents are a

linear combination of the vectors v1 and v2 which constitute a basis of the kernel of [Jc,Jω],

t = α1v1 + α2v2. (12)

To evaluate the tangent, one must determine the couple (α1, α2). To this end, the residual (see Equation Eq. (7)) is
differentiated twice with respect to the curvilinear abscissa s and evaluated at the bifurcation point,

∂2

∂s2
(r (c, ω))|(cs,ωs)

= 0,

∂

∂s

(
∂r

∂c

∂c

∂s
+

∂r

∂ω

∂ω

∂s

)
|(cs,ωs)

= 0,(
∂r

∂c

∂2c

∂s2
+

∂r

∂ω

∂2ω

∂s2

)
|(cs,ωs)

+

(
∂2r

∂c2
∂c

∂s

∂c

∂s
+ 2

∂2r

∂ω∂c

∂c

∂s

∂ω

∂s
+

∂2r

∂2ω

(
∂ω

∂s

)2
)

|(cs,ωs)

= 0.

(13)

The first term is cumbersome to compute since the derivative of the tangent with respect to the curvilinear abscissa
is unknown. To remove this term, the equation is multiplied by the basis of the kernel of [J⊺

c ,Jω]
⊺
. The dimension

of such space is equal to 1 and the basis is noted g. This operation gives

g⊺

(
∂2r

∂c2
∂c

∂s

∂c

∂s
+ 2

∂2r

∂ω∂c

∂c

∂s

∂ω

∂s
+

∂2r

∂2ω

(
∂ω

∂s

)2
)

|(cs,ωs)

= 0. (14)

This equation is written in a more compact form

g⊺
(
H|(cs,ωs)

(t, t)
)
= 0, (15)

where H|(cs,ωs)
(t, t) is the hessian of the residual at the bifurcation point multiplied twice by the tangent vector.

Substituting Eq. (12) in Equation Eq. (15) gives the following quadratic form

b11α
2
1 + 2b12α1α2 + b22α

2
2 = 0, (16)

where bij = g⊺
(
H|(cs,ωs)

(ti, tj)
)
. In matrix form, this is written

α⊺Bα = 0, (17)

where α and B contain the values αi and bij respectively. The matrix B, being symmetric, may be written as
PDP⊺, where P is an orthogonal matrix (with components pij) and D is a diagonal matrix (with components di).
Defining β = P⊺α, Equation Eq. (17) is equivalent to

β2
1d1 + β2

2d2 = 0. (18)

This equation is much simpler to solve than Eq. (16) but still contains two unknowns. To obtain a square system,
the norm of the tangent vector is imposed to be equal to ds,

∥t∥ = ds
∥(p11β1 + p12β2) t1 + (p21β1 + p22β2) t2∥ = ds

(19)

Solving Equations Eq. (18) and Eq. (19) allows determining β, hence α, and finally the tangents t. The bifurcated
branch can then be computed by solving Equation Eq. (7) and Eq. (8) with an initialization point chosen along the
tangent.
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2.2 Illustrative numerical example

In the rest of this section, a simple test case is considered to illustrate the numerical tools explained above. This
same example will be used with the new methodology in Section 3.2.

2.2.1 Description of the test case

A cyclic symmetric system constituted of Duffing oscillators is studied. It is depicted in Figure 1. A similar test case
was proposed in [12]. The parameters are provided in Table 1. A cubic nonlinearity, fnl = knlx (t)

3
is applied to

each degree of freedom (DOF) of the system. An uniform excitation is applied to the mechanical system,

fext = [1, 1, 1, 1]
⊺
. (20)

The HBM is employed with Nh = 15 harmonics and the period is discretized through 200 instants for the AFT
procedure.

m m m m
kc kc kc

kc

k
c

knl

k
c

knl

k
c

knl

k
c

knl

Figure 1. Cyclic symmetric system.

Parameters m k c kc knl

Values 1 1 0.1 1 1

Table 1. Structural parameters of the cyclic symmetric example.

2.3 Numerical results

Examples of NFRC functions of such a system is provided in Figure 2 for two excitation levels, i.e. 1N and 2N. For
both cases, superharmonic responses are observed at low frequencies (below 1 rad·s−1). For the 1N excitation level
(see Figure 2a), the 1 : 1 resonance peak is located at 3 rad·s−1 and for this level of forcing, no bifurcations points
are detected.
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(a) 1N excitation level.
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(b) 2N excitation level.

Figure 2. NFRC for different excitation levels. Primary curve ( ), bifurcated branches ( ), and branching points ( ). The
dashed blue line ( ) corresponds to the search space ω = 2.5 rad·s−1 of the future methodology.

In Figure 2b, the level of forcing is increased up to 2N. Bifurcations points are detected and the associated
branches of solutions followed. Around 1 rad·s−1, the bifurcation corresponds to a 2 : 1 superharmonic response
whereas the curve at higher excitation frequencies correspond to a 1 : 1 resonance.

The tools employed, however, do not permit to retrieve eventual isolated branches. The key idea of this paper
is to search solution at a fixed frequency for all forcing/displacement amplitudes, as depicted through the blue
lines ( ) in Figures 2a and 2b, located at ω = 2.5 rad·s−1. The methodology used to compute the curve that links
all solutions for variable forcing amplitudes is presented in Section 3.

3 New formulation: force amplitude response

In this section, the evaluation of FAR is proposed. As it will be explained below, such curve allows providing new
initialization points of the strategy proposed in Section 2.1.1 to compute isolated frequency responses.

3.1 Description of the methodology

The problem defined in Equation Eq. (1) is considered with the following modifications. First, the excitation forces
are sought as

fext (t) = fafext,s (t) , (21)

where fext,s is the shape of the external forces and the scalar fa is the excitation amplitude, here unknown. Second,
the harmonics c, defined in Equation Eq. (7) are split into an imposed part (subscripted i), and an unknown part
(subscripted r). Here, the harmonic aν,k of an arbitrary DOF is imposed. Equation Eq. (7) is thus split into[

Zii Zir

Zri Zrr

] [
aν,k
cr

]
+

[
cfnl,i

cfnl,r

]
=

[
cfext,i
cfext,r

]
fa (22)

The unknowns are gathered and the system is thus re-arranged into[
cfext,i Zir

cfext,r Zrr

] [
fa
cr

]
+

[
cfnl,i

cfnl,r

]
=

[
Zii

Zri

]
aν,k (23)

For the first iteration of the methodology, Equation Eq. (23) is solved with aν,k set at a value x0. Then a continuation
procedure is employed with the additional arc length equation to account for possible limit points and multiple
solutions,

(fa − fa,p)
2
+ (cr − cr,p)

⊺
(cr − cr,p) + (aν,k − aν,k,p)

2 − ds2 = 0, (24)
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where (fa,p, cr,p) , aν,k,p is the previous solution of the system (iteration p). Solving this set of equations enables
to obtain a curve of solutions at a fixed excitation frequency ω. The numerical tools presented in Sections 2.1.2
and 2.1.3, i.e. determination of the bifurcated points and their associated tangents, are also employed with this
strategy, with the slight change of switching the unknown ω with fa.

3.2 Application of the proposed strategy

The methodology is now applied to the mechanical system illustrated in Figure 1 for a frequency set at ω = 2.5 rad·s−1.
The shape of the excitation is equal to Equation Eq. (20). The evolution of the force level with respect of the first
DOF amplitude is illustrated in Figure 3a. The red curve corresponds to the main resonance response whereas
green curves are the bifurcated solutions. For better readability, only the bifurcated branches arising from the main
response are presented in Figure 3a. Computing bifurcated branches of the already bifurcated branches leads to the
discovery of Figure 3b
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(a) Bifurcated branches from the primary curve.
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(b) All bifurcated branches

Figure 3. FAR with ω = 2.5 rad·s−1, primary curve ( ), bifurcated branches ( ), additional bifurcated branches ( ),
branching points ( ). fa = 1N ( ), solutions at fa = 1N ( ).

The result of Figure 3a gives initialization points that can be used to obtain the full NFRC of the mechanical
system. First, one must chose an excitation amplitude and find the intersecting solutions points. Such procedure
is depicted in Figure 3a through the blue line located at 1N and the blue square markers. Then, the NFRC can
then be obtained classically (with the resolution of Equations Eq. (7) and Eq. (8)) with an initialization on the
aforementioned solutions points. The responses of this strategy are depicted in Figure 4. Compared to the traditional
approach, two new isolated curves are obtained.
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Figure 4. NFRC with 1N excitation level, primary curve ( ), isolated branches ( ), fa = 1N ( ), solutions found along
the FAR of Figure 3a ( ).

Figures 5 and 6 provide NFRC for different level of excitation amplitudes, obtained with the proposed strategy.
For the primary solution branch (Figure 5), the initialization points at ω = 2.5 rad·s−1 is also termed S-curve in
continuation theory due to its particular shape [4, 34]. In Figure 6, this isola solution curve no longer has this
specific shape. The two isolas obtained in Figure 4 are represented and exist up to 0.8N.
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Figure 5. Multiple NFRC for various excitations amplitudes, NFRC ( ), primary FAR ( )
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Figure 6. Multiple isolas for various excitations amplitudes, isolas ( ) which turn (at high excitation amplitudes) into
bifurcated branches ( ), bifurcated FAR ( )

As shown in Figures 2b and 6, the isolated curves merge with each other and with the main branch of solution at
higher excitation level. Notice that those bifurcation points could have been tracked [24, 25] to follow their evolution
and possibly also found the isolas by a different method. The approach proposed in this work is able to compute the
isolas without resorting to bifurcation tracking which doubles the size of the problem and requires the computation
of the hessian tensor at each iteration of the computation. Moreover, as shown in the next section, it is able to
retrieve completely isolated solutions (branch of solution which do no merge with the main response or bifurcated
branches for a high forcing amplitude).

4 Robustness of the approach: a plurality of examples

This section aims to present the versatility of the proposed strategy to obtain other kinds of isolas and nonlinearities.
First the cyclic Duffing oscillator is investigated to retrieve subharmonic, and ultra-subharmonic isolated solutions.
Then a more challenging example is studied: an academic test case with an impact law. Such systems exhibit
different resonances curves including period doubling.

4.1 Superharmonic, subharmonic and ultrasubharmonic isolas

So far, the proposed approach was shown to retrieve 1 : 1 resonances. However, different kinds of resonances exist, i.e.
k : 1 superharmonic resonances as shown in Figure 4, 1 : ν subharmonic, and k : ν ultra-subharmonic resonances [1].
To retrieve such solutions, the proposed approach can be employed by choosing the appropriate harmonic aν,k in
Equation Eq. (23).

The mechanical system depicted in Figure 1 is considered with a new damping value c = 0.01. The FAR is
evaluated for ω = 3.5 rad·s−1, k = 1, and ν = 3. The result of this 1 : 3 subharmonic resonance is provided in Figure 7.
From the 1 : 3 subharmonic resonance arises two bifurcated curves which correspond to 2 : 3 ultra-subharmonic
resonances.
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Figure 7. FAR for ω = 3.5 rad·s−1 with k = 1, and ν = 3, primary response curve ( ), bifurcated branches ( ), bifurcation
points ( ), fa = 0.75N ( ), and initialization points for future NFRC ( ).

Next, the NFRC of the system is computed with an excitation amplitude of 0.75N. Beside the primary response,
the continuation procedure was employed with the four initialization points of Figure 7 ( ). The results are provided
in Figure 8. From the four initialization points, both 1 : 3 and 2 : 3 isolas are obtained. Notice that such results
could not have been retrieved through bifurcation tracking [24, 25] because these isolas do not merge with the
primary response frequency. These results clearly show the versatility of the proposed approach.
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Figure 8. NFRC for an excitation of 0.75N. primary resonance ( ) isolated branches of solutions ( ), and initialization
points ( ). The inset box with gray background corresponds to a close-up of the NFRC on a specific frequency range.

The potential of the proposed strategy to retrieve ultra-subharmonic resonances is highlighted in Figure 9 where
different FAR are represented at 7 rad·s−1. This figure was obtained through the algorithm presented in Section 3.1
which was run for all (k, ν) in J1, 7K× J1, 7K. A loop on the initialization on ak,ν was run ranging from 0.1 to 10 with
an amplitude step of 0.1. A large number of sub and ultra-sub resonances are obtained. For low level of excitation
amplitudes (below 10N), three isolas exist: 1 : 3, 4 : 7, and 2 : 3. Notice also that the 2 : 3 ultra-sub harmonic is now
detached from the 1 : 3 curve. A 3 : 1 superharmonic resonance is also observed at high level of forcing amplitudes.
This branch of solutions is not closed on itself as the 3 : 1 superharmonic resonance is attached to the primary
response curve.
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Figure 9. FAR for ω = 7 rad·s−1 for different sub, ultra-sub and superharmonic resonances.

Figure 9 provides plenty of information on the different solutions of the system. First, the FAR allows to predict
the different solutions of the problem for different values of the forcing amplitude for a given excitation frequency.
Second, if one is interested in the computation of solutions for a large frequency range, the proposed strategy can be
employed for different values of ω. Figure 10 provides an example of NFRC for an excitation amplitude of 3N. To
highlight the potential of the proposed methodology, a few ultra-sub harmonics are computed.
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Figure 10. NFRC for an excitation amplitude of 3N, primary response curve ( ) associated bifurcated branches ( ), and
some ultra-subharmonic resonances ( ). The inset boxes with gray background correspond to close-up of the NFRC on
specific frequency ranges.
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4.2 Impact nonlinearities

To show the versatility of this approach, impact nonlinearities are studied in this section. In this work, a regularized
contact law is considered [35, 36],

fnl = −κ
(g0 − x (t))

2
+

√(
κ
(g0 − x (t))

2

)2

+ γ2 (25)

with κ = 1 · 104 N·m−1, γ = 1 · 10−5 N and g0 = 0.4m. The parameters respectively stand for the penalization
stiffness, the regularization rate, and the initial gap. With this formulation, the first and second derivatives of the
nonlinear forces can be derived analytically. The mechanical system under study is depicted in Figure 11. The
values of the first and second masses are taken equal to m1 = 0.5 kg and m2 = 1kg respectively. The first and
second stiffness values are equal to k1 = 100N·m−1 and k2 = 300N·m−1. The damping values are chosen to get a
1% modal damping. In this paper, the first mode located at ω = 7.5 rad·s−1 is studied. The excitation shape was
chosen to excite the first mode

fs = Mϕ1, (26)

where ϕ1 is the first mode shape of the system. The HBM is employed with Nh = 40 harmonics and the period is
discretized through 104 instants for the AFT procedure. A similar example was used in [17].

m1 m2

k2

c2

k1

c1
g0

Figure 11. Mechanical system with impact nonlinearities.

As an initial result, Figure 12 shows the FAR for three different values of the excitation frequency: ω = 7.5 rad·s−1,
ω = 9 rad·s−1, and ω = 11 rad·s−1. The results of each curve are very different from each other. The curve
at ω = 7.5 rad·s−1 is monotonic, whereas the other two curves present ranges of excitation amplitudes where
several solutions exist simultaneously. In addition, within the range [22N, 30N], five different solutions exist for
ω = 11 rad·s−1.
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(a) Full simulation.
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(b) Close-up of the purple rectangle in Figure12a. fa = 1.5N and
fa = 20N ( ), solutions at fa = 1.5N ( ), and solutions at
fa = 20N ( ).

Figure 12. FAR curve for ω = 7.5 rad·s−1 ( ), ω = 9 rad·s−1 ( ), and ω = 11 rad·s−1 ( ).
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These FAR are now used to evaluated NFRCs for two level of excitation amplitude, at 1.5N, and 20N. For both
excitation amplitudes, the results of Figure 12 provide three initialization points for ω = 9 rad·s−1 and ω = 11 rad·s−1.
The NFRCs are illustrated in Figure 13. Both of them exhibit isolated branches of solutions. However these are two
distinct branches of solutions as the isola in Figure 13a is merged with the primary branch of solution in Figure 13b.
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(a) At 1.5N.
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(b) At 20N.

Figure 13. NFRC for the mechanical system with impact. Primary response curve ( ), isolated branch of solutions ( ),
and initialization points ( ).

The detection of the isolated branches is very dependent for which values of ω the FAR are computed. For
instance, had the FAR been computed at 10.8 rad·s−1, the second isola would not have been detected. However,
if it had been computed at 10.9 rad·s−1, then five initialization points could have been proposed for an excitation
amplitude at 20N: two for the isola and three for the primary response curve. If the excitation frequency is not
known, then its value can be swept to evaluate the FAR. Such a procedure is the subject of the following study.

The FAR are now computed from 8 rad·s−1 up to 13 rad·s−1 with a step of 0.1 rad·s−1. Six levels of excitation
amplitudes are investigated: 1N, 5N, 10N, 15N, 20N, and 25N. For each of these levels, the NFRCs, based on the
initialization points found on the FAR, are computed. To avoid redundancy of the results, the NFRCs are evaluated
from initialization points which were not already retrieved from previous simulations. The results are summarized in
Figure 14. For better readability, only a few relevant FAR were illustrated.

The results show that the FAR allow to determine three families of isolas which gets merged with the primary
response curve as the level of excitation amplitude increases. An isola, which was not previously detected, is now
found around 10.5 rad·s−1 for an excitation amplitude varying between 10N and 15N. Those results are consistent
with a previously published work [17] where the isolated branches were computed with Melnikov analysis [15].
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Figure 14. NFRCs and FAR for multiples excitation frequencies and amplitudes. primary resonance ( ), isola ( ), and
FAR ( ).

Contact nonlinearities are prone to period doubling bifurcations [26]. This nonlinear phenomena is investigated
in what follows. For different values of ω, the FAR are evaluated with ν = 2 and k = 2. Figure 15 illustrates some of
these results. The primary response curves in red are identical to the ones obtained with ν = 1 and k = 1. However,
the bifurcated branches (represented in different shades of green) that are obtained correspond to period doubling.
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Figure 15. FAR for the contact nonlinearities with ν = 2 and k = 2. FAR curves for the main and bifurcated branches for
ω = 7.3 rad·s−1 ( )( ), for ω = 8 rad·s−1 ( )( ) and for ω = 9.4 rad·s−1 ( )( ), bifurcation points ( ), initialization
points for 3.5N ( ) and 5N ( ).

Next, the NFRC of the system is evaluated for an excitation amplitude equal to 3.5N and is represented in
Figure 16. The initialization points for the NFRC are those of the FAR illustrated in Figure 15 through square
markers ( ). Two new kinds of solutions are observed: an isolated branch around 9.4 rad·s−1, and three bifurcated
branches. The first two bifurcated branches (at 7.5 rad·s−1 and 8.3 rad·s−1) were obtained with the FAR initialization.
However, the one located close to 9.3 rad·s−1 was obtained through the branch switching algorithm from the primary
response curve. It could have been retrieved with the FAR but it would have required to sweep the FAR curves with
a smaller step of ω.
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Figure 16. NFRC with a 3.5N excitation level, primary response curve ( ), isola ( ), bifurcated branches ( ), bifurcation
points ( ), and initialization points ( ).

The excitation amplitude is now increased to 5N and the NFRC is depicted in Figure 17. The FAR initialization
points (diamond markers ( ) in Figure 15) allow to retrieve two isolated branches around 7.5 rad·s−1 and 10 rad·s−1.
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Three bifurcated branches are also computed.
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Figure 17. NFRC with a 5N excitation level, primary response curve ( ), isolas ( ), bifurcated branches ( ), bifurcation
points ( ), and initialization points ( ).

4.3 Short summary of the FAR results

Through the two mechanical systems illustrated in Figures 1 and 11, the proposed strategy was shown to be able
to recover multiple types of isolas: primary resonance but also super, sub and ultra-sub harmonic resonances, as
well as period doubling bifurcations and isolated branches. The shape of the FAR greatly differ from the type
of studied resonances leading to three types of isolas. The first kind is the one which, at high forcing amplitude,
merge with the primary resonance through a branching point. For this case, the FAR presents similar behaviour: a
bifurcated branch is obtained from the primary curve (see Section 3.2). The second kind is isola which merges and
thus becomes the primary resonance at high forcing. For this type of solutions, the FAR presents only a primary
curve (see Section 4.2, Figure 14). Finally, the third type of isolas is the one which remains completely detached
from other solutions responses. For this situation, the FAR presents identical behaviour: the curve remains also
isolated from other curves (see Section 4.1). To obtain such a curve, an initialization of the desired resonance must
be given.

The proposed approach computes the FAR at a specific ω value. By sufficiently discretizing the frequency range
of interest, all isolas can be detected. However this can become cumbersome if the frequency range is wide.

5 Application to an industrial case

The new methodology was shown to be very interesting to compute complex nonlinear dynamics. The focus of
this current section is to show that it can also be applied to large scale systems, and thus to demonstrate the full
potential of this approach.

5.1 Presentation of the model

In this section, the proposed approach is applied to ECL5/Catana fan blade [37]. The finite-element model of the
blade is illustrated in Figure 18. The latter contains almost 14000 nodes and is clamped at its root. A Craig-Bampton
reduction approach [38] is used with 40 internal modes of vibrations and 12 master nodes are kept. Eleven of them
are at the tip of the intrados kept for contact treatment purposes, and a node is at the mid-span in order to apply
the excitation.

The blade is assumed to be located close to a statoric part (see Figure 19) and hence contact nonlinearities
at the blade tip are included in the model. The nodes of the finite element system have three degrees of freedom:
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(a) Front view. (b) Side view. (c) First bending mode.

Figure 18. Catana finite-element model.

g0

Casing

Blade-tip

Figure 19. Blade-tip/casing contact.

along the radial (noted N), orthoradial (noted T1), and axial (noted T2) directions. The nonlinear force, fnl,N, in
the radial direction is evaluated through Equation Eq. (25). Friction forces are also evaluated for the tangential
directions by assuming permanent sliding. For a node i, it leads to

fnl,T1,i = µ |fnl,N,i|
vT1,i + riω√

(vT1,i + riω)
2
+ (vT2,i)

2

fnl,T1,i = µ |fnl,N,i|
vT2,i√

(vT1,i + riω)
2
+ (vT2,i)

2
,

(27)

where µ is the friction coefficient, and vTj,i is the velocity of node i in the direction j. For the orthoradial direction,
the rotation speed of the system is included through the term riω, where ri is the radius of node i. The parameters
of the nonlinearities are provided in Table 2.

Parameters µ γ (N) g0 (m) κ
(
N·m−1

)
Values 0.15 1 4 · 10−4 1 · 107

Table 2. Contact nonlinearity parameters.

The first bending mode whose resonant frequency is around 1878 rad·s−1 is studied in this article.

Samuel Quaegebeur et al. 18

mailto:samuel.quaegebeur@ec-lyon.fr


A new numerical path to retrieve isolated branches on large scale nolinear mechanical systems

5.2 Numerical results

The HBM is employed with Nh = 15 harmonics and the time period is discretized with 2000 instants. To ensure
fast computation, the linear degrees of freedom are substituted through a condensation strategy [39]. The FAR
are computed with ν = 1 and k = 1, from 1830 rad·s−1 to 1890 rad·s−1 with a step of dω = 1. The results are
displayed in Figure 20 and present the interesting features to have a non-monotonous resonant frequency : it increases
(hardening), before decreasing (softening). For very low excitation amplitude, several solutions are obtained around
1890 rad·s−1 (blue squares ( )). Moreover, with the softening behaviour, at very low excitation frequencies, very high
amplitudes solutions can be retrieved (represented by the blue circles ( ) around 1840 rad·s−1 and 5N). Without
evaluating the NFRCs, it is difficult to state if such points correspond to isolas or not.
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Figure 20. FAR for a large frequency range with ν = 1, and k = 1. FAR ( ), initialization points for an excitation level of
3.2N ( ) and 5N ( ).

First, the system is excited with an amplitude of 3.2N. The three points, illustrated through blue squares ( )
in Figure 20, are used as initialization points. The results are depicted in Figure 21. An hardening behaviour is
observed in the primary response curve (similar to the academic test case studied in Section 4.2) as well as an
isolated branch of solution.
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Figure 21. NFRC for a 3.2N excitation amplitude. primary response curve ( ), isola ( ), and initialization points ( ).

Period doubling bifurcations are also obtained and are retrieved with the FAR computation with ν = 2 and
k = 2. The results are presented in Figure 22 at 1888 rad·s−1. For a range of excitation amplitudes within [6N, 12N],
five different solutions exist on the primary response curve. The period doubling bifurcated branch exists between
[4N, 15N].
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Figure 22. FAR for ω = 1888 rad·s−1 for ν = 2 and k = 2, primary response curve ( ), period doubling bifurcated
branch ( ), bifurcations points ( ), and initialization points ( ).

The NFRC of the system is evaluated for an excitation of 5N. The initialization points of Figures 20 and 22
are used. The results are presented in Figure 23. The primary response has a hardening behaviour followed by a
softening one which explains the three then five possible solutions observed in the FAR curves (see Figure 22). The
FAR allows obtaining period doubling bifurcated branches which exhibit a hardening behaviour. Finally, a very high
amplitude isolated branch is retrieved at low frequencies (around 1840 rad·s−1). Based on Figure 20, this branch is
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expected to merge with the primary response at high level of forcing.
The main difference between the industrial case (see Figure 18) and the academic case (see Figure 11) is the

softening behaviour. A possible explanation would be the influence of the friction nonlinearities which are included
for the industrial test case. A definitive statement would require further investigations beyond the scope of this
paper.
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Figure 23. NFRC at 5N, primary response curve ( ), isola ( ), and period doubling branches ( ), initialization points
( )( ) obtained at 1839 rad·s−1 (Figure 20) and 1888 rad·s−1 (Figure 22). The inset boxes with gray background correspond
to close-up of the NFRC on specific frequency ranges.

6 Conclusion

This paper presents a new methodology to find isolated branches of nonlinear mechanical systems. First, the
strategy evaluates FAR curves by imposing the excitation frequency and by initializing on a specific harmonic. A
branch switching algorithm is also employed to retrieve bifurcated solutions from the primary response curve. Force
amplitude responses offer the possibility to evaluate all possible solutions for any excitation level at a fixed excitation
frequency. To evaluate traditional NFRC, one selects the forcing amplitude, retrieves the possible solutions from the
FAR, and initializes the continuation procedure with these solutions.

This strategy has been successfully employed for different kinds of nonlinearities: cubic, impact, and blade-
tip casing contacts. The methodology has been able to retrieve isolated solutions of many kinds: 1 : 1 isolas,
superharmonic, subharmonic, ultrasub-harmonic resonances, and period doubling solutions. The FAR curves have
different shapes and behaviour depending on the nonlinearity. Three kinds of isola were observed in the NFRC:
those who merge with the primary resonance through branching points, those who merge and become the primary
resonance, and finally those who remain isolated. For the two former cases, the merge occur at high forcing level.

The proposed method has been successfully applied to complex and large scale systems (cyclic structures,
industrial blades) with a large number of harmonics. This approach is thus very versatile and present high potential
to compute isolas. It is expected to enhance the understanding of nonlinear dynamics, but also to be used to find
new solutions for any mechanical systems.

Future works would consist in evaluating the influence of the choice of the DOF whose amplitude is imposed for
the FAR evaluation. Applying this method to retrieve localized vibration for mistuned cyclic systems would also be
an interesting avenue of research. Another prospect would be to use such strategy to obtain isolas experimentally.
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[29] A. Mélot, E. Denimal Goy, and L. Renson. “Control of isolated response curves through optimization of
codimension-1 singularities”. Computers & Structures Vol. 299 (2024), p. 107394. doi: 10.1016/j.compstruc.
2024.107394.

[30] T. M. Cameron and J. H. Griffin. “An alternating frequency/time domain method for calculating the steady-
state response of nonlinear dynamic systems”. Journal of Applied Mechanics Vol. 56, No. 1 (1989), pp. 149–154.
doi: 10.1115/1.3176036.

[31] E. P. Petrov. “Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine
Engine Structures With Friction and Gaps”. Journal of Engineering for Gas Turbines and Power Vol. 139,
No. 022508 (2016). doi: 10.1115/1.4034353.

Samuel Quaegebeur et al. 23

https://doi.org/10.1016/j.cma.2023.116641
https://doi.org/10.1115/1.4063704
https://doi.org/10.1016/j.ymssp.2008.04.003
https://doi.org/10.1115/1.4032906
https://doi.org/10.1115/1.4040850
https://doi.org/10.1016/j.ijnonlinmec.2011.02.005
https://doi.org/10.1016/j.ijnonlinmec.2011.02.005
https://doi.org/10.1016/j.cma.2015.07.017
https://doi.org/10.1016/j.ymssp.2016.09.037
https://doi.org/10.1007/s11071-019-05245-6
https://doi.org/10.1016/j.ymssp.2019.03.011
https://doi.org/https://doi.org/10.1002/nme.7376
https://doi.org/10.1016/j.compstruc.2024.107394
https://doi.org/10.1016/j.compstruc.2024.107394
https://doi.org/10.1115/1.3176036
https://doi.org/10.1115/1.4034353
mailto:samuel.quaegebeur@ec-lyon.fr


A new numerical path to retrieve isolated branches on large scale nolinear mechanical systems
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