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Highlights
Animals that live in groups do not sleep in
isolation.

Research has largely divorced the study
of sleep from this social context, focusing
on individuals sleeping alone in labora-
tory settings.

Technological advances now make it
possible to quantify the sleep behavior of
many animal species in socially relevant
field contexts, opening a new research
Group-living animals sleep together, yet most research treats sleep as an individ-
ual process. Here, we argue that social interactions during the sleep period con-
tribute in important, but largely overlooked, ways to animal groups’ social
dynamics, while patterns of social interaction and the structure of social connec-
tions within animal groups play important, but poorly understood, roles in shap-
ing sleep behavior. Leveraging field-appropriate methods, such as direct and
video-based observation, and increasingly common on-animal motion sensors
(e.g., accelerometers), behavioral indicators can be tracked to measure sleep
in multiple individuals in a group of animals simultaneously. Sleep proximity net-
works and sleep timing networks can then be used to investigate the collective
dynamics of sleep in wild group-living animals.
frontier: the social dynamics of sleep.

Research on the social dynamics of
sleep promises to reveal critical, yet
underappreciated, feedback between
sleep and structure in animal societies.

By treating sleep as a collective phenom-
enon, we propose a new framework that
leverages simultaneousmonitoring of the
sleep ofmembers of social groups, com-
bined with time-series and social net-
work analyses, to investigate how the
social environment shapes (and is
shaped by) sleep.
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Sleeping in groups
Sleep is a seemingly ubiquitous and remarkably variable biological process with substantial differ-
ences in architecture, duration, and neurophysiology within and between species [1–4]. How and
why animals sleep in such diverse ways remains a mystery. As the ongoing revolution in wearable
technology makes it easier to measure sleep in the wild [5–7], it is becoming clear that animals’
sleep patterns are strongly shaped by the selection pressures imposed by their ecologies [6].
For instance, sleep in natural settings can be of different duration compared with sleep in captivity
[8,9] and can even shift from being diurnal to nocturnal [10,11]. However, most studies treat sleep
as an individual process, even though many animals sleep in groups (e.g., [12,13]). Here, we
argue that to understand the functional significance of the variation that we observe in natural
sleep patterns, sleep research must consider not only the effects of the physical environment in
which sleep occurs [2,14,15] but also the effects of the social environment.

There is mounting evidence that social factors play a fundamental role in shaping sleep pat-
terns. Social stimuli can entrain the sleep–wake rhythms of an individual to that of the whole
group [16], for example, substrate-propagated vibrations synchronize circadian rhythms in
honey bees (Apis mellifera) [17]. Social entrainment in meerkats (Suricata suricatta) gives rise
to group-specific sleep ‘traditions’ where neighboring groups show differences in sleep timing
that persist through generations despite complete turnover in group membership [18]. Sleep
duration can be affected by social relationships [19] and social context [20]. For example,
olive baboons (Papio anubis) sleep less when the number of group members in their local en-
vironment increases [20], and bumble bees (Bombus terrestris) suppress sleep in the presence
of offspring [21]. Mating strategies also influence sleep. Male pectoral sandpipers (Calidris
melanotos) suppress sleep for weeks during the mating season [22], male fruit flies
(Drosophila melanogaster) lose sleep when paired with females (reviewed in [23]), and male
antechinus (Antechinus swainsonii and A. agilis) reduce sleep during the breeding season
[24]. Female mallards (Anas platyrhynchos) decrease their rates of vigilance as the number of
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males (who display elevated rates of vigilance and are at higher risk of detection by predators
owing to their brightly colored breeding plumage) in the sleeping flock increases [25]. Sleep is
often organized into discrete stages that are characterized by different electrophysiological sig-
natures and that are thought to serve different functions for the animal [26]. Two examples of
sleep stages are rapid eye movement (REM) sleep and non-REM sleep, observed in terrestrial
mammals [27] and birds [28]. REM sleep is marked by random eye movement, loss of muscle
tone, and low-amplitude, high-frequency (6–10 Hz) waves in the electroencephalogram, while
non-REM sleep is marked by high-amplitude, low-frequency (<4 Hz) waves in the electroen-
cephalogram [29]. Social interactions can alter sleep organization indirectly through their im-
pact on individuals’ physiology. For example, stress associated with social defeat increases
sleep intensity in rats (Rattus norvegicus, strain Tryon Maze Dull S3) during non-REM sleep
[30]. Social defeat in laboratory mice (Mus musculus, strain C57BL/6J) increases the duration
of non-REM sleep and, depending on the number of aggressive encounters, that of REM sleep
as well [31]. Sociality also influences sleep neurophysiology; for example, in cohoused labora-
tory mice, sleeping with conspecifics fragments non-REM sleep in individuals but can synchro-
nize the timing of REM sleep across individuals [32].

Why do animals sleep in groups? Animals might accrue a variety of benefits from sleeping socially,
including improved selection of secure sleeping sites through social decision-making [12], reduced
predation risk through dilution [33], presence of conspecific sentinels [6,34], increasedmating oppor-
tunities [35], energy savings through social thermoregulation [36], and information exchange [37,38].
A group of sleeping animals consists of individuals that share behavioral goals in a common environ-
ment that is subject to shared external stimuli and temporal structure (Figure 1). Heterogeneity in
TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure 1. The interplay of sleep and sociality in wild animal groups. Social sleep occurs in dynamic, spatially
heterogeneous conditions. A tendency for synchronized sleep [20] (and therefore limited sentinel vigilance during the
sleeping period [68]) may lead groups to seek remote sleeping sites such as steep cliff walls away from predators
Sleeping in larger groups may lead to greater sleep disturbance by others in the group (A) and less sleep, while cold and
rainy conditions may lead to competition for favorable spatial positions at the sleep site. The observed sleep pattern of an
individual (yellow silhouette) can be considered to be the outcome of how the individual’s internal state (B: sleep need [69]
stress, etc.) interacts with social context (C: group size, spatial proximity to others, nearest neighbors, etc.) and ecologica
context (D: spatial position within sleep site, risk of predation or falling; E: exposure to inclement weather, etc.)
Interactions between an individual’s internal state, social context, and environmental context will be modulated
by individual traits (e.g., age, sex, rank, reproductive state, etc.) to yield the observed temporal progression of sleep states
Illustration of the sleeping troop of olive baboons (Papio anubis) by Javier Lázaro.
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individual, social, and spatial factors will interact to produce differences in individual sleep pat-
terns as well as degree of sleep-state synchronization between individuals, which, when com-
bined, may lead to emergent patterns of group sleep. The interface of sleep and sociality thus
poses a profusion of new questions at multiple levels of social organization. Here, we articulate
some of these research questions, propose analytical tools to facilitate social sleep research
(Figure 2), and synthesize the sleep measurement literature to highlight the opportunities
(and discuss the caveats) of using emerging technological innovations to quantify social
sleep in the wild.

Research at the interface of sleep and sociality
Broadly speaking, the interface between sleep and sociality has three main facets: (i) how in-
dividual sleep varies with social traits (e.g., dominance rank), (ii) how individual sleep varies
with group-level traits (e.g., group size), and (iii) if and how coupling of sleep states between
individuals takes place and whether this leads to the emergence of aggregate group-level
sleep patterns. The questions that we outline in the following sections explore these facets
in more depth. Where possible with the current state of knowledge, we situate these
questions within an eco-evolutionary framework.

How does an individual’s social traits influence their sleep?
In many animal species, social phenotypes are heterogeneous, and traits such as dominance
rank [39,40], social centrality, and affiliative and kin relationships are expected to affect sleep
patterns. Social traits can have both direct and indirect effects on sleep behavior; low-ranking
individuals, for example, may experience social exclusion from favorable spatial locations at the
sleep site that increase their exposure to conditions (e.g., inclement weather and predators)
that disrupt sleep (reviewed in [40]; Figure 1). Mallards at the edge of a sleeping group, for ex-
ample, spend more time sleeping with one half of their brain while being vigilant for predators
with the other half (termed unihemispheric sleep) than individuals near the group’s center
[41], and sleep in chinstrap penguins (Pygoscelis antarcticus) is likely influenced by trade-offs
between increased predation risk at the periphery of nesting colonies and aggressive social in-
teractions near the center [4]. At the same time, individual sleep also influences social traits. For
example, a recent study on humans found that deeper sleep in regions of the brain that are
positively related to prosociality was associated with increased prosocial preferences [42]. It
is plausible that individuals who get sufficient sleep experience cognitive benefits such as im-
proved attention, working memory, and visuomotor performance [43,44] that enable them to
build stronger affiliative relationships or compete more effectively, thereby increasing their
dominance rank. Investigating the bidirectional links between sleep patterns and social traits
can help to illuminate how the costs and benefits of social sleeping are realized differently
across individuals in the group.

How do group-level traits influence individual sleep?
For gregarious species, key aspects of the social environment, including group size, demo-
graphic composition, and degree of cohesion, are expected to influence individual sleep.
Sleeping in larger groups offers conditions that could improve sleep (e.g., lower predation
risk and greater number of sentinels) but also those that could worsen sleep (e.g., through
greater sleep disturbance by others in the group). In Japanese macaques (Macaca fuscata
yakui), for example, wakefulness of one individual often disturbs the sleep of other members
of the sleeping huddle, particularly in huddles that are comprised of unrelated individuals [19].
Such trade-offs can lead to ‘dome-shaped’ curves of sleep duration versus group size, as
documented in gulls (Larus sp.), where the percentage of time spent sleeping by individuals
increases until flock size is around 60 and then decreases [45]. It is also likely that key aspects
1092 Trends in Ecology & Evolution, December 2024, Vol. 39, No. 12
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of group behavior, including coordination, decision-making, and cooperative potential, will
be influenced by the sleep of its members. For example, sleep loss in honey bees reduces
waggle dance precision, which is expected to decrease the followers’ flight accuracy [46].
This has potential fitness consequences due to less efficient recruitment to a quality food
source [47]. Cross-group and cross-population comparisons are needed to shed light on
how variability in group-level traits maps onto the sleep of group members and how variation
in sleep patterns (e.g., duration and fragmentation) impacts the structure and functioning of
animal societies. Comparisons of similar-sized sleeping groups across species will yield
important insights into how sociality mediates between ecological pressures and the
physiological need to sleep (Figure 1, right) [14,20,34].

Does sleep become coupled in socially sleeping individuals, and does this lead to the emergence
of collective dynamics in group-sleep behavior?
Behavioral contingency at the individual level (i.e., copying others’ sleep/wake state) can lead to
waves of sleep or vigilance at the group level (Figure 2E) [48]. Conversely, individuals can max-
imize their combined antipredator vigilance by adopting the opposite of others’ sleep/wake
state, leading to asynchronous sleep patterns at the group level [34]. In addition to empirical
studies, modeling approaches inspired from the field of collective behavior [49] can help to ex-
plore the kinds of collective sleep behaviors that could theoretically arise, for instance, by vary-
ing ‘rules’ that determine why an individual awakens (woken by closest neighbors who are
awake or by closely related individuals even when they are not closest neighbors or by a min-
imum proportion of awake individuals in the group) and when (different delays in waking up
once the awakening criterion has been met might lead to different collective patterns). Coupling
collective sleep models with individuals’ sensory fields [50] (Figure 2F) provides the opportunity
to formulate testable hypotheses about collective responses to external stimuli [e.g., detecting
an approaching predator (thereby enhancing survival) or triggering ‘false alarms’ [51] (thereby
leading to loss in sleep duration and increase in sleep fragmentation)] and quantify their fitness
outcomes [52].

Analyzing social sleep
Broadly speaking, social sleep can be analyzed in terms of spatial arrangement and temporal
sleep patterns. The spatial arrangement of individuals relative to others during the sleeping
period can be characterized by a ‘sleep proximity network’, similar to proximity networks
that are computed from data collected during the waking period. Temporal sleep patterns
can be characterized by a time series we term ‘iSleep’ that describes the temporal progres-
sion of sleep states in an individual, obtained by scoring sleep measurement data (see Box 1
for details on sleep measurement techniques). Scoring is done either based on domain
knowledge by an expert, or through automated classification [53]. Depending on the mea-
surement approach, iSleep will describe the duration and timing of transitions between differ-
ent numbers of discrete sleep states (Figure 1, right panel), for example, two {awake, asleep}
(e.g., Figure 2A), three {awake, REM sleep, non-REM sleep}, etc. Metrics such as sleep
timing, duration, and fragmentation can be computed from iSleep and compared with social
and group traits. Synchronization between the iSleeps of two individuals can be quantified
based on normalized root mean squared difference in sleep states over a given time interval
(e.g., 24 h; metric described in Figure 2C). Information on degree of synchronization between
iSleeps for all pairs of individuals can be combined in a ‘sleep synchronization network’
(Figure 2C).

Information on differences in the timing of sleep onset and awakening between pairs of
individuals [32] can similarly be combined in ‘sleep timing networks’ (one network to
Trends in Ecology & Evolution, December 2024, Vol. 39, No. 12 1093
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Figure 2. Analysis of social sleep. (A) A toy example showing 24-h (noon to noon) sleep-state time series (iSleeps, with
‘asleep’ encoded by the number 0 and ‘awake’ encoded by the number 1) of a meerkat (Suricata suricatta) group of six
individuals, U–Z. U, V, and X slept uninterruptedly throughout the night but went to sleep and/or woke up at different
times. W slept later and woke more frequently than the others. Y, a female, woke up during the night at the same time as
male Z’s second nighttime awakening, perhaps to copulate with Z. (B) gSleep, a time series describing the aggregate
sleep state of the entire group, calculated here as the proportion of individuals in the group that were asleep at each time
point. (C) The degree of sleep synchronization between two individuals (U and V) can be quantified by applying the
proposed metric to their iSleeps u t½ � and v t½ �. t indicates time, L indicates the length of time over which synchronization is
computed (here, 24 h, but can otherwise be shorter depending on the research question), M indicates the numeric code
assigned to the ‘awake’ state (here, 1), and m indicates the numeric code assigned to the ‘asleep’ state (here, 0) or the
deepest sleep state if sleep heterogeneity was recorded. The proposed metric is designed to yield a value between 0 and
1 regardless of the precise choice of M and m, and to ensure that in the particular (hypothetical) case where the iSleeps of
both individuals are identical and encoded as 0 throughout the period L, the degree of synchronization is maximal (i.e.,
equal to 1), as should be the case for any pair of identical iSleeps (a correlation-based metric would have yielded a
synchronization of 0 in this particular case, thereby incorrectly implying that the identical iSleeps were not synchronized).
Synchronization values computed for all pairs of individuals can be used to construct an adjacency matrix that can be
visualized as an undirected weighted ‘sleep synchronization network’. The adjacency matrix and network shown here
were computed from the iSleeps in (A). (D) Differences in the timing of awakening (and sleep onset, not shown here) can
similarly be represented as a directed weighted ‘sleep timing network’ [shown here with its adjacency matrix (entries in
minutes)]. (E) Collective sleep models inspired from the field of collective behavior can be used to explore aggregate
group-level sleep behaviors such as the ‘wave of wakefulness’ propagating through the group shown (gray: asleep;
orange: awake). (F) Coupling collective sleep models with individuals’ sensory fields can help to explore collective
responses to external stimuli during the sleeping period. Illustration of meerkat faces by Javier Lázaro.
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summarize information on sleep onset and another for information on awakening; Figure 2D).
Such networks would be characterized by adjacency matrices with positive values (in units of
time, for example, minutes) when the column individual’s sleep onset (awakening) lags the
row individual’s sleep onset (awakening) and zeros when the delay is negative or zero (e.g.,
on the diagonal, where individuals will have zero delay compared with their own sleep onset/
awakening; Figure 2D). Sleep synchronization and sleep timing networks can be used to
1094 Trends in Ecology & Evolution, December 2024, Vol. 39, No. 12
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investigate how individuals copy, lead, and follow the sleep–wake behavior of others in the
group and model the collective dynamics that emerge. Analyzing sleep networks using
existing tools from animal social network analysis [54] will help to reveal and study emer-
gent sleep processes at the group level. For example, network metrics can help capture
the expected importance of specific individuals in driving the sleep states of others or
the overall connectedness and degree of clustering present in sleep networks. Moreover,
exploring connections between individuals’ positions in sleep networks and their long-term
survival and fitness can help to reveal the adaptive value of social sleep from an evolutionary
perspective.

The collective dynamics of sleep can be studied using a time series that describes the sleep state
of the entire group. The group sleep time series, which we term ‘gSleep’, can be obtained by
pooling together the iSleeps of all individuals in the group by calculating the proportion of individ-
uals that are asleep at a given time [48,55] (Figure 2B) or computing other measures such as the
mode, median, or mean of iSleep values across individuals for every time step. Spectral analysis
of gSleep (e.g., using periodograms) can unravel group-level sleep patterns. gSleep may be
periodic, where a large proportion of individuals in the group sleep and awaken synchronously
and at regular intervals [48], or synchronous but aperiodic, where individuals sleep and awaken
together but not at regular intervals. The absence of clear patterns in gSleep may indicate
asynchronous sleeping patterns [34], which can be further investigated by pooling the iSleeps
of subgroups of individuals and then comparing the pooled time series for the different
subgroups. Sleep in multiple neighboring groups can be analyzed by treating gSleep in a multi-
group setting analogously to iSleep in a multi-individual group. These methods can also be
extended to polyphasic sleep (where multiple short sleep bouts occur over a 24-h period) by
applying them to shorter blocks of time (e.g., 30 min to a few hours instead of 24 h) and to
unihemispheric sleep by considering multistate iSleeps (e.g., {awake; unihemispheric sleep;
REM sleep; non-REM sleep in both hemispheres of the brain simultaneously}). Ultimately, by
analyzing sleep at individual (iSleep), dyadic (sleep networks), and group (gSleep) scales, we
can begin to quantify the variation in sleep patterns observed across levels of social organiza-
tion, allowing us to link these levels to one another and to their ecological and evolutionary
drivers.

Measuring sleep in social animals
Understanding the interplay between sociality and sleep requires measuring sleep while it
occurs within its natural social context (Box 1 and Figure 1). While electrophysiology allows
fine-grained identification of sleep stages, these methods are challenging to implement outside
the lab or scale to large numbers of interacting individuals. Behavior, on the other hand, can
often be used to quantify sleep across a variety of contexts and species (Table 1 and Box 1),
creating an opportunity to bridge the domains of animal behavior and sleep science. The
most common behavioral indicators of sleep include motionlessness, stereotypical body pos-
tures, closed eyes, and reduced muscle tone (exceptions reviewed in [5,6]), with prolonged in-
activity being strongly predictive of elevated arousal thresholds in some species [6]. In addition,
behaviors associated with transitions between sleeping and waking can be used to understand
the social regulation of sleep; yawning, for example, is pervasive across vertebrates, is associ-
ated with sleep onset and offset, and is socially contagious [56]. While validation of behavioral
proxies of sleep against electrophysiological measurements remains crucial (see Box 1 for
further commentary), these similarities in how sleep is expressed (Table 1) promise to facilitate
the study of social sleep since behavioral proxies are generally easier to measure, cheaper, less
invasive, and better suited for simultaneous monitoring of groups of individuals, particularly in
field conditions.
Trends in Ecology & Evolution, December 2024, Vol. 39, No. 12 1095



Box 1. Studying sleep in the wild

A diversemethodological toolkit now exists for studying sleep in natural settings (reviewed in [5,6]). Broadly speaking, three
main types of data contribute to our understanding of sleep behavior: (i) ‘electro’ [electrical signals recorded from the an-
imal’s body that quantify brain activity (electroencephalography; EEG), muscle tone (electromyography), and eye move-
ment (electrooculography)], (ii) ‘stimulo’ [experimental stimulation (e.g., mechanical and acoustic) to gauge arousal
threshold], and (iii) ‘behavioral’ [behavioral observations (e.g., movement, posture, and eye closure)]. When used together
(we term this the ‘electro–stimulo–behavioral’ approach; see Table I), these three datastreams provide a baseline descrip-
tion of sleep detection, depth, and heterogeneity, a particularly important step when sleep is being investigated for the first
time in a particular study species or taxonomic group. Sleep detection is the ability to distinguish sleep from waking. Sleep
depth refers to the extent of reduction in responsiveness to external stimuli and is thought to be a correlate of the intensity
of ongoing sleep processes. Sleep heterogeneity refers to the variation in electrical activity (of the brain, muscles, and/or
eye), behavior, physiology, and/or sleep depth during sleep [3], sometimes manifesting as discrete states (e.g., REM
and non-REM sleep). Electro–stimulo–behavioral methodology can be used to develop reliable proxies for sleep detection
and possibly also for sleep depth and heterogeneity, based on behavioral data alone. For example, a recent study on
northern elephant seals (Mirounga angustirostris) used EEG, heart rate, and behavioral measurements to develop a sleep
detection model based on behavior alone; application of this model to data collected in wild seals revealed differences in
sleep cycle duration as a function of dive depth [7]. Behavioral proxies of sleep can, in some cases, also quantify sleep het-
erogeneity; for example, some cephalopods (octopus,Octopus laqueus) exhibit clear behavioral signs of two distinct sleep
states associated with elevated arousal thresholds and changes in brain activity [60]. However, behavioral proxies can
confound quiet wakefulness with sleep [61] and fail to detect unihemispheric sleep [61] or reduction in sleep need achieved
through other means, such as during rumination by reindeer (Rangifer tarandus tarandus) [62]. Best practice is to validate
behavioral sleep proxies against electrophysiological measurements and characterize the accuracy of behavioral sleep
quantification. While advances in instrumentation technology should eventually make electrophysiological validation of
sleep in the wild less invasive and more logistically feasible, insistence on electro–stimulo–behavioral methodology will sty-
mie social sleep research. While some questions will lend themselves to ‘sleep-first’ approaches, wherein study taxa can
be chosen based on ease of sleep validation, many questions will require ‘species-first’ approaches owing to taxonomic
considerations inherent in comparative research or the need for longitudinal information on individual life histories and so-
cial structure. Such information is often available only at established long-term study sites, where invasive measurement
could cause loss of animal habituation and consequent disruption of research on-site. For such studies, use of alternative
terminology when reporting behavioral sleep measures (e.g., ‘sleep-like state’, ‘behavioral sleep’, ‘inactivity’, and ‘resting’;
see Table 1) might offer a reasonable way forward.

Table I. Sleep measurementa

Methodological approach Detection Depth Heterogeneity

Electro-stimulo-behavioral ✔ ✔ ✔
Electro-behavioral ✔ ✔ ✔
Stimulo-behavioral ✔ ✔ ?

Behavioral

only

Observation ✔ ? ?
Motion sensing ✔ ? ?
Indirect signs ✔

aApproaches to measure sleep fall on a spectrum. Themost comprehensive electro–stimulo–behavioral approach [63] lies at one
end, intermediate approaches such as electro–behavioral (parallel measurement of electrophysiology and behavior but no explicit
measurement of arousal threshold [22]) and stimulo–behavioral (parallel measurement of arousal threshold and behavior [64]) lie in
themiddle, while behavioral-only approaches (Table 1) lie at the other end. Behavioral-only approaches can vary from visual obser-
vation [65] to sleep inference fromanimal-bornemotion sensors [20] to indirect observation of signs ofwaking (e.g., animals coming
out of their sleeping burrow after the sleeping period) [18]. Green boxes indicate that the aspect of sleep (detection, depth, or het-
erogeneity) can be reliably measured with the method. Yellow boxes indicate that measurement or inference is possible but likely
notwith the same accuracy or reliability aswith the electro–stimulo–behavioral approach [66,67]. Red boxes indicate thatmeasure-
ment or inference is not possible. White boxes with question marks indicate that measurement or inference is not yet known.
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Table 1. Behavioral sleep quantification and applicationsa

Type of sleep
measurement

Behavior Measurement
method

Species Sleep quantification Insights gained Validation of sleep
proxies

Refs

Detection Inactivity Accelerometry African elephant
(Loxodonta
africana)

Inactivity for at least
5 min, measured by
subcutaneously
implanted actiwatch in
the trunk. In addition, a
recumbent sleeping
position, during which
REM sleep likely
occurred, was derived
from accelerometer
readings.

Nocturnal,
polyphasic, 2-h
sleep in
elephants, with
frequent use of
new sleep sites.

Authors indicated that
they used the term
‘sleep’ to mean
‘inactivity’. They stated
that the anatomy of the
elephant skull would
make surgery to implant
EEG electrodes highly
invasive.

[70]

Javan slow loris
(Nycticebus
javanicus)

Actigraphy scores
(activity counts at
1-min epochs) were
used to devise criteria
for behavioral
sleep/rest. Inactivity
was defined as an
activity score of zero
over a 1-min epoch.
Interruptions in rest
lasting 5 min or less
were classified as
‘brief awakenings’.

Illumination and
ambient
temperature had
a major influence
in shaping 24-h
patterns of
activity and rest.

Actigraphy-derived
immobility was termed
‘sleep’ based on a
previous validation of
actigraphy against EEG
in marmosets (Callithrix
jacchus).

[71]

Olive baboon
(Papio anubis)

Sleep was identified
using an algorithm
based on dynamic
body acceleration
values remaining below
a threshold for at least
3 min.

Sleep duration
decreased at less
familiar sleep
sites and when
sleeping in
proximity to more
individuals.
Individuals had
synchronized
patterns of
waking during the
night. No
evidence for
compensation for
lost sleep.

The body acceleration-
based sleep detection
algorithm was adapted
from human studies
that have been
extensively validated
against
polysomnography. In
addition, the baboon
sleep detection
algorithm was validated
using observations of
postural change made
with thermal imagery.
Natural experiments
arising from the
awakening and
movement of
neighboring group-
mates were used to
assess changes in
arousal threshold.

[20]

Body posture Video,
accelerometry

Sperm whale
(Physeter
macrocephalus)

Shallow ‘drift-dives’,
which occur in
stereotypical vertical
postures just below the
sea surface, were
detected using speed
and accelerometer-
derived pitch angle.

Sperm whales
rest by drifting
vertically under
the sea surface.

Authors used the term
‘rest’ instead of ‘sleep’.
Whales were observed
to be nonresponsive to
closely passing vessels
until these inadvertently
touched them, which
suggested elevated
arousal thresholds
during these resting
dives.

[72]

(continued on next page)
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Table 1. (continued)

Type of sleep
measurement

Behavior Measurement
method

Species Sleep quantification Insights gained Validation of sleep
proxies

Refs

Inactivity,
body posture

Video Great tit
(Parus major)

Sleep was
characterized by
inactivity and a
stereotypical sleep
posture (feathers fluffed
and beak tucked back
into the scapular
feathers) maintained for
at least 30 s.
Awakenings during the
night were identified
using motion detection
software.

Within-individual
plasticity in
sleep behaviors.
Sleep was
related to
season, sex,
age, and the
environment.
Individuals in
captivity went to
sleep later and
slept less than
those in the
wild.

Authors used the term
‘behavioral sleep’ and
cautioned that purely
behavioral definitions of
sleep could confound
quiet wakefulness and
sleep and would be
unable to detect
unihemispheric sleep.

[61]

Drone
imagery

Feral horse
(Equus ferus)

Photographs were
taken from 30 to 50 m
above the ground
using drone-mounted
cameras at 30-min
intervals from 09.00 h
to 18.00 h. Horses
were said to be resting
if they did not move
from one image to the
next and held
stereotypical resting
postures (lying down or
standing still with their
neck parallel to the
ground).

Feral horses living
in a multilevel
society
synchronize their
activity-inactivity
patterns within
and between their
primary social
units.
Synchronization
within units is
stronger than that
between units in
the herd.

Authors did not use the
term ‘sleep’ to describe
the behavior they
detected, instead using
the term ‘resting’
throughout.

[73]

Inactivity,
body posture,
eye closure

Direct
observation

Gulls (Larus
spp.)

Inactivity in a
stereotypical posture
(standing on one leg
or crouched or bill
tucked under
scapulars) with eyes
closed was used to
identify sleep.

Copying of
neighbor vigilance
in sleeping groups.
Collective waves
of sleep in groups.

The study’s main focus
was to monitor
vigilance, and ‘sleep’
was viewed as a ‘low
vigilance state’.

[45,48]

Head-muscle
tone, face/limb
twitching, eye
closure

Video Orangutan
(Pongo spp.),
Guinea baboon
(Papio papio)

One-minute epochs in
videos were manually
scored as ‘wake’ or
‘sleep’. Sleep was
defined by closed eyes
with no movement,
reduced muscular tone,
and face/limb twitching.

Captive
orangutans
experienced
deeper, more
efficient sleep
than captive
baboons.

Authors argued that
polysomnography was
invasive and
impractical for primate
sleep research. The
proxies used for ‘sleep
depth’ were motor
activity during sleep
and sleep
fragmentation (the
use of these metrics
was justified based
on their correlation
with previously
validated measures of
sleep depth in humans
and nonhuman
primates).

[65]
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Table 1. (continued)

Type of sleep
measurement

Behavior Measurement
method

Species Sleep quantification Insights gained Validation of sleep
proxies

Refs

Heterogeneity Sleep
stage-specific
body posture

Video Angolan giraffe
(G. giraffa
angolensis)

Behavior classified
into active, resting
(based on lying
posture), and REM
sleep. Resting
classification was
based on lying
posture. REM sleep
classification was
based on specific
postures linked to REM
sleep in a previously
published study,
sustained for more than
10 s.

Activity patterns
linked to
photoperiod and
season. REM
sleep posture only
observed after
sunset. All
individuals in a
group never slept
simultaneously
(while some slept,
others were
awake and
vigilant). Sleeping
site changed
nightly.

Justification for REM
sleep identification was
the observation of
short, spontaneous
movements of the ears,
eyes, or neck while
giraffes adopted the
characteristic posture
linked to REM sleep.

[34]

Eye and limb
movement

Infrared
videography

Jumping spider
(Evarcha
arcuata,
Salticidae)

Retinal movement,
leg-curling, stretching,
and cleaning behavior
were manually scored in
videos. REM sleep-like
behavior was
characterized by retinal
movements
accompanied by
leg-curling or twitching
limbs. A neural network
was trained to estimate
the angular movement
of retinas.

Identification of
REM sleep-like
behavioral state.

Authors used the term
‘REM sleep-like’
instead of ‘REM sleep.’

[74]

aA nonexhaustive list of studies using different datastreams to capture behavior for quantifying sleep in a range of animal species, alongwith insights on individual, comparative,
and social sleep. Generally speaking, field studies of animal sleep eschew electrophysiological and arousal-threshold measurements that are aimed at validating behavioral
proxies for sleep since these are often invasive and/or impractical. Consequently, it is currently not common for such studies to conduct stringent validations of behavioral
criteria used to define sleep; they often use alternative terminology such as ‘inactivity’, ‘resting’, ‘behavioral sleep’, or ‘sleep-like state’ to describe the behavioral state that they
measure.

Trends in Ecology & Evolution
OPEN ACCESS
Inactivity can be measured in several ways, such as via direct or video-based observation or mo-
tion sensors attached to the animal (e.g., accelerometers [20,57]). Bothmethodologies usually re-
quire an additional step where manual annotation or algorithms are used to identify behavioral
sleep. Although the details necessarily vary from species to species (see Table 1), identifying ‘pro-
longed inactivity’ essentially requires two ingredients: a motion/behavioral threshold to separate
inactivity from activity and a duration range to classify a bout of inactivity as behavioral sleep
(with a lower bound that is long enough to reject brief pauses between successive active bouts
and an upper bound that is short enough to separate sleep from torpor, hibernation, and
death). Behavioral sleep detection alone can lend valuable insights into changes in sleep duration,
timing, and fragmentation associated with social interactions during the sleeping period. Whether
behavioral observations can also be used to quantify sleep depth and heterogeneity and how
electrophysiology can be better adapted to measuring social sleep are open questions (Box 1
and see Outstanding questions). Sleep substates like REM and non-REM sleep are difficult to as-
sess using behavioral proxies, and electrophysiology is still often mandatory to precisely detect
and quantify these states. Finally, thermal imaging is a physiological measure that could be
used to track sleep in homeothermic animals. Core body temperature rapidly declines following
sleep onset and remains low throughout the sleeping period [58]. These changes could poten-
tially be detected using thermography.
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Outstanding questions
What are the eco-evolutionary causes
and consequences of animals sleeping
in groups?

Are the costs and benefits of sleeping
in groups distributed equally across
individuals in the group?

How does social sleep differ across
group-living vertebrates and inverte-
brates, and why do these differences
arise?

How does social structure
(e.g., dominance hierarchy, social cen-
trality, and affiliative and kin relationships)
influence individual sleep?

How do group traits (e.g., size, demo-
graphic composition, and degree of
cohesion) influence individual sleep?

In group-living species, are individuals’
sleep states coupled? And does this
lead to the propagation of sleep states
through the group and the emergence
of collective dynamics of social sleep?

How do social interactions during the
sleeping period differ from, influence,
and get influenced by social interactions
during the waking period?

How does sleep quality affect social
interactions during the waking period?
Poor or insufficient sleep can, for
instance, affect how effectively and
accurately animals communicate with
each other, which will have knock-on
effects for the whole group’s behavior.

Do social sleepers sleep differently
from solitary sleepers? Reduced sleep
may be the price that social sleepers
Concluding remarks
Social sleep is a research frontier that we believe holds exciting potential for new insights into both
sleep science and wild animals’ lives. We argue that interactions during the sleep period contribute
in important, but largely overlooked, ways to group social dynamics, while patterns of social inter-
action, group decision-making, and the structure of social connections within animal groups play
important, but poorly understood, roles in shaping sleep behavior. Interesting questions abound
at the individual, dyadic, and group levels, and capitalizing on these opportunities will likely require
methodological innovations to overcome the logistical difficulties of measuring sleep and sociality in
multiple animals simultaneously over meaningfully long periods of time (see section ‘Research at
the interface of sleep and sociality’ and Outstanding questions). The application of validated behav-
ioral criteria for sleep quantification (see Box 1) in group-living animals studied at long-term field
sites can be an effective launchpad for systematic investigation of social sleep. Such long-term
studies often have a wealth of past and current social and ecological data, including individual life
histories, dominance hierarchies, kin and affiliative relationships, spatial and temporal variability in
resources, weather conditions, etc., that can provide the necessary context for nuanced analyses
of social sleep. We point to the importance of empirical studies spanning both the waking and
sleeping periods [such data can often be tremendously informative even for studies that are not di-
rectly related to questions of social sleep (e.g., [59])] on multiple groups of the same or similar spe-
cies and comparing across species (see Outstanding questions). By collecting data on sleep and
sociality and applying our proposed tools to analyze social sleep, we can begin unraveling the
adaptive functions and evolutionary trade-offs of sleep that may not be revealed by studying indi-
vidual animals alone.
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