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ABSTRACT

Context. SPHERE, operating at the VLT since 2014, is currently one of the high-contrast instruments with a higher performance. Its
adaptive optics system, known as SAXO, will be upgraded to SAXO+, which features the addition of a second stage of adaptive optics.
This stage will use a near-infrared pyramid wavefront sensor to record images of fainter exoplanets around redder stars.
Aims. In this work, we compare the performance of SAXO and SAXO+. We look for the optimal values of the key system parameters
of SAXO+ for various science cases and turbulence conditions.
Methods. We performed numerical simulations using COMPASS, an end-to-end adaptive optics simulation tool. We simulated perfect
coronagraph images of an on-axis point source, and we minimized the residual starlight intensity between 3 and 5 λ/D as a performance
criterion. The explored parameter space includes science cases (described by magnitude in G and J bands), turbulence conditions
(seeing and coherence time), and key system parameters (first and second stage gains, first and second stage frequencies, pyramid
modulation radius, pyramid modal gains optimization).
Results. In every science case and turbulence condition, SAXO+ reduces the residual starlight intensity inside the correction zone of
the second stage by a factor of ten compared to SAXO. The optimal first stage gain is lower for SAXO+ than for SAXO alone. We
quantified the gain in performance of SAXO+ when changing the second stage frequency from 2 to 3 kHz, and we conclude that 2 kHz
may be sufficient for most realistic conditions. We give the optimal first stage gain as well as the first and second stage frequencies for
every seeing, coherence time, and science case. Finally, we find that a 2 λWFS/D pyramid modulation radius is a good trade-off between
performance and robustness against varying turbulence conditions.
Conclusions. This study shows that the future SAXO+ system will outperform the current SAXO system in all studied cases.

Key words. instrumentation: adaptive optics – instrumentation: high angular resolution – methods: numerical

1. Introduction

The aim of high-contrast imaging is to detect light emitted
or reflected by the near surroundings of stars. This allows for
spectroscopic and polarimetric characterization of circumstel-
lar disks and exoplanet atmospheres. However, among the 5000
exoplanets discovered so far, less than 1% have been directly
imaged1. Obtaining an image of an exoplanet is challenging for
two reasons. First, the exoplanet is much fainter than its host
star. The planet-to-star luminosity ratio ranges from 10−4 for
the brightest young Jupiters to 10−10 for an exo-Earth in visible
and near-infrared. Secondly, an exoplanet can be very close to
its host star, at angular separations lower than 1′′. Coronagraphs
can block the starlight, letting the exoplanet light reach the detec-
tor. However, coronagraphs require an aberration-free wavefront.
Hence, for a ground-based instrument, an adaptive optics (AO)

1 https://exoplanet.eu

system is needed to correct for Earth’s atmospheric turbulence.
State-of-the-art exoplanet imagers include GPI at Gemini South
(Macintosh et al. 2018), Clio2/MagAO at the Magellan telescope
(Sivanandam et al. 2006; Close et al. 2010), SCExAO at Subaru
(Jovanovic et al. 2015), and SPHERE at VLT (Beuzit et al. 2019).
GPI and MagAO are also being upgraded to GPI 2.0 (Chilcote
et al. 2022) and MagAO-X (Males et al. 2022), respectively.
These instruments currently allow the detection of massive and
young Jupiters, which mainly emit in the near-infrared.

SPHERE has been observing at the VLT since 2014. Its AO
system, called SAXO (Fusco et al. 2014), provides a corrected
beam to three coronagraph instruments, IRDIS (Dohlen et al.
2008), IFS (Mesa et al. 2015), and ZIMPOL (Schmid et al. 2018).
SAXO contains a 40 × 40 Shack-Hartmann (SH; Shack 1971)
wavefront sensor (WFS) working in visible light (500–900 nm),
a 41 × 41 high-order deformable mirror (HODM), and a fast
tip-tilt mirror (Baudoz et al. 2010). The starlight intensity (nor-
malized by the maximum of the non-coronagraph image) in the
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raw images of SPHERE reaches 10−4 at 300 mas (Cantalloube
et al. 2019) before post-processing techniques.

In exoplanetary science, some of the most exciting recent
discoveries have been detected around very young stars show-
ing the formation process of planets (e.g., the multiple system
orbiting PDS 70, Keppler et al. 2018; Haffert et al. 2019). How-
ever, these young stars are very red and at the limit of the
current AO capabilities. Due to the WFS sensitivity, the per-
formance of SAXO drops for stars fainter than magnitude 12
in the V band (Milli et al. 2017; Jones et al. 2022). Further-
more, even for bright stars, the temporal error of the AO loop
becomes significant when the coherence time of the atmosphere
is below 3 ms. When this occurs, a halo of stellar light, known as
the wind-driven halo, may appear in the coronagraph images,
increasing the starlight in the final image (Cantalloube et al.
2020). To tackle these limitations and improve detection capa-
bilities, the SPHERE consortium proposes an upgrade of SAXO
called SAXO+. This upgrade must answer three key scientific
requirements defined by Boccaletti et al. (2020): reach the young
giant planet population down to the snow line, observe fainter
and lower mass stars, and enhance the characterization of exo-
planetary atmospheres. SAXO+ will create deeper contrasts at
smaller angular separations for all stars and allow for the obser-
vation of fainter and redder stars than what SPHERE currently
permits.

To achieve these goals, the SAXO+ design includes a second
stage AO downstream of the current SAXO stage, as described
in Fig. 1. SAXO+ is part of the road map of the European South-
ern Observatory (ESO) instrument PCS/ELT (Kasper et al. 2021)
as a technical demonstrator of a two-stage AO for high-contrast
imaging. In SAXO+, the second stage is faster, with a maxi-
mum speed of 3 kHz, in order to address the temporal error of
SAXO. The wavefront sensing is done with near-infrared light,
at 1.2 µm, with a pyramid WFS (PWFS, Ragazzoni 1996) that
is more sensitive than the SH WFS. The SAXO+ consortium
chose the 28 × 28 kilo-DM from Boston Micromachines. As
the actuators on the edge of the DM are not fully controllable,
there are actually 26 actuators across the telescope pupil diam-
eter. Several solutions are possible for the RTC as well as for
how to control the different elements in a two-stage AO. In the
integrated case, one RTC receives inputs from the WFSs and
controls the two DMs. This solution will not be used in SAXO+.
In the stand-alone case, the two loops are independent, mean-
ing there is one RTC for each loop. This is the baseline solution
chosen for SAXO+. In a third case that has been investigated
by the SAXO+ consortium, the control algorithms of the second
stage account for the closed-loop telemetry of the first stage. In
this paper, we only consider the stand-alone solution with two
independent loops. The cascade AO-system design has shown
encouraging results in simulations by Cerpa-Urra et al. (2022)
and experimentally on an optical test bed by N’Diaye et al.
(2023).

In this paper, we study the SAXO+ system in numerical sim-
ulations (Sect. 2). The results aim to contribute to the trade-offs
and optimization in the instrument design. In Sect. 3, we show
the improvement expected from SAXO+ compared to SAXO in
terms of residual starlight intensity in the coronagraph image.
We study the impact of the gain of the first stage on the SAXO+
performance and on the displacement of second stage DM actu-
ators. We quantify performance as a function of the second stage
frequency. Then, we give the optimal system parameters (first
stage gain, first and second stage frequencies) for all simulated
turbulence conditions and science cases. Finally, we present a
specific study about the PWFS modulation radius.

2nd stage DM
26*26

Infrared WFS
Pyramid

Y, J bands

H, K bands

Real time 
calculator

second loop

HODM
41*41

Visible WFS
Shack-Hartmann

visible

infrared

Real time 
calculator

first loop (SAXO)

Coronagraph
instrument

frequency ∼ 1 kHz

frequency ∼ 2 or 3 kHz

Fig. 1. Current design of SAXO+. The first stage maximum frequency
is 1.38 kHz, and the second stage maximum frequency is 3 kHz. There
is also a mode for bright targets where only the Y band is used by the
pyramid WFS, but we do not simulate this case.

2. Simulation framework

To design a simulation of the SAXO+ system, one needs to
simulate the atmospheric turbulence that causes aberrations, the
SAXO+ AO system that corrects some of the aberrations, and
the coronagraph image in which the performance is measured.
In Sect. 2.1, we present the simulation tool. In Sect. 2.2, we
describe the science cases identified by the SAXO+ consortium.
In Sect. 2.3, we describe the numerical simulations of the atmo-
sphere turbulence. In Sect. 2.4, we give the assumptions we make
about several hardware and software subsystems of SAXO+. In
Sect. 2.5, we explain how we simulated the coronagraph images,
and we define the normalized intensity that we used as a metric
to probe the performance in this paper.

2.1. Simulation tool

The numerical simulations were performed with COMPASS, an
end-to-end AO simulation tool (Gratadour et al. 2016). COM-
PASS simulates atmospheric turbulence, the telescope pupil, AO
subsystems (SH and pyramid WFS, DM, control algorithm), and
image formation. The models of each of these components are
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described on the official website of the COMPASS tool2. Light
propagation from a pupil plane to a focal plane, and vice versa,
is based on Fourier optics.

As described in Goulas et al. (2023), we upgraded the
COMPASS platform with key features for the SAXO+ simu-
lations. Thus, it can now include a SH WFS and a pyramid
WFS in cascaded simulations, handle the temporal asynchrony
of a two-stage AO system, and compute coronagraph images
by simulating electric field propagation through either a coro-
nagraph composed of pupil and focal plane masks or a perfect
coronagraph (Cavarroc et al. 2006).

In this paper, the parameters of the simulations (hardware,
software, turbulence) were set using knowledge on the current
system (SAXO, VLT atmosphere conditions) and on the scien-
tific requirements (Boccaletti et al. 2020). All parameters are
summarized in Table 1. We studied the impact of the key parame-
ters (the ones with several values in the table) on the coronagraph
performance.

2.2. Science cases

The SAXO+ consortium defined eight science cases, given in
Table 2 (Schreiber et al. 2023). For each case, the science target
is also the AO guide star, and we provide the G and J mag-
nitudes, as it better captures the spectral range we are dealing
with in SAXO and SAXO+. We deduced the photon flux on
the SH WFS from the G magnitude mG and the photon flux
on the PWFS from the J magnitude mJ . The brightest target is
“bright-1”, with mG = 5.5 and mJ = 5.2. The magnitudes at the
two bands increase until the faintest case, “red-5”. As suggested
by their name, the five faintest targets are also red stars, with
mG − mJ = 2.4 for the “red-1” case and up to mG − mJ = 4.3
for red-5. For the red cases, the photon flux on the SH WFS is
lower than the photon flux on the PWFS. The last two columns
show the frequencies of each stage that we tested in this paper.
For the brightest stars, the photon flux level is high enough to run
the system at the maximum speed. As the number of photons on
the WFS decreased, we slowed down the first or second stage to
ensure there was at least one photo-electron per frame and per
subaperture for the SH or per pixel for the PWFS.

2.3. Turbulence

The simulation of the atmosphere is based on the ESO 35 layer
“median” profile for which we call vmedian the effective wind
speed (Vidal et al. 2019). Three seeing conditions were simu-
lated: a good seeing of 0.5′′, an average seeing of 0.8′′, and a
poor seeing of 1.2′′. We simulated four values of coherence time:
1, 3, 5, and 7 ms. We recall that the median coherence time at
Paranal is 4.5 ms and that Cantalloube et al. (2020) showed that
the wind-driven halo dominates in the raw images of SPHERE
when the coherence time of the atmosphere is below 3 ms. To
simulate a specific coherence time τ0, we computed the effective
windspeed v = 0.314 r0/τ0, where r0 is the Fried parameter. We
then multiplied the windspeed of each layer of the ESO 35 layer
profile by v/vmedian.

2.4. Adaptive optics system

2.4.1. Wavefront sensor

In the current SAXO system, the SH WFS is equipped with a
square spatial filter in a focal plane to improve aliasing rejection.
2 https://compass.pages.obspm.fr/website/

Table 1. Simulation parameters.

Turbulence

Profile ESO 35 layer median
Outer scale L0 = 25 m
Seeing* s = 0.5, 0.8, 1.2 arcsec
Coherence time* τ0 = 1, 3, 5, 7 ms

Telescope

Diameter D = 8 m
Entrance pupil VLT pupil with spiders

First stage

SH WFS
Wavelength λWFS = 700 nm
Subapertures 40 × 40
Readout noise 0.1 electrons/pixel

Deformable mirror
Geometry 41 × 41 + tip-tilt mirror
Modal basis 800 KL modes

Control loop
Reconstruction matrix Least squares method
Command law Integrator + scalar gain
Total delay 2.15 ms

Loop gain* g1 = 0, 0.01, 0.05,
0.1, 0.2, 0.3, 0.5

Second stage

Pyramid WFS
Wavelength λWFS = 1.2 µm
Subapertures 50 × 50
Readout noise 0.8 electrons/pixel
Modulation radius* 0, 1, 3, 5, 10 λWFS/D

Deformable mirror
Geometry 26 × 26
Modal basis 400 KL modes

Control loop
Reconstruction matrix Least squares method
Command law Modal integrator
Optical gain compensation* CLOSE algorithm, none
Total delay 2 sampling frames

Image formation

Type of coronagraph perfect
Wavelength λ = 1.67 µm
Exposure time 3 s

Notes. The asterisk indicates the variable parameters of this study. The
entries without an asterisk are fixed parameters.

The field of view can be 0.82′′, 0.89′′, 1.07′′ wide or the full
field view, which is selected by the telescope operator depend-
ing on the seeing (Sauvage et al. 2014). In the simulations, we
chose the 0.82′′ diameter for 0.5′′ seeing, the 0.89′′ diameter for
0.8′′ seeing, and the open position for 1.2′′ seeing, which are the
typical operating choices. To measure the position of the spot
on the SH WFS, the current system implements the thresholded
and weighted center of gravity (Sauvage et al. 2014). We used
the same algorithm in the simulations.

The pyramid WFS is well known for its dependency on the
properties of the incoming wavefront (in particular sensitivity
and linearity, see Vérinaud 2004). We decided to use the recently
developed “full pixel method” (Clergeon 2014; Deo et al. 2018)
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Table 2. Science cases and simulated frequencies.

Science case G mag J mag SH flux Pyramid flux Simulated frequencies
[ph-e/subap/ms] [ph-e/pixel/ms] 1st stage [Hz] 2nd stage [Hz]

bright-1 5.5 5.2 411 146 500, 1000

1000, 2000, 3000
bright-2 7.6 7.2 59.3 23.1
bright-3 9.6 7.8 9.41 13.3 250, 500, 1000
red-1 11.9 8.5 1.13 6.98 50, 250, 500
red-2 12.8 10.1 0.492 1.60
red-3 14.5 10.1 0.130 1.60 50, 250
red-4 15.3 11.4 0.0492 0.483 500, 1000, 2000
red-5 16.8 12.5 0.0124 0.175 10, 50, 250 100, 250, 500

for the pyramid measurement. This method is more robust
against pyramid misalignments and manufacturing defects than
the traditional gradient sensing scheme. The pyramid measure-
ment vector contains the signal of each valid pixel, normalized
by the mean of the valid pixels. The valid pixels on the pyramid
detector include every pixel in which at least 0.1% of the surface
is inside the pupil. The modulation radius of the PWFS was set
to 3 λWFS/D, except in Sect. 3.6.

The PWFS wavelength is 1.2 µm, according to the system
design choice. As the science cases of SAXO+ are mostly in
the H band and the SH WFS uses visible photons, the Y and
J bands are dedicated to the PWFS. A recent study has suggested
that unlike the SH, it is a wise choice to slightly oversample the
geometry of the pyramid subapertures compared to the pattern
of the DM actuators across the pupil (Vidal et al. 2018). Further-
more, in SAXO+ the second stage DM has less actuators than the
first stage DM, and – although this is not part of this study – it
is still considered by the project to use the PWFS to control the
first stage DM at a later point. As such, we decided to simulate a
50 × 50 sampling to eventually accommodate for the control of
the first stage DM if required (41 × 41 actuators).

The reference slopes of the SH WFS and the reference mea-
surement vector of the PWFS are defined by a flat wavefront
(no aberration). Non-common path aberrations (NCPAs) are not
taken into account.

2.4.2. Deformable mirror

For the first stage, we simulated the SAXO deformable mirror of
41 × 41 actuators and the tip-tilt mirror. The dead actuators of
the current HODM installed on SPHERE were not simulated in
this paper, which aims at choosing the main parameters of the
SAXO+ system. Once these parameters are chosen, we will add
the known dead actuators of the current HODM to study their
impact on the final performance, but this is out of the scope of
this paper.

The second stage DM is composed of 28 × 28 actuators.
The choice of the number of actuators resulted from a trade-
off between technical requirements (update rate, stroke), cost,
and market supply. The pupil was sized to 26 × 26 actuators
because the optical aperture recommended by Boston Microma-
chines does not include the actuators at the edge, which are not
fully controllable. The optical stroke was 11µm.

For each of these deformable mirrors, we computed
simplified Karhunen-Loève (KL) modes, as described by
Bertrou-Cantou et al. (2022). We call B1 the modal basis matrix
of the first stage DM and B2 the modal basis matrix of the second
stage DM. The columns of B1 and B2 contain the modes of the

basis expressed in the actuator space. The highest order modes
are filtered by truncation. We used 800 modes on the first stage
and 400 modes on the second stage.

2.4.3. Command matrices

The modal interaction matrices D1 and D2 were calibrated with-
out photon or detector noise under infinite flux conditions. We
note that D1 contains, in column, the slopes vector of the SH
WFS measured by pushing each mode of B1 one after the other
with 1 nm RMS amplitude. Similarly, D2 contains, in column,
the measurement vector of the PWFS obtained by pushing on
each mode of B2 (one after the other with a 1 nm RMS ampli-
tude). The same pyramid modulation was applied during the
interaction matrix calibration procedure and while closing the
loop.

The modal command matrices R1 and R2 are the generalized
inverse of the modal interaction matrices D1 and D2, respec-
tively. Mathematically speaking, with j = 1 or 2 respectively for
the first and second stage,

R j = (D⊺j D j)−1 D⊺j . (1)

2.4.4. Command law

For the first stage, the command law is a temporal integrator with
a scalar gain, g1, based on the following recurrence equation:

c1[i + 1] = c1[i] − g1B1R1m1[i], (2)

where c1 is the command vector containing the DM voltages of
the first stage, m1 is the SH slopes vector, and i is the iteration of
the recurrence. With the gain g1, we could handle the temporal
optimization of the loop.

For the second stage, we additionally used a vector of modal
gains gm:

c2[i + 1] = c2[i] − g2B2gmR2m2[i], (3)

where c2 is the command vector containing the DM voltages of
the second stage and m2 is the pyramid measurement vector.

As the amplitude of a mode increases, the nonlinearity of
the PWFS results in a sensitivity loss. This phenomenon can be
described in each mode by an optical gain between zero and one,
which we call αk for the mode number k. Thus, the effective gain
of the loop for this mode is g2αkgk, with gk as the k compo-
nent of the modal gain vector gm. The αk optical gains describe
a physical optical effect of the pyramid, and they are included in
the PWFS measurement m2. That is why they do not explicitly
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appear in Eq. (3). Several methods were developed to calibrate
the optical gains and to compensate for them during observations
(Korkiakoski et al. 2008; Deo et al. 2018; Esposito et al. 2020;
Chambouleyron et al. 2021; Agapito et al. 2023).

In this paper, we use the CLOSE algorithm (Deo et al. 2021),
a real-time optimization of the modal gains gk. CLOSE retrieves
information about the transfer function of Eq. (3) from the closed
loop pyramid measurements m2. Then, with a model of the trans-
fer function, CLOSE estimates the optimal gain of the loop and
adjusts the value of gk so that the effective gain g2αkgk is equal
to the estimated optimal gain.

The total delay of the first stage corresponds to the value
measured on the real SAXO system (1.56 ms, Cantalloube et al.
2020). For the second stage, we made an estimation of the time
required for the PWFS camera readout, RTC computational time,
electronics communication, and DM surface update, which is
about 300 µs. Thus, we set in this framework a total delay of
two sampling frames.

The command laws in Eqs. (2) and (3) are independent in
this paper. In particular, the measurement of the pyramid is
not used to control the first stage DM. Although an integra-
tor with a scalar gain is a robust control scheme, this approach
is quite conservative, with the exception of the CLOSE algo-
rithm. As a two-stage AO system, SAXO+ might benefit from
more ingenious control techniques. Some techniques are cur-
rently being studied for implementation in the second stage RTC:
linear quadratic Gaussian regulator (Sivo et al. 2014), disen-
tangled cascaded AO (Galland et al. 2023), inverse problem
approach (Béchet et al. 2023), and data-driven control (Dinis
2022). However, those studies are beyond the scope of this work.
Our numerical simulations used a baseline controller, and the
results of our parametric study will serve as a reference for future
comparisons with enhanced control laws.

2.5. Simulated coronagraph

Since SAXO and SAXO+ are built to provide a corrected
beam to the coronagraph instruments (IRDIS/IFS), we simu-
lated long-exposure coronagraph images. These instruments aim
at optically attenuating the starlight so that faint sources can be
detected (exoplanets, circumstellar disks, or any source in the
vicinity of a bright source). For all coronagraph images in this
paper, we considered no photon noise, no detector noise, and
no NPCAs between the coronagraph channel and the AO WFS
channel. Hence, we only studied the impact of the AO perfor-
mance on the coronagraph image as a function of the AO system
parameters (Table 1). And the only criteria we used to rate the
AO performance was the residual starlight intensity in the final
coronagraph image. The lower the residual starlight intensity is,
the better the performance of the AO.

We could have chosen to simulate the current coronagraphs
that are installed in SPHERE or the ones that are foreseen for
SAXO+. In both cases, the coronagraph image could have been
limited by diffraction patterns that cannot be corrected using the
pyramid or SH WFS (spiders, central obstruction, coronagraph
mask effects). For example, Potier et al. (2022) demonstrated
that the diffraction patterns (as well as NPCA speckles) can be
minimized using a focal plane wavefront controller. After such a
correction, the limitation in the coronagraph image comes from
the AO residual halo. Therefore, we can write that the AO has to
minimize the turbulence halo and that the focal plane wavefront
controller has to minimize the diffraction and speckle pattern.

In this paper, we did not include any technique of focal plane
correction and concentrated on studying the AO performance.

Hence, we wanted to measure the residual AO halo behind a
coronagraph with no bias from the coronagraph (i.e., the diffrac-
tion pattern). That is why we assumed a perfect coronagraph
(Cavarroc et al. 2006). We used a point spread function (PSF)
to refer to the non-coronagraph image, that is to say, the image
recorded without the coronagraph but with AO-corrected aber-
rations. Then, to simulate the perfect coronagraph, we computed
the pupil plane electric field associated with the post-AO phase
and removed the mean value of this field. Finally, the perfect
coronagraph image is the square modulus of the Fourier trans-
form of this field. The non-coronagraph image, which is the PSF,
was computed in the same way but without the mean subtraction.
The coupling of the AO and the focal plane wavefront control
will be studied in a future paper.

2.6. Criteria of performance

All coronagraph images were normalized by the maximum
intensity of the PSF. The normalized intensity η(x) at a given
position x in the coronagraph focal plane can be expressed as

η(x) =
I(x)

max(PSF)
, (4)

where I(x) is the intensity of the coronagraph image before nor-
malization. The metric we used is the azimuthal average µ of
the normalized intensity η as a function of angular separation
from the optical axis. At the angular separation s λ/D (s a real
number), µ can be written as

µ(s) =
1
As

∫
As

η(x) dx, (5)

whereAs is the ring-shaped area between the angular separation
(s− 0.5) λ/D and (s+ 0.5) λ/D from the star. We also computed
the standard deviation of the normalized intensity over the same
area.

There are several options regarding how to use the normal-
ized intensity for a performance criteria. For instance, we can
compare the normalized intensity curves of µ with respect to the
angular separation. However, for massive comparison of param-
eters, it is more suitable to reduce the performance criteria to one
number. We defined the criterion C(s1, s2) as the average of the
normalized intensity η between two angular separations s1 λ/D
and s2 λ/D :

C(s1, s2) =
1
As1, s2

∫
As1 , s2

η(x) dx, (6)

where As1, s2 is the ring-shaped area between the angular sep-
aration (s1 − 0.5) λ/D and (s2 + 0.5) λ/D . In this paper, as a
baseline, we used s1 = 3 and s2 = 5, as one of the main science
requirements of SAXO+ is to detect exoplanets as close as possi-
ble to a star (Boccaletti et al. 2020). In several figures, the Strehl
ratio (SR) is given for information (Mahajan 1983).

3. Results: Parametric study

This section presents a parametric study of the AO performance
of SAXO+ and SAXO. We first show coronagraph images for
three typical cases in Sect. 3.1. In Sect. 3.2, we show that the gain
of the first stage (SAXO) has to be adapted when the second stage
is used in order to ensure an optimal performance. In Sects. 3.3
and 3.4, we explore the following parameters: seeing, coherence
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Fig. 2. Coronagraph images after SAXO (first row) and SAXO+ (second
row) in the science cases bright-1 (left), red-1 (center), and red-4 (right).
Conditions: s = 0.8′′, τ0 = 3 ms. Imaging wavelength: λ = 1.67 µm.
The system parameters (gain and frequency of the first stage, respec-
tively g1 and f1, and frequency of the second stage f2) were optimized
to minimize the angular distance residuals between 3 and 5 λ/D and
are given in the lower-left corner of each image. The PWFS modulation
radius is 3 λWFS/D. The SR is in the lower-right corner.

time, first stage gain, first and second stage frequencies, and tar-
get brightnesses. In total, we simulated 3276 combinations of
these parameters (see Table 1). In Sect. 3.4, we give the optimal
AO parameters for each observing condition (target and weather
conditions). In Sect. 3.6, we focus on the modulation radius
of the pyramid and the impact of the modal gain optimization
performed by the CLOSE algorithm.

3.1. Coronagraph images

Figure 2 shows the typical coronagraph images obtained with
SAXO in the first row and those obtained with SAXO+ in the
second row. The seeing is 0.8′′ and the coherence time is 3 ms.
We focus on three specific science cases, bright-1, red-1, and
red-4. The system parameters (gain and frequency of the first
stage, respectively g1 and f1, and the frequency of the second
stage, f2) have been optimized by minimizing our baseline cri-
teria C(3, 5), the average normalized intensity between 3 and
5 λ/D (see Sect. 3.4).

In the bright-1 case (left) with SAXO (top) in Fig. 2, the edge
of the correction zone of the first stage is at 15 λ/D from the opti-
cal axis. It is set by the number of modes controlled by the SAXO
system (Sect. 2.4.2). The butterfly-shaped halo is due to the AO
temporal error, also known as the wind-driven halo (Cantalloube
et al. 2020). In the lower-left image, with SAXO+, the correc-
tion zone of the second stage appears inside the first one, below
10 λ/D separation. This correction zone is smaller because the
second stage DM has fewer actuators and controls fewer modes
than the first stage DM. The second stage, here running at 3 kHz,
corrects most of the wind-driven halo left by the first AO loop. In
the red-1 and red-4 cases (center and right images), SAXO does
not provide effective turbulence correction at the wavelength of
interest: there is no correction zone in the top images. The second
stage of SAXO+ compensates by itself (gain of the first stage is
0.01) most of the turbulence, and the correction zone of DM2

Fig. 3. Azimuthal average µ of the normalized intensity of Fig. 2
images. The semitransparent areas represent the standard deviation of
the normalized intensity. Conditions: s = 0.8′′, τ0 = 3 ms. PWFS mod-
ulation radius: 3 λWFS/D. Imaging wavelength: λ = 1.67 µm.

is visible in the coronagraph images (bottom), improving the
quality of the image with respect to SAXO case.

As the photon flux is decreasing in both WFSs from left to
right in Fig. 2, the residual intensity inside the correction zones
increases, and the actual performance is reduced as expected.
In particular, in the red-4 case with SAXO (upper-right image),
there is no correction at all, as the SR is at 0.01. Moreover, the
optimal values of first stage gain, first stage frequency, and sec-
ond stage frequency decrease from left to right. As expected,
we needed to slow down the loops to ensure a reasonable
signal-to-noise ratio on the WFS detector.

We plot in Fig. 3 the azimuthal average µ of the normalized
intensity versus the angular separation on the x-axis (see Eq. (4)).
The semitransparent areas represent the azimuthal standard devi-
ation of the normalized intensity. In our simulation, only the
wind-driven halo creates asymmetry in the coronagraph images.
Hence, the wider the semitransparent area in Fig. 3, the stronger
the wind-driven halo.

For the bright case (blue curves in Fig. 3), from 2 to 6 λ/D,
the azimuthal average µ obtained with SAXO+ is lowered by a
factor of ten compared to SAXO. For instance, at 5 λ/D, we
obtained a 7 × 10−5 normalized intensity with SAXO+. More-
over, the standard deviation (linked to the wind-driven halo, i.e.,
bandwidth residuals) is also reduced, by a factor two in the
SAXO+ case. At a 10 λ/D separation, we reached the edge of
the second stage correction zone, with a normalized intensity
of 5 × 10−6 for SAXO+, improved by a factor four compared to
SAXO. Further away, from 15 λ/D, the SAXO and the SAXO+
system cannot correct the turbulence, and the intensity level is
dominated by the turbulence level. The correction zone cutoffs
at 15 λ/D and 10 λ/D for the first and second stage are reduced
compared to the theoretical DM geometry since we used only
800 and 400 modes, respectively (60 and 75% of the total num-
ber of actuators). Between 10 λ/D and 15 λ/D, we noticed an
intermediate correction zone, which is as expected. The zone is
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where the first stage can produce a correction, while the second
stage cannot due to its limited number of actuators. It should be
noted that if the frequency and the gain of the first stage are the
same in the SAXO and the SAXO+ simulations, the result is that
the SAXO and SAXO+ curves are superimposed, as can be seen
in Fig. 3 (between 13 and 15 λ/D). In our case the curves are
not perfectly superimposed due to differently tuned AO param-
eters. The gain of the first stage and the frequencies of both
stages are optimized for each curve to reach the best performance
between 3 λ/D and 5 λ/D (see Sect. 3.4). Improving the perfor-
mance in this region comes with a loss of performance between
10 and 15 λ/D.

For the red-1 (orange) and red-4 (red) cases in Fig. 3, there is
a loss of performance. This is expected because there are fewer
photons on the WFS and the loops have to be slowed down. Nev-
ertheless, SAXO+ always performs better than SAXO by a factor
of ten to 100 (red-4).

3.2. First stage gain

The gain of the first stage impacts the first stage residuals and,
as a result, the SAXO+ performance. The overshoot of the first
stage transfer function lies inside the bandwidth of the second
stage transfer function. If the first stage gain is too high, it lowers
the second stage correction, especially in the low photon flux
regime on the SH. Cerpa-Urra et al. (2022) showed that for a
two-stage AO system in low flux conditions on the first stage, the
optimal first stage gain is lower for the two-stage system than for
the individual first stage. We confirmed this behavior, comparing
the optimal gain of the first stage for SAXO to that of SAXO+.

In the upper plot of Fig. 4, we represent the criterion C(3, 5) –
the average normalized intensity between 3 and 5 λ/D – as a
function of the first stage gain, with SAXO alone in blue and
with SAXO+ in orange. The science case is bright-3, the seeing
is 0.8′′, and the coherence time is 3 ms. The PWFS modulation
radius is 3 λWFS/D. For both the SAXO and SAXO+ curves,
there is an optimal first stage gain for which the performance
criterion is minimal. In these specific observing conditions, the
best performance of SAXO is achieved with a 0.3 optimal gain,
while the best performance of SAXO+ is reached with a lower
optimal gain of 0.1 on the first stage. This behavior confirms the
results of Cerpa-Urra et al. (2022).

Nevertheless, reducing the first stage gain increases the
amount of turbulence that the second stage has to correct. The
specifications of Boston Micromachines on their DM indicates
an optical stroke of 11 µm. Part of this stroke is used to flat-
ten the DM, correct for NCPA, and other additional calibrations.
Hence, for the second stage DM, the stroke might not be suffi-
cient to deal with the first stage residuals. In our simulations, we
consider no stroke limitations, and the second stage DM has an
infinite stroke. However, we recorded the actuator displacement
during each simulation.

In the lower part of Fig. 4, for each first stage gain, we have
plotted the temporal maximum of the spatial peak-to-valley dis-
placement over the DM actuators of the second stage (full line)
as well as the temporal maximum of the spatial standard devia-
tion (dashed line). Between 0.1 and 0.5, the maximum actuator
displacement is at a constant level of 1.5 µm, and the maximum
standard deviation displacement is 0.3 µm. When the first stage
gain drops below 0.1, the maximum peak-to-valley displacement
increases and reaches 2.7 µm for a 0.01 gain and 4 µm when the
first stage is deactivated (gain is zero). For the considered science
case (bright-3) and turbulence conditions (0.8′′ seeing and 3 ms
coherence time), setting the first stage gain at its optimal value of
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Fig. 4. Impact of the first stage gain on the SAXO+ performance and the
second stage DM. Upper graph: Criteria C(3, 5) (averaged normalized
intensity between 3 and 5 λ/D angular distance) versus the first stage
gain. Lower graph: maximum actuator displacement during the expo-
sure versus the first stage gain. Science case: bright-3, seeing = 0.8′′,
and τ0 = 3 ms. PWFS modulation radius: 3 λWFS/D. Imaging wave-
length: λ = 1.67 µm.

0.1 seems to be reasonable, as 1.5 µm of actuator displacement
is used while the stroke of the DM is 11 µm.

We extended this analysis to all SAXO+ science cases and
turbulence conditions. We obtained a similar behavior for all
cases, and only the values of the optimal gain and the peak-to-
valley displacement changed (Sect. 3.4).

3.3. Second stage frequency

The maximum frequency of the second stage is one of the
major system trade-offs. In high flux conditions, a higher fre-
quency means a lower stellar intensity in coronagraph images
but harsher constraints on the real-time system (e.g., pyramid
modulation mirror, RTC, electronics). In this section, we study
the performance as a function of the second stage frequency.

Figure 5 shows the azimuthal average µ of the normalized
intensity versus the angular separation for SAXO (in blue) and
for SAXO+ with various frequencies of the second stage (1 kHz
in orange, 2 kHz in green, and 3 kHz in red) and four coherence
times (1, 3, 5, 7 ms). The science case is bright-1, namely high
flux conditions, and the seeing is 0.8′′. The PWFS modulation
radius is 3 λWFS/D.
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seeing = 0.8′′, science case = bright-
1. PWFS modulation radius: 3 λWFS/D.
Imaging wavelength: λ = 1.67 µm.

For all cases (τ0 and f2) but one that we discuss below
(τ0 = 1 ms and f2 = 1 kHz), SAXO+ improves the coronagraph
performance between 3 and 5 λ/D by a factor of ten or five. In
all cases, the SAXO+ performance improves as f2 increases. And
the azimuthal average µ of the normalized intensity is always
smaller at 3 kHz than at 2 kHz. The performance gain between
the different operating frequencies narrows as the coherence
time increases, which is expected because the bandwidth error
becomes less and less dominant.

If the second stage runs at 1 kHz and τ0 = 1 ms, SAXO+
does not improve the correction of SAXO beyond 6 λ/D, as
shown by the blue and orange curves that are superimposed in
Fig. 5 in the upper-left graph. This happens because the CLOSE
algorithm lowers the modal gains on the highest order modes
for the SAXO+ system to compensate for the low signal-to-noise
ratio on the PWFS. To overcome this phenomenon, we could
use a modal integrator on the first stage and increase the gain
on high-order modes above 6 λ/D. Not only in this specific
case but more generally, increasing the first stage gain for high-
order modes above 10 λ/D (modes not corrected by the second
stage) might improve the SAXO+ performance, compared to our
current study. Indeed, it will decrease the normalized intensity
between 10 and 15 λ/D, as the first stage gain is currently sub-
optimal for a SAXO-alone system. Moreover, it will improve the
PSF quality at the top of the pyramid WFS and reduce aliasing
effects.

In Fig. 6, we give the average intensity between 3 and 5 λ/D
with a 2 kHz second stage divided by the same quantity for the
3 kHz case. A ratio greater than one (green boxes) means that
3 kHz performs better than 2 kHz, while a ratio lower than one
(red boxes) means that 2 kHz performs better than 3 kHz. The
coherence time varies along the rows (values at the bottom),
the science cases vary along the columns, and each table cor-
responds to a given seeing (values at the top). For all cases, the

Fig. 6. Ratio between performance at 2 kHz and 3 kHz. Here the per-
formance criteria is the average intensity between 3 and 5 λ/D. Green
means 3 kHz performs better than 2 kHz, while red means 2 kHz per-
forms better than 3 kHz.

ratio of normalized intensities decreases as the coherence time
increases, as expected and as we already commented about for
Fig. 5: the longer the coherence time, the smaller the correction
loop frequency can be.

Moreover, the ratio of normalized intensities decreases with
the star brightness. With a 0.8′′ seeing and a 3 ms coherence
time, the ratio is 1.23 in the bright-1 case, and it decreases to
0.75 in the red-3 case. In most of the red cases, 3 kHz is too fast,
which means that there are not enough photons on the WFS to
get a better correction by increasing the speed of the loop.

Except for the lowest coherence time of 1 ms, the ratio of per-
formance does not exceed 1.34 (in the bright-1 case with 0.5′′
seeing and τ0 = 3 ms). Given the constraints for 3 kHz (RTC,
pyramid modulation, electronics), this improvement of perfor-
mance may not be significant enough to justify an increase in the
maximum second stage frequency from 2 to 3 kHz.
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Fig. 7. SAXO+ optimal parameters and maximum peak-to-valley displacement of second stage DM actuators with respect to the science cases
(rows) and the turbulence conditions (columns). Each box contains (in this order) the first stage gain, the first stage frequency, the second stage
frequency, and the maximum peak-to-valley displacement.

3.4. Optimal parameters

This section synthesizes the optimization of the system param-
eters for all observing conditions with a fixed 3 λWFS/D PWFS
modulation radius in Fig. 7. We first set the observing conditions,
for instance a 3 ms coherence time, a 0.8′′ seeing, and the bright-
3 science case. We ran simulations for every combination of first
stage gain g1 (Table 1) and first and second stage frequencies
(Table 2), respectively f1 and f2. Then we chose the simulation
with the triplet of parameters g1, f1, and f2 that minimizes the
criteria C(3, 5). For a bright-3 science case, a 3 ms coherence
time, and a 0.8′′ seeing (third row and fifth column in Fig. 7), the
optimal parameters are g1 = 0.1, f1 = 1 kHz, and f2 = 3 kHz.
The maximum peak-to-valley displacement of an actuator of the
second stage DM is 1.6 µm.

This optimization was performed again for each combination
of science case, coherence time, and seeing, which built the rest
of the table of Fig. 7. Each box contains, from top to bottom, the
optimal first stage gain, the optimal first and second stage fre-
quencies, and the peak-to-valley displacement. The color scale
refers to the peak-to-valley displacement.

The optimal second stage frequency decreases from the
upper-left corner to the bottom-right corner. This is expected
because the optimal second stage frequency decreases for fainter
photon flux on the PWFS and as the coherence time of the atmo-
sphere increases. Another consistent observation is the decrease
of the optimal first stage gain with the photon flux on the SH
WFS. Indeed, decreasing the first stage gain mitigates the propa-
gation of the noise and the aliasing in the first stage residuals.
For instance, with a 3 ms coherence time and a 0.8′′ seeing,
the optimal first stage gain is 0.3 for the bright-1 case, and it
reduces between zero and 0.1 for every red case. A gain of zero
is equivalent to an open loop for the first stage.

The maximum peak-to-valley displacement of the second
stage DM actuators is also represented with the color scale.
Blue cases are the lowest peak-to-valley displacement, and red
cases are the highest. As wavefront correction by the first stage
degrades, from top to bottom, the maximum peak-to-valley dis-
placement increases because the second stage has to correct for
more and more aberrations. In the worst case (τ0 = 1 ms, see-
ing = 1.2′′, red-2, and red-3 cases), the maximum displacement
reaches 6.6µm. However, for red-1 and red-2 cases, we found
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Fig. 8. Coronagraph images after SAXO for all science cases (rows) and atmospheric conditions (columns). Imaging wavelength: λ = 1.67 µm.

that the actuator displacement can be reduced by about 1 µm by
increasing the first stage gain to 0.1, and the loss in performance
is by no more than a factor of 1.2 for all turbulence conditions.

In Figs. 8 and 9, we show the coronagraph images obtained
with the optimal parameters for SAXO and SAXO+, respec-
tively, for all science cases (rows) and observing conditions
(columns). The optimal parameters of SAXO alone are presented
in Appendix A. They are not the same as the first stage in
SAXO+. For example, the optimal first stage gain can be dif-
ferent in SAXO and SAXO+ (Sect. 3.2). The SR is written in the
lower-left corner of each image. In the bright-1 to bright-3 cases,
SAXO+ creates a deeper correction zone inside the SAXO one.
For the red cases, SAXO achieves a poor correction (SR lower
than 0.7) or no correction at all (SR ∼ 0.1 and no correction
zone). That is why the optimal first stage gain for SAXO+ is
mostly zero or 0.01 in the red cases (see Fig. 7). Nevertheless,
with SAXO+, the second stage correction zone is present in the
coronagraph images, and SAXO+ performs better than SAXO in
all science cases and turbulence conditions.

3.5. Comparison with real SAXO performance

In this section, we show that the absolute level of our simulated
SAXO performance is in good agreement with the measured on-
sky performance. Several studies have reported the performance
of SAXO. However, the instrument has evolved since 2014 (e.g.,
low wind effect limitation, Milli et al. 2018) and so have its
performance criteria (e.g., discrepencies between RTC-Strehl
and measured Strehl, Milli et al. 2017). We therefore chose to
compare our simulation only with the latest on-sky SAXO per-
formance published (Jones et al. 2022; Courtney-Barrer et al.
2023).

For the red-1 (G mag = 11.9) and red-2 (G mag =
12.8) cases, Jones et al. (2022) measured an on-sky SR at
0.52 +/−0.08 and 0.43 +/−0.12, respectively, in the 30% best
condition category (corresponding to a seeing of <0.8′′ and
τ0 > 4.1 ms). These observing conditions are between the 3
and 5 ms cases for 0.8′′ seeing in our study (probably closer to
the 3 ms case, as the SR performance drops fast for τ0 < 5 ms).
The on-sky performance is in good agreement with our simu-
lated SR (Fig. 8) between 0.63 and 0.74 (slightly optimistic) for
red-1 and between 0.43 and 0.59 (excellent agreement) for red-2.
The fainter cases studied in Jones et al. (2022) are G mag = 13.9;
therefore, we can only put an upper limit for the performance for
red-3 (G mag = 14.5) at SR< 0.05. This is in agreement with our
simulations that lie between 0.02 and 0.09.

The use of a perfect coronagraph (Sect. 2.5) and the absence
of NCPA in our simulations likely lead to an overestima-
tion of the SPHERE normalized intensity performance in the
best observing conditions. For these reasons, we only com-
pare our simulation to the worst atmospheric condition cases in
Courtney-Barrer et al. (2023), for which the performance is more
likely limited by AO residuals only. The bright-2 (G mag = 7.6)
and bright-3 (G mag = 9.6) cases in our study respectively corre-
spond to mid targets (5 <G mag< 9) and faint targets (G mag>
9) in Courtney-Barrer et al. (2023). From their Fig. 8, we found a
difference of less than 0.5 magnitude between their on-sky mea-
surements in the worst turbulence case (best 85% category) and
our simulation for the 3 ms case for 1.2′′ seeing for both bright-2
and bright-3 cases.

3.6. Modulation radius of the PWFS

The linearity range and the robustness of the PWFS increases
with the modulation radius but at the cost of sensitivity.
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Fig. 9. Coronagraph images after SAXO+ for all science cases (rows) and atmospheric conditions (columns). Imaging wavelength: λ = 1.67 µm.

Table 3. Explored parameters for simulations about modulation radius.

Modulation radius No modulation, 1, 2, 3, 5, 10 λWFS/D
Science cases Bright-1, red-1 and red-4
Seeing 0.8′′, 1.2′′

2nd stage gain g2 0.1, 0.2, 0.4, 0.6, 0.8, 1
Modal gains gm Optimized by CLOSE or fixed to 1

Moreover, in the SAXO+ system with a 3 kHz second stage,
the modulation mirror can hardly draw a modulation larger than
3 λWFS/D. In the following sections, we study the impact of
PWFS modulation on the coronagraph performance.

We performed simulations with various values of modula-
tion radius, science cases, seeing, and second stage gain g2. The
explored parameter space is presented in Table 3. For each sci-
ence case, the first and second stage frequencies and the first
stage gain are fixed to the optimal values obtained in Sect. 3.4
for the 3 λWFS/D modulation (Fig. 7):

– bright-1 : g1 = 0.3, f1 = 1000 Hz, f2 = 3000 Hz;
– red-1 : g1 = 0.1, f1 = 500 Hz, f2 = 2000 Hz;
– red-4 : g1 = 0.01, f1 = 50 Hz, f2 = 1000 Hz.

The coherence time is fixed at τ0 = 3 ms. We also performed
the simulations with and without the CLOSE optimization on the
second stage integrator in order to evaluate the impact of CLOSE
on the overall performance. When CLOSE is disabled, the vector
of modal gains gm (Eq. (3)) is constant and equal to one.

3.6.1. CLOSE versus manually optimized scalar gain

In this section, we study the impact of the loop gain g2 on the
coronagraph performance, with the CLOSE optimization and

in the scalar gain case (when CLOSE is disabled). Figure 10
shows the average of the normalized intensity between 3 and 5
λ/D – performance criterion C(3, 5) – versus the second stage
g2. The dashed lines are simulations with the CLOSE optimiza-
tion, and the solid lines are those with a scalar gain. Blue curves
correspond to 0.8′′ seeing and orange curves to 1.2′′ seeing. In
the figure, we compare a no modulation case on the left with a
3 λWFS/D modulation radius on the right.

In the scalar gain case, when CLOSE is disabled (solid lines),
there is an optimal gain of the second stage integrator that mini-
mizes the C(3, 5) criterion. For instance, in the bright-1 case, the
optimal gain is 0.6 for a 0.8′′ seeing and 0.8 for a 1.2′′ seeing.
With the CLOSE optimization, the dashed lines are flat, which is
expected because CLOSE does a temporal optimization of each
modal gain in the vector gm. If the scalar gain g2 is below its
optimal value, CLOSE will compensate for it by increasing the
modal gains gm, and vice versa.

In the bright-1 case, the minimum of the scalar gain curve
is equal to the performance achieved with CLOSE. For instance,
with a 0.8′′ seeing and a 3 λWFS/D modulation radius, the per-
formance criteria C(3, 5) is 7 × 10−6 for the dashed and solid
lines. In the red-1 and red-4 cases, the minima of the scalar gain
curves are slightly lower than the performance we obtained with
the CLOSE optimization. The most obvious case is red-4 with a
3 λWFS/D modulation radius, where there is a factor of 1.5 differ-
ence between the best scalar gain performance and the CLOSE
performance. The CLOSE algorithm is less efficient on fainter
targets because the signal-to-noise ratio of the PWFS measure-
ments is lower compared to bright targets, which complicates the
transfer function retrieval.

Finally, we found that a manual optimization of the scalar
gain provides a performance similar to the automatic CLOSE
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Fig. 10. Criterion of performance C(3, 5) versus second stage gain for
three science cases (bright-1, red-1, and red-4) and two seeing con-
ditions (0.8′′ in blue and 1.2′′ in orange). We compare the CLOSE
optimization (dashed line) and the scalar gain case (without CLOSE,
full line). Imaging wavelength: λ = 1.67 µm.

optimization. The factor of 1.5 difference between the best scalar
gain performance and the CLOSE performance is indeed small.
As atmospheric conditions (seeing, coherence time) often vary
during observations, the CLOSE algorithm is more robust than
a manually optimized scalar gain. Moreover, on sky, the curve
performance versus scalar gain (used to find the optimal scalar
gain) are noisy and hardly measurable.

However, there is no improvement from using a modal opti-
mization compared to an optimized scalar gain. The dependency
of the PWFS optical gains with the spatial order of the mode is
not significant in the SAXO+ system. This is expected because
the PWFS wavelength is in the near-infrared (1.2 µm), and the
SR ratio at the top of the pyramid is quite high (60% in the
red-4 case with 0.8′′ seeing). Thus, the PWFS works in a suffi-
ciently linear regime to avoid the need of dealing with the spatial
dependency of the optical gains.

3.6.2. Impact of modulation

In Fig. 11, we plot the average of the normalized intensity
between 3 and 5 λ/D versus the modulation radius of the PWFS
using either a manually optimized scalar gain (full line) or the
CLOSE optimization (dashed line). A 0 λWFS/D modulation
radius means that there is no modulation at all. In the scalar

Fig. 11. Criterion of performance C(3, 5) versus pyramid modulation
radius for three science cases (bright-1, red-1, and red-4) and two seeing
conditions (0.8′′ in blue and 1.2′′ in orange). We compare the CLOSE
optimization (dashed line) and a manually optimized scalar gain (with-
out CLOSE, full line). Imaging wavelength: λ = 1.67 µm.

gain case, we optimized the second stage gain as described in
Sect. 3.6.1 (see Fig. 10).

First, we analyzed the radii above 1 λWFS/D, and we did
not consider the nonmodulated pyramid. In all simulated cases,
the optimal modulation radius is 2 λWFS/D. As the modulation
radius increases, the performance degrades up to a factor three
at 10 λWFS/D. Such behavior is expected because the sensitivity
of the PWFS decreases as the modulation radius increases. The
performance at 1 λWFS/D is higher than at 2 λWFS/D. This can
be explained by the decrease in the PWFS linearity range with
the modulation radius.

In all cases, the performance of the nonmodulated pyramid
is better than a 1 λWFS/D modulation radius and similar to the
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2 λWFS/D case. It is possible that the gain in sensitivity (by
decreasing the modulation radius from 1 to 0 λWFS/D) is more
significant in the final performance than the loss in linearity
range. For a 0.8′′ seeing (blue curves), the best performance is
achieved with a nonmodulated PWFS for the three target cases.
But with a 1.2′′ seeing, the optimal modulation radius is still
2 λWFS/D. The required linearity range of the PWFS widens
when AO residuals increase. The performance gain of the non-
modulated pyramid is small, though, and the modulated pyramid
is more robust against condition variations.

4. Conclusions

Currently in the design phase, SAXO+ is the planned upgrade
of SAXO, the AO system of the exoplanet imager SPHERE at
the VLT. The SAXO+ upgrade will consist of a second stage AO
downstream of the SAXO stage. This second loop will be faster
than the first and includes a near-infrared PWFS. In this work,
we ran end-to-end simulations in order to dimension this system.

To assess the performance of SAXO+, we computed the
perfect coronagraph image of an on-axis source. The explored
parameter space (more than 3000 cases) includes science cases,
turbulence conditions (seeing and coherence time), and system
parameters (first stage gain, first and second stage frequency,
PWFS modulation radius, PWFS modal gains optimization). For
all science cases and conditions, we have shown that SAXO+
reduces the residual starlight intensity by a factor of ten inside
the correction zone of the second stage, between 3 and 10 λ/D
(Figs. 8 and 9).

To find the optimal system parameters, we used as a per-
formance criteria, the average normalized intensity between 3
and 5 λ/D. The optimal first stage gain is lower for SAXO+
than for SAXO alone (without the second stage). A second
stage frequency of 2 kHz seems a realistic trade-off between
the instrument performance and technical constraints on the
real-time system (RTC, electronics, PWFS modulation). We
summarize the simulation results in a table with the optimal
values of the three system parameters for all simulated sci-
ence cases and turbulence conditions (Fig. 7). Based on specific
simulations for the PWFS, we suggest that a 2λ/D modula-
tion radius is a good compromise between performance and
robustness against varying turbulence conditions. Finally, we
find that the SAXO+ system can be optimized to fulfill the
requirements provided in Boccaletti et al. (2020), namely observ-
ing red stars and improving the performance of the current
system.

We remind that these results are valid under the assumption
of two independent integrators: one with a scalar gain on the first
stage and one with the CLOSE algorithm on the second stage
(with CLOSE or with a scalar gain for the results about the pyra-
mid modulation radius). Forthcoming studies with more recent
and efficient control techniques might update our conclusions.

With the SAXO+ performance described in this paper, the
actual performance of the instrument will often be limited by
two effects that were purposefully neglected in this paper: the
coronagraph diffraction pattern and the quasi-static speckles due
to NCPA. In a forthcoming paper, we will enhance this study
with realistic coronagraphs and a third control loop in cascade
based on focal plane wavefront sensing (Potier et al. 2022).
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Appendix A: Optimal parameters of SAXO alone

We show in Fig. A.1 the optimal first stage gain and frequency
for SAXO alone, that is to say when the first stage runs without
the second stage. As highlighted for a specific case in Sect. 3.2,
the optimal first stage gain is always lower for SAXO+ than
for SAXO. For instance, in the bright-1 case, the optimal gain
is 0.5 for SAXO while the optimal first stage gain for SAXO+
is 0.3 or 0.2 depending on the turbulence conditions (except 0.8"
seeing and τ0 = 1 ms).

Appendix B: Azimuthal average µ of normalized
intensity for every science cases and turbulence
conditions.

In Sect. 3.3 Fig. 5, we plot the azimuthal average µ of the normal-
ized intensity for different frequencies of the second stage. The
seeing is set to 0.8" and the science case is bright-1. From Fig.
B.1 to Fig. B.24 we plot the same figure for every other combi-
nation of seeing and science case. The PWFS modulation radius
is fixed at 3 λWFS/D.
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Fig. A.1. First stage optimal parameters with respect to the science cases and the turbulence conditions. Each box contains the optimal first stage
gain and the optimal first stage frequency.

Fig. B.1. Bright-1, seeing = 0.5". Fig. B.2. Bright-1, seeing = 0.8".
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Fig. B.3. Bright-1, seeing = 1.2".

Fig. B.4. Bright-2, seeing = 0.5".

Fig. B.5. Bright-2, seeing = 0.8".

Fig. B.6. Bright-2, seeing = 1.2".

Fig. B.7. Bright-3, seeing = 0.5".

Fig. B.8. Bright-3, seeing = 0.8".
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Fig. B.9. Bright-3, seeing = 1.2".

Fig. B.10. Red-1, seeing = 0.5".

Fig. B.11. Red-1, seeing = 0.8".

Fig. B.12. Red-1, seeing = 1.2".

Fig. B.13. Red-2, seeing = 0.5".

Fig. B.14. Red-2, seeing = 0.8".
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Fig. B.15. Red-2, seeing = 1.2".

Fig. B.16. Red-3, seeing = 0.5".

Fig. B.17. Red-3, seeing = 0.8".

Fig. B.18. Red-3, seeing = 1.2".

Fig. B.19. Red-4, seeing = 0.5".

Fig. B.20. Red-4, seeing = 0.8".
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Fig. B.21. Red-4, seeing = 1.2".

Fig. B.22. Red-5, seeing = 0.5".

Fig. B.23. Red-5, seeing = 0.8".

Fig. B.24. Red-5, seeing = 1.2".
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