

SYstèmes de Référence Temps-Espace

High-performance gyroscope for rotational seismology.

Nathan Marliere, Mohamed Guessoum,

Remi Geiger et Arnaud Landragin

INTRODUCTION

Presentation of cold atom sensors

IACI: Atomic interferometry and Inertial Sensors

An inertial sensor measures accelerations or rotations of an object in an inertial frame

Ex: Gravimeters, gradiometers, gyroscopes...

Various fields of applications

INTRODUCTION

Atomic gyroscopes Vs Optical gyroscopes

Sagnac effect: phase proportional to rotation at the output of an interferometer

$$\Delta \Phi_{\Omega} = \frac{4\pi E}{hc^2} \vec{A}. \vec{\Omega}$$

E: Energy of the particle used

A: Area of the interferometer

Quick comparison Atoms/Optics :

	Energy	Area	Shot noise (sensitivity ∕√N)
Photons	~1 eV	In the order of m ²	10 ¹⁵ Photons/s/mW
Atoms (Cs)	~10 ¹¹ eV 🕃	mm ² to cm ² (This work: 11cm ²) 这	10 ⁷ Atoms/s 这

State of the art of Gyroscopes

Fiber optics gyroscope

iXBlue FOG

Sensitivity: 6.10⁻⁸ rad.s⁻¹.Hz^{-1/2} Stability: 4.10⁻¹⁰ rad.s⁻¹ (8 Days)

Gyrolaser G-Ring

G-Ring, 16 m² Sensitivity: **1.2x10⁻¹¹ rad.s⁻¹.Hz^{-1/2}** Stability: **7x10⁻¹³ rad.s⁻¹ (2 h)** Cold atom gyroscope (This work)

Sensitivity: $3 \times 10^{-8} rad. s^{-1}. Hz^{-1/2}$ Stability: $2 \times 10^{-10} rad. s^{-1}$ (8h)

ATOMIC INTERFEROMETRY SYRTE Deservatoire | PSL S SORBONNE

4-pulse interferometer: Gyroscope

SYRTE Observatoire | PSL 🕱 SORBONNE

Vibration noise sources

EXPERIMENTAL SET-UP

SYRTE Observatoire | PSL Sorbonne

SYRTE Observatoire | PSL

Vibration noise

Vibration noise covers several rad

Attenuates high frequencies above 0.5 Hz

SYRTE Dobservatoire | PSL 🔀 🗳 SORBONNE de Paris

Vibration noise correlation

 $\Delta \Phi_{\rm tot} = \Phi_{\Omega} + \delta \Phi_{\rm vib} + \delta \Phi_{laser}$

Vibration noise covers several rad

Correlation with classical sensors

SYRTE Observatoire | PSL SORBONNE

Compensation of vibrations

Compensating vibrations using the laser phase

$$P = \frac{1}{2} \left(1 + C \sin\left(\Phi_{\Omega} + \Phi_{\text{vib}} + \Phi_{\text{compensation}} + \Phi_{laser}\right) + \delta\phi_{residue} < 1 \right)$$

Gyroscope operation sequence

Sequential operation of cold atom interferometers:

Dead times — Prevents from reaching the quantum noise limit.

Meunier, PRA (2014) Jekeli, Navigation 52, 1 (2005)

Cancelling dead times with other operating methods

Dead Times with no-joint mode

Simple-Joint Mode

Stability record - triple-joint sequence

Triple-Joint Interrogation:

Faster averaging of rotations (N^{-1}) visible due to a better estimation of noise

Double-Joint Mode

The double-diffraction

Main advantages:

Enable the Double-joint mode

- Enhance sensitivity by doubling interferometric area
- Rejection of systematic effects

Double Diffraction —> Laser phase not available to scan fringes —> Develop new methods to scan the phase

New techniques to scan the interferometric phase

Implementation of Mirror jumps

Characterization of the step response

Characterization of the Scale factor

~426 $nm/360^{\circ}$ on $\pi/_2$ pulse (Divided by 2 in double diffraction)

Implementation of Frequency jumps

Precise measurement on L

~ 370 *MHz*/180° on $\pi/_2$ pulse (Divided by 2 in double diffraction)

Comparison of results obtained for each methods

Conclusion

▶ New methods for RTC **demonstrated** in simple diffraction to enable **Double-Diffraction**

- Implementation of **Double-Diffraction**:
 - Cancelling systematic effects
 - > **Double** interferometer area
 - Enable Double-Joint sequence
 - > Space applications
- Implementation and test of Double-Joint:
 - Faster averaging of vibrations
 - Rotational seismology Applications

SYstèmes de Référence Temps-Espace

Thanks for your attention