
HAL Id: hal-04749896
https://hal.science/hal-04749896v1

Submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring of Neural Network Classifiers using Neuron
Activation Paths

Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, Mohamed Ghazel

To cite this version:
Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, Mohamed Ghazel. Monitoring of Neural
Network Classifiers using Neuron Activation Paths. International Conference on Verification and
Evaluation of Computer and Communication Systems (VECoS), Oct 2024, Djerba, Tunisia, Tunisia.
�hal-04749896�

https://hal.science/hal-04749896v1
https://hal.archives-ouvertes.fr

Monitoring of Neural Network Classifiers using
Neuron Activation Paths

Fateh Boudardara1[0000−0001−5771−7676], Abderraouf Boussif1, Pierre-Jean
Meyer1, and Mohamed Ghazel1

1Univ. Gustave Eiffel, COSYS-ESTAS, 20 rue Élisée Reclus, F-59666, Villeneuve
d’Ascq, France {firstname.lastname}@univ-eiffel.fr

Abstract. To be deployed in safety critical applications, neural network
(NN) systems require to be verified during the development phase and
then monitored during the runtime phase. The latter phase is essential to
closely supervise the performance and the behavior of NNs, particularly
when used for safety-related tasks. This paper presents a novel approach
for monitoring NN classifiers through real-time supervision of the model’s
behavior and decisions, to detect potential anomalies. The approach
is based on the concept of Neuron Activation Paths (NAPath), which
allows extracting relevant activated/inactivated paths that link the
inputs to the outputs of the network and significantly influence the
NN’s classification decision. The main idea is to characterize paths for
each class using training data, i.e., from the training data set, we group
the images of the same class together. Then, for each group of images,
we identify their common active and inactive paths, respectively. The
sets of active and inactive paths constitute a NAPath, which is used as
a signature to feature the corresponding class. The monitoring system
then uses these NAPaths online to continuously check whether the paths
activated by the image fit the NAPath characterization associated with
its classification, as returned by the network. The monitoring system
raises alarms if an abnormal decision of the network is detected. We
evaluated our approach on a benchmark of neural networks pre-trained
on the MNIST data set.

Keywords: Neural network (NN) classifiers · NNmonitoring · Neural activation
patterns · Neural Activation paths

1 Introduction

Neural networks (NNs) are one of the most successfully used techniques in
artificial intelligence-based systems [9]. The ability of NNs to generalize the
input-output relationship of a training data set allows its application to tackle
various complex problems, such as image classification and object detection and
recognition [16,18]. Nowadays, academia and industry are showing more and
more interest in applying this technique in some safety-critical domains, such as
autonomous transportation systems [3,20]. Considering the safety requirements
pertaining to these systems, the question of validating and certifying NN systems
becomes central.

II F. Boudardara et al.

Test-based verification (testing for short), formal verification, and runtime
monitoring are three key verification activities for ensuring the safe and reliable
deployment of NN systems. Testing involves running the trained model on a
set of data to measure its performance and validate it with respect to a set of
(representative) test cases [9]. Formal verification involves using mathematical
techniques to verify and provide formal guarantees that the model satisfies a
set of desired properties [12,7,5,4]. While testing and formal verification are
performed during the system design phase, monitoring is an ongoing runtime
activity performed during the system operational phase. It involves real-time
tracking of the inputs, the performances, and the behavior of the model [6].

In this paper, we propose a monitoring approach for NN image classifiers with
the ReLU activation function. The proposed approach is used to supervise and
control the network’s outputs with respect to the input images, towards detecting
misclassified images and adding a level of confidence to the NN decision. The
approach relies on the concept of neuron activation pathway (NAPath), which
we introduce as part of the contribution. NAPath is used to identify relevant
activation paths for each class in a NN. A path is defined as a sequence of
neurons of the same type of activation (active or inactive) linking the input
of the NN to its output. For a NN with a Relu activation function, NAPath
extracts learned features of the network when it processes images that belong
to the same class. We define a feature as a set of paths on the network that are
similarly activated or inactivated for the selected images. This work is inspired
by the Neuron Activation Pattern (NAP) concept discussed in [8]. While a NAP
is a tuple of two sets: active and inactive neurons, we define a NAPath as a tuple
NAPath = (A,D), with:

1. A being the set of paths that are active for most of the selected images.
2. D is the set of paths that are inactive for most of the selected images.

The first step of our approach involves identifying active and inactive neurons
within the neural network for a set of samples, for each class c. Specifically, a
neuron is deemed active for class c if its output value is strictly positive for
a considered percentage of input images of this class. Similarly, a neuron is
considered as inactive if its output is equal to zero for a considered percentage of
samples of this class. Once the neurons have been labeled as active or inactive,
the next step involves constructing paths that are exclusively constituted of
active or inactive neurons. In essence, an active (resp. inactive) path represents
a sequence of active (resp. inactive) neurons linking the input layer to the output
layer. These paths are then used to build the NAPath for the given set of images.
The main intuition consists in assuming that the inputs belonging to the same
class tend to behave similarly and activate the same paths. Therefore, a NAPath
can be viewed as a feature associated with that specific class c.

We construct a set of NAPaths, where each NAPath corresponds to a specific
class of images. Leveraging these NAPaths, we propose an online monitoring
process for image classifiers when they are applied to new unseen images. Our
NN monitor relies on the premise that an image x, whose classification output
by the network N is class c (denoted as N(x) = c), should generate active

Monitoring of Neural Network Classifiers using Neuron Activation Paths III

and inactive paths similar to the NAPath pre-computed for class c (NAPathc).
Therefore, for an arbitrary image x, the network’s classificationN(x) = c and the
NAPath generated by this image x in the network (denoted as NAPathx), the
monitor processes this data and compares them to the pre-computed NAPath
associated with each class, and can raise two different types of alarms:

1. Misclassification detection: if NAPathx is highly similar to the NAPath
associated with a class c′ other than the network’s classification (class c)
of this input, i.e., N(x) ̸= c, the monitor raises an alarm and suggests a
re-classification of this image.

2. Novelty detection: if NAPathx does not share any similar paths with any
of the pre-computed NAPaths, the monitor raises an alarm that this input
does not fit any feature of any class; thus, it is considered as a novel (or
out-of-distribution) sample.

To evaluate the effectiveness of our approach, we performed a series of
experiments on neural networks trained for digit classification on the MNIST
dataset [15]. The experimental results show how the proposed approach enhances
efficiently and the reliability of the classification decision made by the network.
The use of NAPaths for runtime monitoring provides more confident and
trustworthy predictions. Based on our findings, we believe that our approach
shows great promise and can pave the way for further research in the area of
monitoring image classifiers.

The remaining of this paper is organized as follows: Section 2 provides
definitions and notations related to NNs and introduces the NAPath concept.
Section 3 presents the proposed monitoring method. The experiments’ setups
and the obtained results are given in Section 4. Finally, in Section 5 we provide
a review of related works before concluding the paper in Section 6.

2 Preliminary concepts

2.1 Neural networks

In this paper, we consider feed-forward neural networks with Relu activation
function, and we refer to them as neural networks (NNs). A NN is a set of
interconnected neurons, also called nodes, organized in layers. The neurons of
layer li are connected to all neurons of layer li+1 via weighted edges. The weights
of layer li are organized as a matrix Wi ∈ R|li|×|li−1|. Each layer has a vector bias
bi ∈ R|li|. Using these notations, NNs can be seen as a function f : Rn → Rm

that is defined recursively as:
f(x) = vL(x)

vi(x) = Wi × σ(vi−1(x)) + bi

v0(x) = x

(1)

where L is the number of layer of N and σ is a non-linear activation function,
which represents the Relu function σ(x) = max(x, 0) in this work.

IV F. Boudardara et al.

For an image classification problem of m classes, f maps an input-image
x ∈ Dx

1 to an output y ∈ Rm, where yi = fi(x) is the score of the ith class,
and the element of the highest score (c = argmax

1≤i≤m
(fi(x))) is considered as the

predicted class for the image x. We write f(x) = c or N(x) = c where there is
no ambiguity.

2.2 Neuron Activation Patterns (NAP)

To provide the necessary background for our proposed approach, we first recall
the concept of Neuron Activation Pattern (NAP) [8]. A NAP is a representation
of the activation levels of neurons in a neural network in response to a given
input or a set of inputs, indicating which neurons (from the hidden layers) are
active or inactive. It is easier to explain this concept in the case of the Relu
function, since it is a piece-wise linear function (with two linear regions).

Definition 1. Let N be a network with Relu (denoted Relu-NN), and let S be
the set of its hidden neurons. The set of all active (resp. inactive) neurons on
the network N , for an input x, is denoted as A (resp. D) and defined such that:{

A = {n ∈ S : n(x) > 0}
D = {n ∈ S : n(x) = 0}

(2)

In definition 1, n(x) denotes the output value of a neuron n ∈ S when the
network has x as input. For a Relu-NN, a NAP of an input x on N (denoted
NAP (x,N)) is defined as the set of its corresponding active and inactive neurons,
i.e., NAP (x,N) = (A,D).

For a set of inputs Xc such that ∀x ∈ Xc : N(x) = c, we define its associated
NAP as the common NAP between all inputs:{

Ac = {n ∈ S : ∀x ∈ Xc, n(x) > 0}
Dc = {n ∈ S : ∀x ∈ Xc, n(x) = 0}

(3)

For a set Xc considered as a representative set of inputs of class c, then its NAP
calculated using Equation 3 represents the NAP corresponding to this class,
which is denoted as NAPc = (Ac, Dc).

2.3 Neuron Activation Paths (NAPath)

As mentioned in the introduction, the NAPath is built upon the concept of NAP;
however, instead of solely focusing on the activation levels of individual neurons,
it represents learned features through paths. Specifically, a path is a sequence of
neurons that connects the input and output layers, passing through all hidden

1 E.g.: Dx = Rn1×n2 for grayscale images, or Dx = Rn if the image is transformed to
a vector.

Monitoring of Neural Network Classifiers using Neuron Activation Paths V

layers. This concept provides a more comprehensive view of the network’s learned
features, as it allows us to maintain the relation between neurons of different
layers. By following the paths, we can better understand the sequence of neural
activations that leads to a classification decision.

Formally, a path on a network N of L hidden layers is a set of neurons
P = {n1, . . . , nL} such that nk is a neuron of layer lk for 1 ≤ k ≤ L. In our
work, we define two types of paths:

1. Active path: For an input x and a network N of L layers, an active path
is a set of neurons P = {n1, . . . , nL} such that for all k: 1 ≤ k ≤ L, we have
nk ∈ lk and nk(x) > 0.

2. Inactive path: For an input x and a network N of L layers, an inactive
path is a set of neurons P = {n1, . . . , nL} such that for all k: 1 ≤ k ≤ L, we
have nk ∈ lk and nk(x) = 0.

Figure 1 presents an example of a network with marked active and inactive paths
for the input x = 1.

(a) a neural network. (b) Active (green) and inactive
(red) paths.

Fig. 1: NAPath computation process for an input x = 1 on a neural network

Definition 2. The NAPath of an input x using a network N , denoted as
NAPath(x,N), is the tuple (A,D) where A is the set of all active paths and
D is the set of all inactive paths. Formally, we write: NAPath(x,N) = (A,D).

To maintain consistency with the definition of NAPs, in Definition 2 we used
the notation A and D to denote the set of active and inactive paths, respectively.
When there is no ambiguity, we omit the argument N and write NAPath(x) =
NAPathx = (A,D).

Remark 1. It is worth noting that the NAP of an individual input x, denoted as
NAP (N, x) = (A,D), is a partition of the set of all neurons S of the network N ,
such that A ∩D = ∅ and A ∪D = S. However, the NAP of a class c generated
using a set of images and denoted as NAPc = (Ac, Dc) only forms a subset of
S, i.e., Ac ∪Dc ⊆ S. This is due to the fact that NAPc is an intersection of the
NAPs of the selected images. On the other hand, a NAPath of the same input is
a subset of paths of N , and consequently, the set of participating neurons (the

VI F. Boudardara et al.

neurons in A and D) is a subset of S. This is due to the fact that some paths of
the network may be neither active nor inactive.

3 Monitoring with NAPath

In this section, we present our NAPath-based approach for runtime monitoring
of NN image classifiers. The approach consists in firstly (i) building offline
the monitor using the NAPath concept, and then (ii) using the monitor in
runtime operation (in parallel to the NN model). The first phase, which we
call it NAPathing, is devoted to compute the NAPaths, and the second phase,
namely monitoring, is responsible for supervising the classification decision of
the network during runtime. The general structure of the monitoring process is
presented in Figure 2.

Fig. 2: The general structure of the monitoring system.

3.1 NAPathing phase

This phase is performed during the development phase of the monitor, its
objective is to compute the set of NAPaths, i.e., a NAPath for each image class.
For this purpose, this phase involves computing the set of active and inactive
paths for each class using the training set. The following three parameters are
required for this phase:

Monitoring of Neural Network Classifiers using Neuron Activation Paths VII

1. The network N .
2. The set of inputs X from which the NAPaths will be computed, e.g., the

training set used to obtain N .
3. A parameter δ (called precision parameter) specifying the threshold of

activations or inactivations required for a path to be considered as active
or inactive, for a given class, respectively.

The paths’ mining is an important step. First, we partition the setX into subsets
such that each subset corresponds to one class. Then, for a set Xc representing a
class c, we start by filtering this set by eliminating inputs that are misclassified by
the network N . Next, we choose a precision parameter δ, used to determine the
NAPath (i.e., activated and inactivated paths) for a given class c. The next step
consists in assuring that the NAPath is valid; this is performed by checking that
the sets of active and inactive paths are not empty. If the NAPath is valid, it is
saved as the NAPath of class c (NAPathc), otherwise, the value of δ is updated
to generated a new NAPath. The NAPathing phase is performed during the
development phase of the monitor. Once the set of NAPaths are computed and
validated, it is saved and can be used during the monitoring phase. The main
steps of this process are presented in Figure 3.

3.2 Monitoring phase

During the operational phase of the system, the NN monitor is executed in
parallel with the network N to supervise its decisions in real-time. In addition to
the stored pre-calculated NAPaths, the monitor receives in real-time the input-
image x with its corresponding output y issued by the NN, i.e.: N(x) = y
and the NAPath (NAPathx) computed on-the-fly. Next, the monitor measures
the similarity between NAPathx and the pre-computed NAPaths. This involves
comparing the set of active and inactive paths of NAPathx to those of each
pre-calculated NAPath. Two particular cases can be observed:

1. Novelty detection: the NAPathx has no similar NAPath within the set of
pre-computed NAPaths; thus, the monitor raises a novelty alarm indicating
that this image is new to the NN and may be an out-of-distribution input.

2. Misclassification detection: the NAPathx is found to have a high
similarity with one of the NAPathc pre-computed during the development
phase for class c. In this case, we check whether the classification decision
from the network (N(x) = y) is consistent with the NAPath similarity to
class c detected by the monitor.

(a) y = c: this strengthens the classification decision and confirms that the
input image shares similar features with the other images of the same
class, represented by NAPathc.

(b) y ̸= c: since NAPathx and NAPathc have the highest similarity degree,
it is expected that x belongs to class c. Therefore, our monitoring system
will raise an alarm informing that the classification decision needs to
be checked. Furthermore, the monitor suggests a re-classification of the

VIII F. Boudardara et al.

Fig. 3: The flowchart of the NAPath mining process

input based on its NAPath, recommending that this image should be of
class c instead of class y.

The main steps of the monitoring phase are illustrated in Figure 4.

In order to determine the similarity degree between a path of a class c
denoted by NAPathc = (Ac,Dc), and the corresponding NAPath of an input
x: NAPathx = (Ax,Dx), we define a function sim : NAPath×NAPath → R+

as follows:

sim(NAPathc, NAPathx) = p× |Ac∩Ax|
|Ac| + (1− p)× |Dc∩Dx|

|Dc|

where |·| is the cardinality of a set and the parameter p ∈ [0, 1] is used to
control the rate of active (and inactive) paths that contribute to calculating
the similarity degree. In the context of the proposed approach, two NAPaths
are considered similar if they have a high degree of overlap in terms of their
paths. By adjusting the value of p, we can gain insights into which type of paths
have more importance in the similarity degree’s calculation. For instance, when
p approaches 1, it indicates that similar NAPaths share many identical active

Monitoring of Neural Network Classifiers using Neuron Activation Paths IX

Fig. 4: The flowchart of the monitoring procedure using NAPaths

paths and few inactive paths. Notice that the parameter p can be approximated
empirically from the evaluation of the training and testing data.

4 Experiments and Results

To evaluate the effectiveness of our NN monitoring approach, we conducted a
series of experiments on a pre-trained neural network on the MNIST dataset used
in VNNCOMP 2021 [1]. The MNIST is a popular benchmark dataset in the field
of machine learning and computer vision. It is a collection of handwritten digits
ranging from 0 to 9, each digit represented as a 28x28 grayscale image. The
dataset consists of 60,000 training images (around 6000 images per class) and
10,000 test images. The NN used in this section consists of an input layer of size
784, followed by 4 hidden layers with 256 Relu neurons for each layer, and an
output layer of size 10 representing the 10 possible classes (digits 0 to 9).

For each class in the MNIST dataset, we applied our NAPathing method to
generate the corresponding NAPath, using images from the training set. To
further evaluate the performance of our approach, we analyzed the number

X F. Boudardara et al.

of inputs that exhibit the NAPath of the corresponding class and the size of
NAPaths for various values of the parameter δ (0.8, 0.85, 0.90, 0.95). In our
experiments, we observed that the number of inactive paths was consistently
large across all classes. Therefore, to represent the size of the NAPath, we focused
solely on the active paths.

The results of our analysis are presented in Figures 5 and 6. We observe
that the number of inputs involved in the computation of NAPaths increases by
increasing the value of δ, which leads to build NAPaths that are able to cover
larger number of inputs. However, this decreases the size of the NAPaths (active
paths). This is because increasing δ results in the inclusion of more inputs in
the construction of the NAPath. Since the NAPath of a class is formed by the
intersection of NAPaths of participating inputs, adding more inputs reduces the
size of the common NAPath.

These results suggest that the value of the control parameter δ can be
adjusted to control the sensitivity of the NAPath approach, enabling a trade-off
between the coverage and the size of the NAPath. Notably, we have observed
that the pre-trained network [1] misclassifies a significant portion of the training
images for classes 3, 5, 6, and 7. As a result, we can see that the number of
covered inputs and active paths corresponding to these classes is considerably
low. Note that this behavior is due to the used benchmark taken from, and is
not related to the performances of our approach.

Fig. 5: The number of inputs generating the same NAPath for different values
of δ.

In the second set of experiments, we investigate the impact of the monitoring
control parameter p by using different values of p : {0.0, 0.1, · · · , 1.0}. We set
δ = 0.9, and we generate NAPaths for each class using its corresponding training
data. To assess the monitoring system’s performance, we use the NAPaths set
we previously computed, and for each value of p, we evaluate the monitoring

Monitoring of Neural Network Classifiers using Neuron Activation Paths XI

Fig. 6: The number of active paths for different values of δ.

precision in terms of the rate of no alarms2 (true negative), correct alarms
(true positive), false alarms (false positive), missed alarms (false negative), and
additionally, the rate of correctly re-classified inputs proposed by the monitor.

We conducted experiments on the MNIST testing set, which includes a total
of 6112 images evenly distributed among the six selected classes: 0, 1, 2, 4, 8, 9.

2 The term alarm refers to an output from the monitor indicating a discrepancy
between the classifier’s decision and the one expected by the monitor.

Fig. 7: Monitoring performance on different values of the parameter p - Correct
alarms and correct reclass.

XII F. Boudardara et al.

Figures 7 and 8 illustrate the monitoring performance for different values of p.
The results demonstrate that the monitoring system reaches its best performance
with respect to most of the metrics when the value of p is low, i.e., the rate
of inactive paths participating in the calculation of the similarity degree is
higher than the rate of active paths. The percentage of true negatives (correctly
classified and no alarm is triggered) is almost stable and very close to 100%.
Accordingly, the rate of false alarms (raised alarms for correctly classified images)
is almost zero. For the other metrics, while the rate of correct raised alarms
for misclassified images slightly decreases, the rate of correct reclassification
generally increases by increasing the value of p. It means that for higher values
of p, the monitor raises fewer alarms, but the re-classification of the misclassified
images is more precise. The rate of missed alarms is generally between 24% and
26%. It increases slightly when the value of p is increasing, and then decreases
when p is greater than 0.9. Moreover, the performance of the monitoring system
is significantly reduced when only active paths or inactive paths are used in the
similarity computation. This is demonstrated by the case where p = 0 or p = 1,
where the rate of correct reclassification is notably lower.

We can conclude that tuning the parameter p can affect the monitoring
performance. Generally, the lower the value of p, the more alarms are raised by
the monitor, hence less missed alarms and more correct alarms, but less precision
(less correct re-classification). Therefore, a small value of p (p ≤ 0.3) to include
more inactive paths tends to provide better performance of the monitoring
system. For re-classification purposes, the system performs better when p is
close to 0.9. Further research is needed to determine the optimal values of p for
different datasets and network architectures.

Fig. 8: Monitoring performance on different values of the parameter p - False and
missed alarms

Monitoring of Neural Network Classifiers using Neuron Activation Paths XIII

5 Related works

In this section, we present and discuss the approaches related or close to our
contribution.

Cheng et al. [6] proposed a runtime monitoring based on activation patterns.
First, they build activation patterns from training data using Binary Decision
Diagrams (BDD). During monitoring, in addition to making a classification
decision using the neural network, the monitor checks whether the activation
patterns of the input are close (using Hamming distance) to one of the pre-
built NAPs. If no similar NAP is found, the system raises a warning that the
classification decision should be re-checked. The effectiveness of this approach
is constrained by the performance of BDDs, which have several limitations,
including restrictions on the number of variables they can handle. Recently,
Geng et al. [8] proposed a type of specifications called neural representation
as specification. They introduced a new formula of the robustness property
by adding a new constraint using NAPs. The specification states that all
inputs following a NAP will never be misclassified. The authors used Marabou
verifier [13] to support the new formula of robustness. Additionally, in case the
property is violated, the authors claimed that the generated counter-examples
are more realistic.

The problem of detecting novel inputs, which is called novelty or out-of-
distribution problem, has been studied for many years, and many methods have
been proposed [19,22]. One of the most promising approaches involves analyzing
the activation patterns of hidden neurons. Henzinger et al. [11] proposed a
monitoring method for neural networks based on abstraction. The method
involves constructing box abstractions by over-approximating the output of
selected hidden layers using the training data. During the monitoring phase,
the system checks whether the values of these layers lie within the range of
the calculated intervals or boxes. If they are outside the calculated boxes, the
corresponding input is considered as a novelty, and a warning is issued. Hashemi
et al. [10] introduced a method by modelling the neuron’s activations as a
Gaussian model. During runtime, this model is used as an out-of-distribution
detector. In recent work, Olber et al. [17] extended NAPs to extract activation
patterns on convolution layers, and then used these patterns to detect out-of-
distribution image samples on CNNs.

NAPs have also been applied in various studies for explainability evaluation.
For instance, Bauerle et al. [2] leveraged the activation values of neurons to
analyze and extract learned features. They then identified groups of similar
NAPs that could be used to visually interpret the learned features within a
layer. While Krug et al. [14] utilized NAPs for interpreting CNN models used in
speech recognition, Stano et al. [21] proposed a method that involves encoding
the behavior of neurons using a Gaussian Mixture Model (GMM) when exposed
to a set of inputs from the same class. The resulting GMM is then used to explain
the classification decision made by the network.

XIV F. Boudardara et al.

6 Conclusion

The present work proposes a novel NN monitoring approach based on the concept
on Neural Activation Paths (NAPath). The approach allows for analyzing the
behavior of hidden neurons in response to a set of inputs belonging to the
same class, and then computes paths (both active and inactive) that link the
input layer to the output layer of the network. To do so, we construct a set of
NAPaths, where each NAPath is associated to an image class. These NAPaths
are subsequently used to monitor the classification decision, whereby a novelty
detection alarm is issued if the NAPath has no similar NAPath from the set
of pre-computed NAPaths, or a misclassification alarm is issued if an input’s
predicted class is different of the class of the most similar NAPath to the one of
this input. In the latter, the monitor suggests a new classification of this input
with respect to its computed NAPath.

To assess the effectiveness of our proposed NAPath approach, we conducted
an experimental study on the MNIST benchmark, which included tuning various
parameters. Our experiments demonstrated that NAPath can efficiently be used
as a tool for monitoring neural network, and it can significantly enhance their
reliability and trustworthiness.

In future work, we plan to expand the capabilities of our proposed NAPath
approach by incorporating support for a wider range of network architectures and
activation functions. We also aim to conduct more comprehensive evaluations of
our NAPath-based method by testing its performance on a variety of benchmarks
with different architectures and applying it to real-world models. We also intend
to conduct a comparative study with NAP-based monitoring approaches to
further validate the effectiveness of NAPath. Furthermore, as NAPath has the
potential to provide explanations and interpretations of network decisions, we
plan to conduct further experiments in this direction.

References

1. Bak, S.: VNN Neural network verification competition 2021 (vnn6comp 2021)
(2021), https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/
mnistfc/mnist-net_256x4.onnx

2. Bäuerle, A., Jönsson, D., Ropinski, T.: Neural activation patterns (NAPs): Visual
explainability of learned concepts. arXiv preprint arXiv:2206.10611 (2022)

3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint (2016)

4. Boudardara, F., Boussif, A., Meyer, P.J., Ghazel, M.: Innabstract: An inn-
based abstraction method for large-scale neural network verification. IEEE
Transactions on Neural Networks and Learning Systems pp. 1–15 (2023).
https://doi.org/10.1109/TNNLS.2023.3316551

5. Boudardara, F., Boussif, A., Meyer, P.J., Ghazel, M.: A review of abstraction
methods toward verifying neural networks. ACM Transactions on Embedded
Computing Systems 23(4), 1–19 (2024)

https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/mnistfc/mnist-net_256x4.onnx
https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/mnistfc/mnist-net_256x4.onnx
https://doi.org/10.1109/TNNLS.2023.3316551

Monitoring of Neural Network Classifiers using Neuron Activation Paths XV

6. Cheng, C.H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns. In: 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). pp. 300–303. IEEE (2019)

7. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3–18.
IEEE (2018)

8. Geng, C., Le, N., Xu, X., Wang, Z., Gurfinkel, A., Si, X.: Toward reliable neural
specifications. arXiv preprint arXiv:2210.16114 (2022)

9. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
10. Hashemi, V., Křet́ınskỳ, J., Mohr, S., Seferis, E.: Gaussian-based runtime detection

of out-of-distribution inputs for neural networks. In: Runtime Verification:
21st International Conference, RV 2021, Virtual Event, October 11–14, 2021,
Proceedings. pp. 254–264. Springer (2021)

11. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: Abstraction-based
monitoring of neural networks. In: 24th European Conference on Artificial
Intelligence-ECAI 2020. pp. 2433–2440 (2020)

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: International conference
on computer aided verification. pp. 97–117. Springer (2017)

13. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The Marabou framework for verification
and analysis of deep neural networks. In: International Conference on Computer
Aided Verification. pp. 443–452. Springer (2019)

14. Krug, A., Knaebel, R., Stober, S.: Neuron activation profiles for interpreting
convolutional speech recognition models. In: NeurIPSWorkshop on Interpretability
and Robustness in Audio, Speech, and Language (IRASL) (2018)

15. LeCun, Y.: The MNIST database of handwritten digits.
urlhttp://yann.lecun.com/exdb/mnist/ (1998)

16. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep
neural network architectures and their applications. Neurocomputing 234, 11–26
(2017)

17. Olber, B., Radlak, K., Popowicz, A., Szczepankiewicz, M., Chachula, K.: Detection
of out-of-distribution samples using binary neuron activation patterns. arXiv
preprint arXiv:2212.14268 (2022)

18. Pathak, A.R., Pandey, M., Rautaray, S.: Application of deep learning for object
detection. Procedia computer science 132, 1706–1717 (2018)

19. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty
detection. Signal processing 99, 215–249 (2014)

20. Ristić-Durrant, D., Franke, M., Michels, K.: A review of vision-based on-board
obstacle detection and distance estimation in railways. Sensors 21(10), 3452 (2021)

21. Stano, M., Benesova, W., Martak, L.S.: Explaining predictions of deep neural
classifier via activation analysis. arXiv preprint arXiv:2012.02248 (2020)

22. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution detection: A
survey. arXiv preprint arXiv:2110.11334 (2021)

	Monitoring of Neural Network Classifiers using Neuron Activation Paths

