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Abstract

We take the testing perspective to understand what the minimal discrimination time
between two stimuli is for different types of rate coding neurons. Our main goal is to
describe the testing abilities of two different encoding systems: place cells and grid
cells. In particular, we show, through the notion of adaptation, that a fixed place cell
system can have a minimum discrimination time that decreases when the stimuli are
further away. This could be a considerable advantage for the place cell system that
could complement the grid cell system, which is able to discriminate stimuli that are
much closer than place cells.
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1 Introduction

Grid cells are particular neurons in medial enthorinal cortex [16] that exhibit a
periodic spatial firing pattern. Whereas place cells in the hippocampus fire at a given
location and appear to be associated with an allocentric representation, grid cells fire
at each node of a hexagonal lattice and appear to be involved in a self-localization
representation [17]. The grid cell system not only encodes spatial position but also
direction and velocity [20] or sounds [1] and could even be used by mammals to encode
episodic memories [5]. Organized in modules (one module being dedicated to one lattice
scale), the grid cells in each module have a uniform distribution, while the progression
of scales between modules appears to be geometric [24].

Since their discovery in 2005 [11], which earned O’Keefe and the Mosers the Nobel
Prize, grid cells have been intensively studied from a theoretical point of view in relation
to place cells [19]. Some authors (see for example [21]) are interested in how neural
networks can generate such patterns, while others try to explain the hexagonal lattice
[6] or the exact geometric progression of scales [27, 23].

In particular, one of the main focuses has been the encoding capacity of the system.
More specifically, the authors focused on a statistical capacity measure, namely the
Fisher information, because of its link with estimation. Indeed in Statistics, Cramér-Rao
bound states that the L2-error (i.e.,

√
E(|ŝn − s|2)) of an unbiased estimator ŝn (i.e. ,

E(ŝn) = s)) of a given quantity s is lower bounded by In(s)
−1/2, where In(s) is the

Fisher information. Moreover, this lower bound is generally achieved by Maximum
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Likelihood Estimators (MLE), at least asymptotically in a context of n i.i.d. observations
[7]. Informally, the Cramér-Rao bound is interpreted as follows: there is a "best"
estimator (which would be the MLE) that would achieve the smallest error In(s)−1/2. So
if a code refers to a model that describes the precise influence of s on the spike trains
emitted by the neural cells, Cramèr-Rao bounds paves the path of finding the best code
as the code that maximizes the Fisher information.

Initially, [4] worked on the relationship between mutual information and Fisher
information for place cells and other types of neurons with receptive fields. They showed
in particular that if s represents a position, then In(s) grows linearly with n, for a
particular code where the n place cells responses to position s are i.i.d. This leads to an
error in n−1/2. Then Fiete and her co-authors [9, 22] showed that for a given number n of
neurons, grid cells can encode many more positions and that In(s) grows exponentially
with n the number of place cells. In particular, this means that the accuracy of the
position estimator that can be done with n grid cells is much more precise than the
accuracy that can be done with n place cells (see also these related works [26, 15, 18]).

In the present work, we take a different statistical viewpoint from that of unbiased
estimation using Fisher information: we take a testing approach with a minimax view-
point. Our first argument is that estimation is very complex in fact. For instance, when
using Cramér-Rao bound, one has to be aware that it applies only to unbiased estimators
and the Stein phenomenon shows that biased estimator might sometimes be faster that
In(s)

−1/2 [25]. Minimax theory [25] can help to shed more lights on the right order
of magnitude of the error by computing the minimal value of maxs

√
E(|ŝn − s|2). Our

second argument is that pointwise testing (e.g. testing a point like “s = 0" for instance)
is easier than estimation: imagine an estimator ŝn of s whose variance depends on s

itself. When testing s = 0, we know the variance of ŝn under this hypothesis and we
can therefore use this to describe a rejection region for the test. Going further, the fact
that tests are easier to build than estimation, can lead to surprising theoretical effects:
depending on the regularity of the s to estimate, it has been shown that typically one
makes a minimax estimation error of say ∆n, with n the number of observations, whereas
there exists some test that can detect that s ̸= 0 as soon as the distance between s and 0

is larger than ρn, with ρn that is negligible with respect to ∆n [12, 2]. The difference is
more than a mere multiplicative constant: testing rates can be faster than estimation
rates. Therefore we want to adopt this testing point of view to see if it can improve our
understanding of the place cells/grid cells code.

From this testing point of view, we think that a good encoding system should be able
to discriminate quickly between two stimuli or positions s1 and s2, as soon as they are
sufficiently apart. In particular, the testing procedure can take into account at which
distance s1 is from s2 (information that cannot be taken into account, at least as explicitly,
in an estimation procedure) and one can have a discrimination time between two points
that depends on this distance.

Therefore the purpose of the present work is to study the following three theoretical
problems. To make things more concrete, imagine a rat in a maze who should learn a
certain behavior in position s1 and another one in position s2. We give for each problem
the “rat" interpretation with respect to this situation.

Definition 1.1. Given n neurons obeying a certain stochastic model parametrized
by a code f(s) in response to a stimulus/position s ∈ S presented to the system for a
duration T , we define the minimal discrimination time between two locations s1 and
s2 for the code f , with precision α (denoted Tmin(f, s1, s2, α)), as the minimal time
the output of the n neurons must be observed in order to distinguish s1 from s2 with
a probability of error less than α ∈ (0, 1).
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Problem 1 consists in understanding the behavior of the minimal discrimination
time Tmin(f, s1, s2, α). If this minimal time is infinite, it expresses in particular the fact
that the coding system cannot distinguish s1 from s2. More precisely, this quantity also
expresses how the minimal discrimination time decreases when the distance between s1
and s2 increases. Note in particular that the test which is able to achieve this minimal
time can depend on the precise knowledge of s1 and s2 because we define this as a test
and this will be the case in our solution. From the “rat" perspective, the discrimination
time between the two positions, is a good lower bound for the reaction time of the rat to
this given task, because this is only after realising that it is in position s1 or s2 that the
rat can proceed to the learned associated behavior.

Definition 1.2. We equip S with a certain metric d. We define the minimax discrimi-
nation time of a family of codes F at distance ρ by

T (F , ρ, α) = inf
f∈F

sup
s1,s2∈S: d(s1,s2)≥ρ

Tmin(f, s1, s2, α). (1.1)

This quantity can be seen as the rate at which the best code f in a certain family F
(for instance place cells or grid cells) can discriminate all stimuli at distance ρ or
more.

Problem 2 consists in computing upper and lower bounds for this minimax discrimi-
nation time. In particular, this rate is a function of n and ρ and it is not clear whether
the best code f depends on ρ or not. From the “rat" perspective, it implies that the
important parameter for the distinction between s1 and s2 is the distance: if the brain
“uses” the best code in the family F at distance at least ρ", then as soon as d(s1, s2) ≥ ρ,
one can guarantee a reaction time that is at least T (F , ρ, α). From a modeling point of
view, this raises a good question: why would the brain “use the best code in the family F
at distance at least ρ" ?. The important part in the previous sentence is in particular: why
would the brain focus on one particular ρ? This leads to the third problem: adaptation.

Definition 1.3. A code f ∈ F is said to be adaptive if it achieves the rate defined in
(1.1), up to multiplicative constants, in a given range of values for ρ, that is,

∀ρ in a given range, sup
s1,s2∈S: d(s1,s2)≥ρ

Tmin(f, s1, s2, α) ≃ T (F , ρ, α). (1.2)

Problem 3 consists in finding an adaptive code and the corresponding range of ρ for
different family of codes. Here the word adaptation is meant in the sense of theoretical
statistics/minimax theory [12, 2, 25]. From the "rat" perspective, adaptation (in the
previous statistical sense) is fundamental. We can indeed pinpoint two scenarios about
the learning. In Scenario 1, before even learning, the system (place cells or grid cells)
can achieve for many ρ the best discrimination time (adaptive code). The only thing that
the rat has to learn is the specific response of the cells to position s1 and s2 to perform
the “best" discrimination test and decide what is the correct behavior. This scenario
has the advantage of minimal training time: if a new couple (s1, s2) is presented, the
learning time should be very quick. In Scenario 2, the system is not adaptive and then
each time a new couple (s1, s2) at a different distance is proposed, the rat either is stuck
with a suboptimal code leading to a suboptimal discrimation time, or it has to learn a new
representation/new code at the same time as the new couple to react faster. Scenario 2
is of course less "adaptive" because the rat would take a longer time to react/learn.

Solving these three theoretical problems should help us to distinguish between
several types of codes and in particular between place cells and grid cells. The minimal
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discrimination time computed in Problem 1 is an idealized reference of a certain reaction
time, which depends on the coding system. It is already slightly more complex than
simple estimation accuracy since it encompasses the idea that if the stimuli are very
different, the reaction time should be faster. Second, the minimax time in Problem 2
should in particular tell us which system seems to be more competitive than the other.
Finally, the adaptation viewpoint in Problem 3 should give a more specific viewpoint on
the practical use of each system to see if it is possible to discriminate stimuli at different
scales with the same code.

To push the mathematics as far as possible, we use a very simple stochastic model:
the spike trains of the n neurons are homogeneous Poisson processes (i.e. constant
firing rates in time, that only depends on the position/stimulus s) with coding performed
only via their respective firing rates. We also idealize the rate code f into simple step
functions with only two values and used the circle as the stimulus/position set (which is
consistent with, for example, a 1D circular maze or with the direction of movement [10]).

We have been able to completely answer all three problems for the place cells
code, for which adaptation is possible. All three problems are also solved for grid cell
codes when the number of cells per module and scales are fixed, but minimax rate and
adaptation for general grid cells code, where even the number of modules is let free is
still an open problem. In particular, we have shown that the minimal distance ρ that can
be detected by n place cells is of order 1/n, a distance that is much smaller than the rate
n−1/2 obtained via the classical use of Fisher information (see [4]). It also appears that
grid cells have much better resolution than place cells, up to 2−n, which is consistent
with the bounds given by [22]. Grid cells may also be faster for discrimination than place
cells, for a fixed ρ, if the system is well calibrated. However, it does not seem clear that
there is an adaptive code for general grid cells, and in this sense, place cells might have
an advantage in terms of reaction time for sufficiently distant stimuli/positions.

In Section 2, we give the stochastic model, the main notation and compute the
minimal discrimination time (Problem 1) in a very general setting, as well as a lower
bound in 2−n on the smallest distance ρ that can be discriminated whatever the code. In
Section 3, we study more deeply the place cells code, compute minimax rates (Problem
2) in ⌊nρ⌋−1 and prove that even random codes are adaptive in this setting (Problem 3).
In Section 4, we study grid cells code and prove that it can reach the resolution 2−n and
that another grid code can also achieve the rate ⌊n/ log2(1/ρ)⌋−1. Numerical illustration
is provided in Section 5. Conclusion, Discussion and Perspectives are given in Section 6.
Auxiliary results are postponed to Section 7.

2 Discrimination time

2.1 Model and notation

Since we are interested in grid cells that have a periodic feature, it is simpler to
represent stimuli as a circle than as an interval.

We consider stimulus/position s that belong to S1 = [0, 1), that is considered in a
periodic way, i.e. 0 ≡ 1. Equivalently, we can represent this set of stimuli/position as a
circle.

The stimulus is encoded by n neurons, which emit spikes as independent homoge-
neous Poisson processes. By homogeneous Poisson process, we mean that if the stimulus
s remains constant through time, then the firing rate of the Poisson process is also
constant through time. More specifically, for a given stimulus s in S1, each neuron i has
a firing rate fi(s), which only depends on s, as long as the stimulus s is presented.

In the literature, to model cells with receptor fields, these functions fi(s) are most of
the time centered around a certain favorite stimulus for which the value is very large,
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Figure 1: Visual representation of the main notions. In A, Su, the circle of radius u with a
point a and its corresponding argument θa ∈ [0, u) In B, the visual representation of the
intervals. In red and green, the visual representation of the function s 7→ g(s) = µJa,bJ(s)+

1Ja,bJc(s), with the value µ in red and 1 in green. In C and D, visual representation of the
action of mod. In these pictures, α = amod 1/4 = a1 mod 1/4 = a2 mod 1/4 = a3 mod 1/4.
Also in D, the representation of the function s 7→ g1/4(s) = µ1Jα,βJ(s) + 1Jα,βJc(s) with the
same color code as in B. In C, the representation of the periodic function s 7→ g(s) =

g1/4(s mod u) = µ1Jα,βJ(s mod 1/4) + 1Jα,βJc(s mod 1/4)
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whereas it returns to some very small rate when it is far from this favorite stimulus.
To simplify the mathematical computations, we decide to use piecewise constant

functions to model fi. More precisely, these functions only take two values µ and 1 with
µ much larger than 1. We say that neuron i responds to stimulus s or is activated by s
when fi(s) = µ. We denote the code f = (f1, ..., fn), the vector of the firing rates and Ifs
is the set of neurons responding to s that is

Ifs = {i ∈ [n] : fi(s) = µ},

with [n] the short notation for {1, ..., n}. In what follows, for any subset B ⊆ [n], we
denote |B| the cardinality of the set B.

To define more precise the piecewise constant functions fi, especially for the grid
cells code, we need to introduce further mathematical notation. Let Su be the circle
of radius u, which can be put in one-to-one map with the segment [0, u), through the
argument a 7→ θa as seen in Figure 1.A. More mathematically, for a given a ∈ Su, θa is the
only value in [0, u) such that a corresponds to the point u(cos(2πθa/u), sin(2πθa/u)). The
distance we use on Su is the geodesic distance on the circle divided by 2π. This can also
be viewed as du(a, b) = min(|θa − θb|, (u− |θa − θb|)). At most, it is u/2. When u = 1, we
write d instead of d1 for short. Observe that, in S1, the largest distance one can have is
1/2. The interval Ja, bJ is defined as the set of all points s such that θs ∈ [θa, θb) if θa < θb,
and the set of all points the s such that θs /∈ [θb, θa) if θb < θa with the convention that
Ja, aJ= ∅ is the empty set. Note that the complementary of Ja, bJ, satisfies Ja, bJc= Jb, aJ.
See also Figure 1.B.

The first code that we are interested in, corresponds (via this piecewise constant
simplification) to classical neurons having a certain receptor field, or to place cells, as
mentioned in the introduction.

Place cells code P. A code f is a place cells code if and only if for all i in [n] = {1, ..., n},
there exist ai, bi in S1 such that for all s in S1,

fi(s) = µ1Jai,biJ(s) + 1Jai,biJc(s). (2.1)

With this definition, we can assimilate the receptor field of neuron i with the interval
Jai, biJ. A typical representation of this place cells code can be seen Figure 1.B

Grid cells have a periodic structure. Therefore, we need to define properly periodic
functions as well. To do so, we use the modulus operation. It is defined for x ∈ R and
u ∈ R>0 by x mod u = x−⌊x/u⌋u ∈ [0, u), the remainder of the euclidean division of x by
u, where ⌊x/u⌋ is the largest integer less than or equal to x/u. Informally, a function g of
period u on S1 is a function that only depends on the value of the stimulus s mod u, i.e.
g(s) = g(s mod u) for all s ∈ S1. Let us define module on circles more formally: for radii
u, v ∈ R>0 and any s ∈ Sv, we denote t = s mod u the point in Su such that θut = θvs mod u.
To give an intuition of what the modulus operation does, we put an example in Figure
1C and D. In this sense, we can formally define periodic functions s 7→ g(s) on S1 with
period u by saying that g(s) = gu(s mod u), for some function gu on Su.

However, if we cannot divide S1 in an integer number of intervals of length u, the
periodic functions are not completely well defined. This remark leads to the restriction
on the λi’s in the following definition of the grid cells code.

Grid cells code G((ni, λi)i=1,...,m). [24] showed experimentally that grid cells are
grouped by modules. A given module is dedicated to a certain scale (or spatial periodicity
of the firing pattern). Once the scale is fixed the exact localisation of the centers of the
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grid does not seem to show any particular structure. But the progression of the scales
seems to be done in quantized manner. We model this as follows. A code f is a grid cells
code with m modules of cardinals (ni)i=1,...,m and scales (λi)i=1,...,m if and only if the n
neurons are grouped into m modules M1, . . . ,Mm so that there is ni := |Mi| cells per
module i with

∑m
i=1 ni = n and all these ni cells have a periodic code of period λi. More

precisely, for a given neuron j ∈Mi, there exists ai,j and bi,j in Sλi , the circle of radius
λi, such that for all s ∈ S1

fi,j(s) = µ1Jai,j ,bi,jJ(s mod λi) + 1Jai,j ,bi,jJc(s mod λi) (2.2)

To ensure coherence of the respective periods in each module, we assume that 1 := λ1 >

λ2 > . . . > λm are real positive numbers satisfying the following relations: λ−1
i ∈ N>0

and λiλ
−1
i+1 ∈ N>0. In particular λi+1 ≤ λi/2 for all module i. A typical representation of

this grid cells code can be seen Figure 1.C.

Unspecified grid cells code Ḡ. If we want to consider a grid cell class for which the
number of modules, scales and number of cells per module are not specified, one can
consider

Ḡ = ∪m=1,...,n ∪n1+...+nm=n ∪λ1>...>λmG((ni, λi)i=1,...,m),

where the last union is taken only on the λi’s such that λiλ
−1
i+1 ∈ N>0 for i < m.

Note that grid cells code with only one module are place cells code and this also
justifies why it was easier to consider stimulus on the circle in the first place.

Some of the results we are going to prove also hold for more general binary codes.

General binary code A code f is a general binary code if and only if for all i in
[n] = {1, ..., n}, s 7→ fi(s) is a piecewise constant function on S1 taking only two possible
values, µ and 1. Place cells code and grid cells code are just particular cases of general
binary codes. In a general binary code, the set of stimulus to which neuron i responds
forms a borelian of S1.

Notice that the choice of 1 as the smallest of the two possible rates for the code is to
simplify computations, but one can always transform the data to be in this case. Indeed,
the time-changing theorem [3] allows us to change time in order to fix the smallest rate
at 1.

2.2 The statistical testing problem

A stimulus s is applied for a time T and it results from the stimulus s, n spike trains
for the n different neurons, i.e. N1, ..., Nn, the n independent Poisson processes on [0, T ].
We consider that the individual (or the agent or the brain) has only these spike trains
as source of information on s and that it tries to use the best statistical tool available,
based on N1, ..., Nn. This philosophy gives us an ideal bound on the performance that
the brain can do with one or another encoding system. It is typically used by [4] to say
that the inverse of the Fisher Information gives the smallest variance of an estimator of
the stimulus (Cramer-Rao bound) and that maximizing the Fisher Information gives the
best code. We want to basically adopt the same point of view but for testing instead of
estimating.

In the testing problem, given s1 and s2 two possible values for s, the individual has to
guess that s = s1 or s = s2 based solely on N1, ..., Nn. Mathematically, it means that this
guess is a test Φ = Φ(N1, ..., Nn) that can only take two values s1 or s2. The individual
can make two mistakes Ps1(Φ = s2) that is the probability that the guess is s2 whereas
the applied stimulus is s1, and reciprocally Ps2(Φ = s1), that is the probability that the
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guess is s1 whereas the applied stimulus is s2. There are varieties of possible tests
and we are interested only by the ones, which have (up to multiplicative constants) the
smallest possible error, that is we want to find Φ such that it achieves

pe(s1, s2) = min
Φ test of s1 vs s2

pe,Φ with pe,Φ = max [Ps1(Φ = s2),Ps2(Φ = s1)] . (2.3)

Order of magnitude of pe For s1, s2 ∈ S1, we denote ∆f
s1,s2 = max(|Ifs1 \ I

f
s2 |, |I

f
s2 \ I

f
s1 |).

Proposition 2.1. For all T > 0, µ > 1 and s1, s2 ∈ S1

max

exp
[
−TC̃µ∆f

s1,s2

]
4

,
1−

√
TC̃µ∆

f
s1,s2/2

2

 ≤ pe(s1, s2) ≤ exp
[
−TCµ∆f

s1,s2

]
,

with Cµ = (µ−1)2

4 min
{

1
2µ ,

3
5+µ

}
and C̃µ = (µ− 1) log(µ).

Proof. We set If1 = Ifs1 (resp. If2 = Ifs2), the set of neurons activated by s1 (resp. s2).
We also denote P1 (resp. P2) the distribution of N1, ..., Nn and E1 (resp. E2) the
corresponding expectation, when the applied stimulus is s1 (resp. s2). First notice that
the Kullback-Leibler distance between both distribution is K(P1,P2) = −E1(log(

dP2

dP1
)),

where dP2

dP1
the Radon-Nikodym derivative of P2 with respect to P1. One can check that

dP2

dP1
= exp

−(µ− 1)T (|If2 | − |If1 |) + log(µ)

∑
i∈If2

N i
T −

∑
i∈If1

N i
T


= exp

−(µ− 1)T (If2 \ If1 | − |If1 \ If2 |) + log(µ)

∑
i∈If2

N i
T −

∑
i∈If1

N i
T

 ,

and

E1

∑
i∈If2

N i
T −

∑
i∈If1

N i
T

 = T (|If2 \ If1 | − µ|If1 \ If2 |),

so that

K(P1,P2) = T (µ− 1)(|If2 \ If1 | − |If1 \ If2 |)− log(µ)T (|If2 \ If1 | − µ|If1 \ If2 |)

= T (µ− 1− log(µ))|If2 \ If1 |+ T (µ log(µ)− µ+ 1)|If1 \ If2 |.

As a consequence, it follows that

K(P1,P2) ≤ T∆f
s1,s2(µ− 1− log(µ) + µ log(µ)− µ+ 1)

= C̃µT∆
f
s1,s2 .

The lower bound on pe follows from Theorem 2.2 of [25].
Now let us assume that ∆f

s1,s2 = |If1 \ If2 | (if this is not the case we exchange s1 and
s2). It is now sufficient to consider the test Ψ defined by

Ψ(N1, . . . , Nn) =

{
s1, if Z :=

∑
i∈If1 \If2

N i
T > |If1 \ If2 |T (µ+ 1)/2

s2, otherwise
. (2.4)

Indeed,

P2(Ψ = s1) = P2(Z > |If1 \ If2 |T (µ+ 1)/2) = P2(Z > T |If1 \ If2 |(1 + (µ− 1)/2)).
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Under P2, we have that Z ∼ Poi(T |If1 \ If2 |). Thus, by applying inequality (7.1) of Lemma
7.1 with θ = T |If1 \ If2 | and x = (µ− 1)/2, it follows that

P2(Ψ = s1) ≤ exp

{
−3T |If1 \ If2 |(µ− 1)2

4(5 + µ)

}
.

Under P1, we know that Z ∼ Poi(Tµ|If1 \ If2 |), so that by applying inequality (7.2) of
Lemma 7.1 with θ = Tµ|I1 \ I2| and x = (µ− 1)/2)T |I1 \ I2|, we deduce that

P1(Ψ = s2) = P1(Z ≤ Tµ|If1 \ If2 | − (µ− 1)/2)T |If1 \ If2 |) ≤ exp

{
− (µ− 1)2T |If1 \ If2 |

8µ

}
,

which concludes the proof.

2.3 Minimal discrimination time

From Proposition 2.1 we have that for a given admissible error level α ∈ (0, 1), if

1. If TC̃µ∆f
s1,s2 < log(1/4α) = log(1/α)− log(4), then pe > α.

2. If TCµ∆f
s1,s2 ≥ log(1/α), then pe ≤ α.

Hence the minimal discrimination time stated in Problem 1, Tmin(f, s1, s2, α), is of
the order of 1/∆f

s1,s2 , up to positive multiplicative constants in α and µ (see also Section
5 for numerical verification). This turns the other statistical problems into combinatorial
problems. In particular, discrimination is not possible if and only if ∆f

s1,s2 = 0, that is
Ifs1 = Ifs2 .

The behavior of the quantities in α and µ are quite intuitive. If the level α tends to 0,
Tmin tends to infinity. If µ tends to infinity, Tmin tends to 0. Considering that µ is some
biological parameter that is fixed, as well as the admissible level α of reliability of the
system, we are now focusing on the behavior of 1/∆f

s1,s2 and from now on, we denote
with a slight abuse of language

Tmin(f, s1, s2) =
1

∆f
s1,s2

. (2.5)

Let us now introduce the minimal time for which one can distinguish any pair of
stimuli which are at least ρ apart with ρ ∈ (0, 1/2]:

T (f, ρ) = max
s1,s2∈S1:d(s1,s2)≥ρ

Tmin(f, s1, s2). (2.6)

Clearly, the function ρ 7→ T (f, ρ) is non increasing (the larger the distance between
two stimuli the smaller the time one needs to observe the activity of the network to
distinguish one from the other).

Before speaking of minimax codes (Problem 2), let us derive an absolute lower bound
on the range that can be detected by a general binary code f .

Proposition 2.2. Let f be a general binary code. Then, for any 0 ≤ ρ < 1/2n, T (f, ρ) =
∞.

This means that whatever the code, there exists always two stimuli at distance less
than 2−n that cannot be discriminated, whatever the observation time.

Proof. For A ⊆ [n], let SA be the set of all s ∈ S such that Ifs = A. Notice that for each
i ∈ [n]

SA =
(
∩i∈Af−1

i ({µ})
)
∩
(
∩i∈Acf−1

i ({1})
)
,
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is a borelian of S1 for each A ⊆ [n].
Notice also that if s ∈ SA ∩ SB, then A = Ifs = B. Moreover, ∪A⊆[n]SA = S1. Hence,

{SA}A⊆[n] forms a partition of S1. Let us denote Leb∗ the pushforward (a measure on
(S1,S)) of the Lebesgue on [0, 1) induced by the map [0, 1) ∈ θ 7→ (cos(2πθ), sin(2πθ)) ∈ S.
By definition of Leb∗ it holds that Leb∗(Ja, bJ) = 2π(θb − θa) and Leb∗(S

1) = 2π.

Since {SA}A⊆[n] forms a partition of S1 there exists A ⊆ [n] such that Leb∗(SA) ≥
2π/2n. Suppose that diam(SA) =: sups1,s2∈SA

d(s1, s2) ≤ ρ. If this was true, then the set
SA would be contained in an interval of Leb∗-measure 2πρ so that 2π/2n ≤ Leb∗(SA) ≤
2πρ, implying that ρ ≥ 1/2n, a contradiction.

Therefore, if ρ < 1/2n, then we must have that

diam(SA) > ρ,

implying that we can find s1, s2 ∈ SA such that d(s1, s2) > ρ. In this case, s1 and s2
cannot be distinguished and Tmin(f, ρ) = ∞.

3 Results for place cells code

In this section, we focus our analysis on the class of place cells code P defined in
(2.1). Our first result is a lower bound for

T (P, ρ) = inf
f∈P

T (f, ρ), (3.1)

which is (up to multiplicative constants in α and µ) the minimax discrimination time for
the class of place cells code defined in (1.1).

3.1 Lower bound on the minimax discrimination time

Proposition 3.1. For any 0 ≤ ρ ≤ 1/2, we have that

T (P, ρ) ≥ 1

⌊n/⌊(2ρ)−1⌋⌋
≥ 1

⌊4nρ⌋
.

In particular, for any 0 ≤ ρ ≤ (2(n+ 1))−1, we have that T (P, ρ) = ∞.

Proof. Let 0 ≤ ρ ≤ 1/2 and take L = ⌊1/2ρ⌋ so that L ≤ 1/2ρ < L + 1 and hence
L > 1/2ρ − 1. Set θ0 = 0 and 1 ≤ k ≤ L, write θk = kρ and θ−k = 1 − kρ. For each
f ∈ P, denote mf

ρ = min{∆f
ρk,ρk−1

: −L+ 1 ≤ k ≤ L}, where ρk ∈ S1 is identified with its
argument θk.

Note that

Ifρk \ Ifρk−1
= {i ∈ [n] : ai ∈Kρk−1, ρkK and bi /∈Kρk−1, ρkK} ⊂ {i ∈ [n] : ai ∈Kρk−1, ρkK}

and

Ifρk−1
\ Ifρk = {i ∈ [n] : bi ∈Kρk−1, ρkK and ai /∈Kρk−1, ρkK} ⊂ {i ∈ [n] : bi ∈Kρk−1, ρkK}.

Hence, it follows that

L∑
k=−L+1

|Ifρk \ Ifρk−1
| ≤

L∑
k=−L+1

|{i ∈ [n] : ai ∈Kρk−1, ρkK}| ≤ n,

and
L∑

k=−L+1

|Ifρk−1
\ Ifρk | ≤

L∑
k=−L+1

|{i ∈ [n] : bi ∈Kρk−1, ρkK}| ≤ n.
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Therefore, it follows that

L∑
k=−L+1

∆f
ρk,ρk−1

=

L∑
k=−L+1

max
{
|Ifρk \ Ifρk−1

|, |Ifρk−1
\ Ifρk |

}
≤ 2n,

implying that 2Lmf
ρ ≤ 2n, that is, mf

ρ ≤ n/L. Since mf
ρ is an integer, we must have

mf
ρ ≤ ⌊n/L⌋ = ⌊n/⌊(2ρ)−1⌋⌋ so that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆f
s1,s2 ≤ mf

ρ ≤ ⌊n/⌊(2ρ)−1⌋⌋.

Since f ∈ P is arbitrary, the above inequality ensures that

T−1(P, ρ) = sup
f∈P

min
s1,s2∈S1:d(s1,s2)≥ρ

∆f
s1,s2 ≤ ⌊n/⌊(2ρ)−1⌋⌋.

Since (2ρ)−1 ≥ 1 which implies that ⌊(2ρ)−1⌋ ≥ 1 we have that 4⌊(2ρ)−1⌋ ≥ 2(⌊(2ρ)−1⌋+
1) ≥ ρ−1, so that the first part of the proof follows from inequality above.

To conclude the proof, observe that if ρ ≤ (2(n + 1))−1 then ⌊(2ρ)−1⌋ ≥ n + 1 > n,
implying that

⌊
n/⌊(2ρ)−1⌋

⌋
= 0 and in this case T (P, ρ) = ∞.

To better understand the lower bound provided by Proposition 3.1, let us adopt an
asymptotic point of view in which the number of observed neurons n→ ∞ and ρ = ρn
is a function of n. For example, when ρn is a constant function of n the lower bound
decreases as 1/n, whereas in the regime ρn → 0 such that nρn → ∞ the lower bound
behaves as (2nρn)

−1. Moreover, as long as ρn ≤ (2(n + 1))−1 ≈ (2n)−1, whatever the
code f ∈ P, there exists always two stimulus at distance ρn that cannot be distinguished,
whatever the observation time.

3.2 Upper bounds and minimax codes

Next we obtain an upper bound for T (P, ρ) matching the lower bound above, up to
multiplicative constants. To that end, we study the behavior of T (f, ρ) for some examples
of place cell codes and use the fact that T (P, ρ) ≤ T (f, ρ) for any f ∈ P.

Example 3.2 (1-Uniform code). For each i ∈ {0, 1, . . . , n}, let pi be the point in S1

associated with θi = i
n . The 1-uniform code is defined as fn,n = (h1, . . . , hn) (the

superscript n, n stands for n neurons divided into n groups of size 1) where each hi is
given by (2.1) with ai = pi−1 and bi = pi. It is straightforward to check that T (f1,1, ρ) = ∞
for all 0 ≤ ρ < 1/2 and T (f1,1, 1/2) = 1. Let us analyse the case n ≥ 2. In this case,

T (fn,n, ρ) =

{
∞, if 0 ≤ ρ < 1/n,

1, otherwise
.

To check that, suppose first that ρ < 1/n. In this case, take θρ such that ρ ≤ θρ < 1/n ,
denote pρ the point in S1 associated to θρ and observe that pρ ∈ Jp0, p1J, If

n,n

pρ = If
n,n

p0 and
d(pρ, p0) = θρ ≥ ρ. Hence, T (fn,n, ρ) = ∞. Now, suppose 1/n ≤ ρ ≤ 1/2. In this case, it
is not difficult to check that If

n,n

s1 ̸= If
n,n

s2 for all s1, s2 ∈ S1 such that d(s1, s2) ≥ ρ which
implies that

∆fn,n

s1,s2 ≥ 1.

But since |Ifn,n

s | = 1 for all s ∈ S1, we deduce that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆fn,n

s1,s2 = 1,

and the result follows.
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Example 3.3 (d-Uniform code). For each k ∈ {0, 1, . . . , d}, let pk denote the point in S1

defined by θk = k
d and let hk be given by (2.1) with ak = pk−1 and bk = pk. Also, write

L = ⌊n/d⌋. The d-uniform code is defined as fn,d = (f1, . . . , fn) (the superscript n, d
stands for n neurons divided into d groups) where fi = hk for (k − 1)L+ 1 ≤ i ≤ kL with
k ∈ {1, . . . , d− 1}, and fi = hd for n ≥ i ≥ (d− 1)L+ 1. One can check that for any n ≥ 2,

T (fn,d, ρ) =

{
∞, if 0 ≤ ρ < 1/d,

1/⌊n/d⌋, otherwise
.

To verify that, consider first the case that ρ < 1/d. In this case, take θρ such that
ρ ≤ θρ < 1/d, denote pρ the point in S1 given by θρ and observe that pρ ∈ Jp0, p1J,
If

n,d

pρ = If
n,d

p0 and d(pρ, p0) = θρ ≥ ρ. Thus, we have that T (fn,d, ρ) = ∞. Suppose now

that 1/d ≤ ρ ≤ 1/2. In this case, one can check that If
n,d

s1 ∩ Ifn,d

s2 = ∅ for all s1, s2 ∈ S1
such that d(s1, s2) ≥ ρ so that

∆fn,d

s1,s2 = max
{
|If

n,d

s1 \ If
n,d

s2 |, |If
n,d

s2 \ If
n,d

s1 |
}
= max

{
|If

n,d

s1 |, |If
n,d

s2 |
}
≥ L.

Since the lower bound L is attained for some pair s1, s2 ∈ S1 (for example, take s1 and s2
given by θs1 = 0 and θs2 = 1/2 respectively), the results follows.

This codes allows us to prove the following result.

Corollary 3.4. For all ρ ∈ (1/n, 1/2], let d = ⌈1/ρ⌉. Then the d-Uniform code satisfies

1

⌊4nρ⌋
≤ T (P, ρ) ≤ T (fn,d, ρ) ≤ 1

⌊n/d⌋
≤ 1

⌊3nρ/2⌋

and is therefore minimax up to multiplicative constant.

3.3 A particular adaptive code

Now that we have found a minimax code for given ρ up to multiplicative constant,
one could wonder if there exists a given place cells code, which for every ρ in a given
range of values, achieves the minimax rate up to a constant. We refer to this problem
as Problem 3, adaptation to the distance. The following code is a particular example of
such a code.

Example 3.5 (An adaptive place cells code). Let g = (g1, . . . , gn) be the code in P with
fi defined by (2.1) where the points ai, bi ∈ S1 are associated to θi = i/2n and θi + 1/2

respectively. A visualisation is given in Figure 2. For the code g, one can show the
following.

Proposition 3.6. For any n ≥ 1 and 0 ≤ ρ ≤ 1/2,

1

⌊2nρ⌋
≤ T (g, ρ) ≤ 2

⌊2nρ⌋
.

In particular the g code cannot discriminate at distance ρ < 1/(2n) and it is adaptive to
the distance in the class P, up to some absolute multiplicative constant, in the range
ρ ∈ [1/(2n), 1/2].

Proof. One can easily check that for any 0 ≤ s < 1,

Igs =


∅, if 0 ≤ θs < 1/2n

{1, . . . , k}, if k/2n ≤ θs < (k + 1)/2n with 1 ≤ k ≤ n

{k + 1, . . . , n}, if (n+ k)/2n ≤ θs < (n+ k + 1)/2n with 1 ≤ k ≤ n− 1

.
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Figure 2: Visual representation of Examples 3. For an easier visualisation, the different
half red circles have a different radius. Nevertheless, each of them correspond a certain
cell i of the code, and more precisely to the locations s such that fi(s) = µ. Two
couples are considered (s1, s2) (standing for two positions that are very close) and (s1, s

′
2)

(standing for positions that are very far). We see that ∆s1,s′2
= n− 1 >> ∆s1,s2 = 1.

Thus, for any 0 ≤ ρ < 1/2n, it follows that if one takes s1, s2 ∈ S1 with θs1 = 0 and
ρ ≤ θs2 < 1/2n, then Igs1 = Igs2 = ∅ and d(s2, s1) = |θs2 − θs1 | = θs2 ≥ ρ, implying that
Tmin(g, ρ) = ∞, and the result holds since ⌊2nρ⌋ = 0.

Now, take 1/2n < ρ ≤ 1/2 and s1 ∈ S1. Suppose that 0 ≤ θs1 < 1/2. Let k = ⌊2nρ⌋ and
q ∈ {0, . . . , n− 1} be such that q/2n ≤ θs1 < (q + 1)/2n.

Let us consider first the case θs1 + ρ < (n + 1)/2n. In this case, for all θs1 + ρ ≤
θs2 < (n + 1)/2n, we have that Igs1 \ Igs2 = ∅ and {q + 1, . . . , q + k} ⊆ Igs2 \ Igs1 so that
∆g
s1,s2 = max

{
|Igs1 \ I

g
s2 |, |I

g
s2 \ I

g
s1 |
}

≥ q (and the equality can be achieved). For (n +

1)/2n ≤ θs2 ≤ θs1 + 1/2, one can check that Igs2 \ Igs1 = {q + 1, . . . , n} so that ∆g
s1,s2 =

max
{
|Igs1 \ I

g
s2 |, |I

g
s2 \ I

g
s1 |
}
≥ n− q ≥ k.

Hence, we have shown that for any s1 ∈ S1 such that 0 ≤ θs1 + ρ < 1/2,

min
s2∈S1:d(s2,s1)≥ρ,θs2≤θs1+1/2

∆g
s1,s2 ≥ k. (3.2)

Let us now consider the case θs1 + ρ ≥ (n + 1)/2n. In this case, one can check
n + 1 ≤ ⌊2n(θs1 + ρ)⌋ ≤ n + q. Let 1 ≤ r ≤ q be such that n + r = ⌊2n(θs1 + ρ)⌋. Since
2n(θs1+ρ) ≥ q+k, it follows that n+r ≥ q+k, implying that k ≤ (n−q)+r. Now, note that
for θs1 +ρ ≤ θs2 ≤ θs1 +1/2, we have that Igs2 \I

g
s1 = {q+1, . . . , n} and Igs1 \I

g
s2 = {1, . . . , ℓ}

with r ≤ ℓ ≤ q. Hence, we have that

∆g
s1,s2 = max

{
|Igs1 \ I

g
s2 |, |I

g
s2 \ I

g
s1 |
}
≥ max {(n− q), r} ≥ 1

2
(n− q + r) ≥ k/2,

so that for any s1 ∈ S1 such that θs1 + ρ ≥ (n+ 1)/2n,

min
s2∈S1:d(s2,s1)≥ρ,θs2≤θs1+1/2

∆g
s1,s2 ≥ k/2. (3.3)

Therefore, combining inequalities (3.2) and (3.3) we deduce that for any s1 ∈ S1 with
0 ≤ θs1 < 1/2,

min
s2∈S1:d(s2,s1)≥ρ,θs2≤θs1+1/2

∆g
s1,s2 ≥ k/2.

By similar arguments, one can also show that for any s1 ∈ S1 with 0 ≤ θs1 < 1/2

min
s2∈S1:d(s2,s1)≥ρ,θs2≥θs1+1/2

∆g
s1,s2 ≥ k/2 = ⌊2nρ⌋/2.
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The case 1/2 ≤ θs1 ≤ 1 follows along the same lines of reasoning by observing that if
θs̃1 = θs1 − 1/2 then 0 ≤ θs̃1 < 1/2 and θs̃1 + 1/2 = θs1 .

To conclude the proof, observe that

min
s1∈S1

min
s2∈S1:d(s2,s1)≥ρ

∆g
s1,s2 ≤ ∆g

s0,ak
= |Igk/2n| = k = ⌊2nρ⌋,

where s0 is the point S1 defined by θ0 = 0 and the result follows.

3.4 Random codes are adaptive as well

In the next example, we show that even random codes are adaptive (in the range
ρ ≥ n−1/2, up to multiplicative constants) with large probability.

Example 3.7 (Random code). Let A1, . . . , An and B1, . . . , Bn be independent and uni-
formly distributed points on S1. The random code fr is defined as fr = (fr1 , . . . , f

r
n),

where for each i ∈ [n], fi is of the form (2.1) with ai = Ai and bi = Bi. For the random
code fr, we can prove the following result.

Proposition 3.8. There exist constants K1,K2 > 0 such that for each n ≥ K1 the
following property holds: for each x ∈ R>0 and 0 ≤ ρ ≤ 1/2,

T (fr, ρ) ≤ 1⌈
n
2

(
ρ−K2n−1/2(1 + x1/2(1 + (x/n)1/2))

)⌉ , (3.4)

with probability at least 1 − exp (−x). In particular, for any δ ∈ (0, 1/4) and each n

satisfying
n ≥ max{K1, (1− 4δ)2/(4K2

2δ
2(1 + x1/2)2)} := K3,

we have the following: if 1/2 ≥ ρ ≥ n−1/2K2(1 + x1/2 + x)/(1− 4δ) then

T (fr, ρ) ≤ 1

⌈δnρ⌉
, (3.5)

with probability at most 1− exp(−x).

Proof. First observe that to prove inequality in (3.4), it suffices to show that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆fr

s1,s2 ≥ n

2

(
ρ−K2n

−1/2(1 + x1/2(1 + (x/n)1/2))
)

(3.6)

with probability at least 1− exp (−x). To that end, first observe that

|If
r

s1 \ If
r

s2 |+ |If
r

s2 \ If
r

s1 | =
n∑
i=1

1s1∈JAi,BiJ,s2∈JBi,AiJ + 1s2∈JAi,BiJ,s1∈JBi,AiJ

= n

(
1− 1

n

n∑
i=1

1s1,s2∈JAi,BiJ + 1s1,s2∈JBi,AiJ

)
which implies that

∆fr

s1,s2 ≥ 1

2

(
|If

r

s1 \ If
r

s2 |+ |If
r

s2 \ If
r

s1 |
)

=
n

2

(
1− 1

n

n∑
i=1

1s1,s2∈JAi,BiJ + 1s1,s2∈JBi,AiJ

)
.

Write ξi = (Ai, Bi) ∈ S1 × S1 for i ∈ [n], let Cs1,s2 = {(a, b) ∈ S1 × S1 : s1, s2 ∈
Ja, bK or s1, s2 ∈ Jb, a, J} for each s1, s2 ∈ S1. With this notation, we deduce from the
previous inequality that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆fr

s1,s2 ≥ n

2

(
1− max

s1,s2∈S1:d(s1,s2)≥ρ

1

n

n∑
i=1

1Cs1,s2
(ξi)

)
.
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Now, by Lemma 7.5,

E
(
1Cs1,s2

(ξi)
)
= 2P(s1, s2 ∈ JAi, BiJ) = 2

(
1

2
− |θs2 − θs1 | (1− |θs2 − θs1 |)

)
.

Hence, it follows that for s1, s2 ∈ S1 such that d(s1, s2) ≥ ρ (that is ρ ≤ |θs2 − θs1 | ≤ 1− ρ),
we have that

E
(
1Cs1,s2

(ξi)
)
≤ 1− 2ρ(1− ρ) ≤ 1− ρ,

where in the last inequality we have used that 0 ≤ ρ ≤ 1/2. From the above inequality,
we deduce that

max
s1,s2∈S1:d(s1,s2)≥ρ

1

n

n∑
i=1

1Cs1,s2
(ξi) ≤ (1− ρ) +WC ,

where WC is the random variable defined as

WC = max
C∈C

1

n

n∑
i=1

(1C(ξi)− E (1C(ξi))) ,

with the set C =
{
Cs1,s2 : s1, s2 ∈ S1 : d(s1, s2) ≥ ρ

}
. Combining the above inequalities,

we deduce that
min

s1,s2∈S1:d(s1,s2)≥ρ
∆fr

s1,s2 ≥ n

2
(ρ−WC) . (3.7)

By applying the Bousquet inequality (e.g., see inequality (5.49) on page 170 of [14]), we
deduce that for any x ∈ R>0,

P

(
WC ≤ E (WC) +

√
2x

n
(1− ρ+ E (WC)) +

x

3n

)
≥ 1− exp(−x). (3.8)

From now on, we denote K a positive constant which can change from line to line. Let
us denote V (C) the VC-dimension of the set C. By Lemma 6.4 of [14], there exists an
absolute constant K such that, for all n for which 1− ρ ≥ K2V (C)(1− 1

2 log(1− ρ))/n, it
holds that

E (WC) ≤
K

2

√
(1− ρ)

n
V (C)(1− 1

2
log(1− ρ)) ≤ K

2

√
V (C)
n

(1 +
1

2
log(2)),

where in the last inequality we have used that 0 ≤ ρ ≤ 1/2. Combining the above
inequality with (3.8) and by using again that 0 ≤ ρ ≤ 1/2, it follows that for all n for
which n ≥ 2K2V (C)(1 + log(2)/2) and any x ∈ R>0,

WC ≤ n−1/2

(
K

2

√
V (C)(1 + log(2)) + x1/2

√
2

(
1 +

K

2

√
V (C)(1 + log(2))

)
+ x/3n1/2

)

with probability at least 1 − exp(−x). Let us assume that the VC-dimension V (C) is
bounded by some absolute constant. In this case, it follows from the above inequality
and (3.7) that for all n ≥ K2 and any x ∈ R>0,

min
s1,s2∈S1:d(s1,s2)≥ρ

∆fr

s1,s2 ≥ n

2

(
ρ− n−1/2K

(
1 + x1/2

(
1 + (x/n)1/2

)))
with probability at least 1− exp(−x), proving (3.6). For the VC-dimension V (C), there
are various ways to see that it is finite. One way is to say that ξ = (A,B) ∈ Cs1,s2 is
equivalent to saying that (θA, θB) belongs to the union of

• [0,min(θs1 , θs2)]× (max(θs1 , θs2), 1]
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• (max(θs1 , θs2), 1]× [0,min(θs1 , θs2)]

• [min(θs1 , θs2),max(θs1 , θs2))× [min(θs1 , θs2),max(θs1 , θs2))

• [0,min(θs1 , θs2)]× [0,min(θs1 , θs2)]

• (max(θs1 , θs2), 1]× (max(θs1 , θs2), 1]

Hence it is included in the union of 5 rectangles. It is well known that the VC dimension
of the family of rectangles is 4. Class C is included in the 5-fold unions of rectangles,
whose VC dimension is bounded by 4 ∗ 5 log(5) up to multiplicative constants, thanks to
[8]. Therefore Class C is of finite VC-dimension, which concludes the proof.

Note that with a closer look at all possibilities, one can show that class C cannot
shatter samples of ξi’s of size 5 and that in fact its VC dimension is therefore 4. However,
the proof with all the possibilities is much longer than using the bound given by [8].

Let us now prove (3.5). Denote ηn,x = (1+x1/2+x/n1/2). Clearly (1+x1/2+x) ≥ ηn,x ≥
(1 + x1/2). Moreover, one can check that if n ≥ K3, then 2δ(K2ηn,x)/(1 − 4δ) ≥ n−1/2

which implies that (K2ηn,x)/(1− 4δ) ≥ 2n−1/2 +K2ηn,x. Hence, if ρ ≥ n−1/2K2(1+ x1/2 +

x)/(1− 4δ) ≥ n−1/2K2ηn,x/(1− 4δ), then

n(ρ−K2ηn,x/n
1/2)/2 ≥ 1

so that

⌊n(ρ−K2ηn,x/n
1/2)/2⌋ ≥ n(ρ−K2ηn,x/n

1/2)/4 ≥ nρδ,

and the result follows from (3.4).

Summary of the results on place cells codes

1. For any given place cells code f of size n, and any 0 ≤ ρ ≤ 1/(2(n+ 1)), there
exists a pair (s1, s2) at distance at least ρ that cannot be discriminated.

2. For any ρ ≥ 1/(2n), the minimax discrimination rate for place cell codes is of
order 1/(nρ).

3. The code g defined in Example 3.5 is adaptive, meaning that it reaches this
rate for all ρ ≥ 1/(2n), up to multiplicative constants.

4. Random codes fr defined in Example 3.7 are adaptive in the range ρ ≥ c/n1/2,
for some constant c > 0, up to multiplicative constants, with large probability.

4 Results for grid cells code

In this section, we discuss some results for the class of grid cells code defined in
(2.2) G((ni, λi)i=1,...,m) and the more general Ḡ. In what follows, for f ∈ Ḡ, s1, s2 ∈ S1
and i ∈ [m], let us denote

∆f,i
s1,s2 = max

{
|If,is1 \ If,is2 |, |If,is2 \ If,is1 |

}
,

where If,is = {j ∈ Mi : fji(s) = µ} is the set of cells activated by stimulus s ∈ S1 in the
i-th module. The first result establishes a useful link between grid cells code and place
cells code.

Proposition 4.1. For any f ∈ Ḡ and s1, s2 ∈ S1, the following inequality holds

m∑
i=1

∆f,i
s1,s2 ≥ ∆f

s1,s2 ≥ 1

2

m∑
i=1

∆f,i
s1,s2 . (4.1)
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Proof. Suppose that ∆f
s1,s2 = |Ifs1 \ I

f
s2 | (if not exchange s1 and s2). On one hand, observe

that since the modules are disjoint we have that

|Ifs1 \ I
f
s2 | =

m∑
i=1

|If,is1 \ If,is2 | ≤
m∑
i=1

max
{
|If,is1 \ If,is2 |, |If,is2 \ If,is1 |

}
=

m∑
i=1

∆f,i
s1,s2 .

On the other hand, using that

|Ifs1 \ I
f
s2 |+ |Ifs2 \ I

f
s1 | =

m∑
i=1

|If,is1 \ If,is2 |+ |If,is2 \ If,is1 | ≥
m∑
i=1

max
{
|If,is1 \ If,is2 |, |If,is2 \ If,is1 |

}
,

we obtain that

2∆f
s1,s2 ≥ |Ifs1 \ I

f
s2 |+ |Ifs2 \ I

f
s1 | ≥

m∑
i=1

∆f,i
s1,s2 ,

and the result follows.

4.1 Lower bound on the minimax discrimination time for G((ni, λi)i=1,...,m)

The following result provides a lower bound on the minimax discrimination time (up
to constants depending on α and µ) defined in (1.1), when restricted to the class of grid
cells code:

T (G((ni, λi)i=1,...,m), ρ) = inf
f∈G((ni,λi)i=1,...,m)

T (f, ρ). (4.2)

Theorem 4.2. If 0 ≤ ρ ≤ 1/2 and λ1/λ2 is even or if 0 ≤ ρ ≤ 1/2− λ2/2 and λ1/λ2 is odd,
we have that

T (G((ni, λi)i=1,...,m), ρ) ≥ 1⌊
6min1≤k≤m

{∑k
i=1

ni

λi
max {ρ, λk+1}

}⌋ ,
with the convention that λm+1 = 0. In particular, if we define jρ = max{1 ≤ k ≤ m : λk ≥
ρ}, then T (G((ni, λi)i=1,...,m), ρ) = ∞ whenever one of the following conditions hold:

• either there exists 2 ≤ k ≤ jρ such that

(k − 1)λk < min
1≤i<k

[
λi
6ni

]
,

• or jρρ < min1≤i≤jρ

[
λi

6ni

]
.

Proof. We need to compute an upper bound for mins1,s2∈S1:d(s1,s2)≥ρ∆
f
s1,s2 uniformly on

f ∈ F2. By the definition of jρ, if jρ ≥ 2 then we have that

λk ≥ ρ > λjρ+1, for all 2 ≤ k ≤ jρ and ρ ≤ λ1/2.

When jρ = 1 it holds that λ2 < ρ ≤ 1/2 = λ1/2.

Let us consider first the case jρ ≥ 2. In this case, let 2 ≤ k ≤ jρ and take s1, s2 ∈ S1
such that d(s1, s2) = λk ≥ ρ. By Lemma 7.3 it follows that s1 mod λi = s2 mod λi for all
k ≤ i ≤ m so that for all j ∈Mi,

fij(s1) = fij(s1 mod λi) = fij(s2 mod λi) = fij(s2),

implying that ∆f,i
s1,s2 = 0.

Hence, by Proposition 4.1 we have that

∆f
s1,s2 ≤

k−1∑
i=1

∆f,i
s1,s2 .
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For each 1 ≤ i ≤ k − 1, let ρiℓ in Sλi defined by θρiℓ = ℓλk with 0 ≤ ℓ ≤ Di+1:k, where
Di+1:k := λi/λk is an integer larger than 2 for all i < k. For later use, let us also define
D2:1 = 1. By arguing as in the proof of Proposition 3.1, one can show that

Di+1:k∑
ℓ=1

∆f,i
ρiℓ,ρ

i
ℓ−1

≤ 2ni.

Now, take 0 ≤ ℓ ≤ D2:k, 1 ≤ i ≤ k − 1 and j ∈ Mi, and observe that fij(ρ1ℓ) =

fij(ρ
1
ℓ mod λi).

Claim. It holds true that ρ1ℓ mod λi = ρiℓ mod Di+1:k
.

Proof of the Claim. Write ℓ = rDi+1:k + ℓ mod Di+1:k for some positive integer r.
Since λi = Di+1:kλk, we deduce that

ℓλk = rλi + (ℓ mod Di+1:k)λk

with (ℓ mod Di+1:k)λk < λi. As a consequence, we obtain that

θρ1ℓ mod λi
= θρ1ℓ mod λi = ℓλk mod λi = (ℓ mod Di+1:k)λk = θρiℓ mod Di+1:k

,

implying that ρ1ℓ mod λi = ρiℓ mod Di+1:k
(by the injectivity of the function S1 ∋ a 7→ θa.)

This concludes the proof of the Claim.

The claim implies that fij(ρ1ℓ) = fij(ρ
i
ℓ mod Di+1:k

) for each 0 ≤ ℓ ≤ D2:k, 1 ≤ i ≤ k − 1

and j ∈Mi, so that (notice that D2:k = D2:iDi+1:k),

D2:k∑
ℓ=1

∆f,i
ρ1ℓ ,ρ

1
ℓ−1

= D2:i

Di+1:k∑
ℓ=1

∆f,i
ρiℓ,ρ

i
ℓ−1

≤ D2:i2ni.

Therefore, the above inequality implies that

D2:k∑
ℓ=1

k−1∑
i=1

∆f,i
ρ1ℓ ,ρ

1
ℓ−1

≤ 2(D2:1n1 +D2:2n2 + . . .+D2:k−1nk−1)

which, in turn, ensures that

D2:k min
s1,s2∈S1:d(s1,s2)=λk

{
k−1∑
i=1

∆f,i
s1,s2

}
≤
D2:k∑
ℓ=1

k−1∑
i=1

∆f,i
ρ1ℓ ,ρ

1
ℓ−1

≤ 2(D2:1n1 +D2:2n2 + . . .+D2:k−1nk−1)

or equivalently,

min
s1,s2∈S1:d(s1,s2)=λk

{
k−1∑
i=1

∆f,i
s1,s2

}
≤ 2

D2:k
(D2:1n1 +D2:2n2 + . . .+D2:k−1nk−1) = 2λk

k−1∑
i=1

ni
λi
,

where in the equality we have used that D2:k = D2:iDi+1:k and Di+1:k = λiλ
−1
k .

Hence, we have shown that for each 2 ≤ k ≤ jρ,

min
s1,s2∈S1:d(s1,s2)≥ρ

∆f
s1,s2 ≤ 2λk

k−1∑
i=1

ni
λi

=

k−1∑
i=1

2ni
λi

max {λk, ρ} .
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If ρ > λjρ/2− λjρ+1/2, then

λjρ < 2ρ+ λjρ+1 < 3ρ.

Hence
jρ−1∑
i=1

2ni
λi

max
{
λjρ , ρ

}
=

jρ−1∑
i=1

2ni
λi
λjρ < 3

jρ−1∑
i=1

2ni
λi
ρ

and for all k ≥ jρ,

3

k∑
i=1

2ni
λi

max {ρ, λk+1} ≥ 3

jρ∑
i=1

2ni
λi
ρ > 3

jρ−1∑
i=1

2ni
λi
ρ,

so that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆f
s1,s2 ≤ min

1≤k≤jρ−1

{
k∑
i=1

2ni
λi

max {λk+1, ρ}

}

= min

{
min

1≤k≤jρ−1

{
k∑
i=1

2ni
λi

max {λk+1, ρ}

}
, min
jρ≤k≤m

{
3

k∑
i=1

2ni
λi

max {λk+1, ρ}

}}
.

Therefore, we deduce that when jρ ≥ 2 and ρ > λjρ/2− λjρ+1/2, it holds that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆f
s1,s2 ≤ 3 min

1≤k≤m

{
k∑
i=1

2ni
λi

max {λk+1, ρ}

}
. (4.3)

Now, suppose that ρ ≤ λjρ/2 − λjρ+1/2. Let r = ⌈ρ/λjρ+1⌉. If Djρ+1:jρ+1 is even
then r < Djρ+1:jρ+1/2 because r < λjρ/2. If Djρ+1:jρ+1 is odd, then λjρ/2 − λjρ+1/2 =

λjρ+1(Djρ+1:jρ+1 − 1)/2 is a multiple of λjρ+1. So in both cases, r < Djρ+1:jρ+1/2. There-
fore L = ⌊Djρ+1:jρ+1/r⌋ is always larger than 2.

In module jρ, we construct L + 1 different points ρ
jρ
ℓ of argument ℓrλjρ+1, for ℓ =

0, ..., L which leads to L distinct pairs at distance ρ̄ = rλjρ+1.
By periodicity, we deploy these points on module 1, there are D2:jρL of those. Taking

their modulo, they correspond on module i = 1, ...,m to Di+1:jρL pairs at distance ρ̄.
Each of these pairs are at distance a multiple of λk for k > jρ and therefore cannot be
detected by the modules for k > jρ.

Therefore a similar argument as above lead us to

min
s1,s2∈S1:d(s1,s2)=ρ̄

∆f
s1,s2 ≤ 2

D2:jρL
(D2:1n1 + ...+D2:jρnjρ).

Since L ≥ 2, L ≥ 2/3(Djρ+1:jρ+1/r), hence

min
s1,s2∈S1:d(s1,s2)=ρ̄

∆f
s1,s2 ≤ 3r

jρ∑
i=1

ni
λi
λjρ+1.

But r ≤ 2ρ/λjρ+1. Hence

min
s1,s2∈S1:d(s1,s2)=ρ̄

∆f
s1,s2 ≤ 3

jρ∑
i=1

2ni
λi
ρ

Also, as before

3

jρ∑
i=1

2ni
λi
ρ ≤ 3

k∑
i=1

2ni
λi

max {λk+1, ρ} ,
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for all k ≥ jρ. Finally since ρ̄ ≥ ρ, we get that as long as jρ ≥ 2, (4.3) holds.

The last case to treat is when jρ = 1. If ρ ≤ λ1/2 − λ2/2, we do as above with
r = ⌈ρ/λ2⌉ and ρ̄ = rλ2 ≤ 1/2, constructing pairs that can be distinguished only by
module 1 and the same bound applies.

In the case ρ ≥ λ1/2−λ2/2 and λ1/λ2 is even, we can always take s1 = 0 and s2 = 1/2.
Since λ1/λ2 is even, d(s1, s2) is a multiple of λ2 and therefore of all the other λi for i ≥ 2.
Hence it can only be detected by the first module and

min
s1,s2∈S1:d(s1,s2)≥ρ

∆f
s1,s2 ≤ n1 ≤ 3n1ρ ≤ 3

k∑
i=1

2ni
λi

max {λk+1, ρ} ,

for all k ≥ 1 and we conclude as for the other cases.

To conclude, let us just remark that if there exists 2 ≤ k ≤ jρ such that

(k − 1)λk < min
i<k

[
λi
6ni

]
=

1

6max1≤i<k{ni/λi}
,

then
∑k−1
i=1

ni

λi
λk ≤ (k − 1)λkmax1≤i<k{ni

λi
} < 1/6, so that the integer part in the lower

bound is null. The same phenomenon appears at k = jρ if jρρ < mini≤jρ

[
λi

6ni

]
.

To understand better the bound given by Theorem 4.2, note that 1/⌊2niρ/λi⌋ is in fact
the rate for the place cells code in module i. So, roughly up to multiplicative constant,
to distinguish at distance ρ, the code needs to be such that the modules of the grid
cells have to be coherent (i.e. the period kλk+1 needs to be detected by at least one of
the modules before, for all k such that λk+1 ≥ ρ) and that jρρ also needs to be in the
detection range of at least one of modules i ≤ jρ. It is not clear whether the factor k

should be present or not. Also, for the rate itself note that
∑k
i=1

ni

λi
λk+1 is not necessarily

monotonous in k. Hence we could be in a situation where even if we are interested by
small ρ that cannot be detected by the first module, the rate of detection of λ2 by the
first module acts as a threshold that impacts the rates at ρ.

4.2 Upper bounds and a particular adaptive code for G((ni, λi)i=1,...,m)

Example 4.3. (An adaptive grid cell code) This code is made of adaptive place cells
code as in Example 3 for each of the modules. More precisely, the module i is the
set of neurons Mi = {ni−1 + 1, . . . , ni−1 + ni} and fni+j,i is associated with the points

aij , bij ∈ Sλi corresponding to the angles θaij = jλi

2ni
and θbij = (j+ni)λi

2ni
. Let us denote

this code by ggc.

For the code ggc, one can prove the following result.

Proposition 4.4. For any 0 ≤ ρ ≤ 1/2,

T (ggc, ρ) ≤
4

min1≤k≤m
∑k
j=1

⌊
nj

λj
max {λk+1, ρ}

⌋ ,
with the convention λm+1 = 0. In particular, if we define jρ = max{1 ≤ k ≤ m : λk ≥ ρ},
then for all ρ large enough such that

• for all k ≤ jρ, there exists j < k such that λk ≥ λj

nj

• and there exists j ≤ jρ with ρ ≥ λj

nj
, we have that
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1

6min1≤k≤m
∑k
j=1

nj

λj
max {λk+1, ρ}

≤ T (G((ni, λi)i=1,...,m), ρ)

≤ T (ggc, ρ) ≤
16 log2(1/ρ)

min1≤k≤m
∑k
j=1

nj

λj
max {λk+1, ρ}

,

meaning that ggc is adaptive in this range of ρ up to a factor log2(1/ρ).

Proof. Take a pair s1, s2 ∈ S1 such that d(s1, s2) ≥ ρ and define

js1,s2 = max

{
i ∈ [n] :

λi
2

≥ d(s1, s2)

}
.

By using Lemma 7.2, we then conclude that for 1 ≤ j ≤ js1,s2 ,

d(s1 mod λj , s2 mod λj) = d(s1, s2) ≥ ρ.

Hence, proceeding as in the proof of Proposition 3.6, we have then that

m∑
i=1

∆ggc,i
s1,s2 ≥

js1,s2∑
i=1

∆ggc,i
s1,s2

≥
js1,s2∑
i=1

min
u1,u2∈Sλi :dλi

(u1,u2)≥ρ
∆ggc,i
u1,u2

≥ 1

2

js1,s2∑
j=1

⌊
2nj
λj

ρ

⌋
=

1

2

js1,s2∑
j=1

⌊
2nj
λj

max

{
λjs1,s2+1

2
, ρ

}⌋
.

Combining the above inequality and Proposition 4.1, we deduce that

min
s1,s2∈S1:d(s1,s2)≥ρ

∆ggc
s1,s2 ≥ 1

2
min

s1,s2∈S1:d(s1,s2)≥ρ

m∑
i=1

∆ggc,i
s1,s2

≥ 1

4
min

1≤k≤m

k∑
j=1

⌊
2nj
λj

max

{
λk+1

2
, ρ

}⌋
.

≥ 1

4
min

1≤k≤m

k∑
j=1

⌊
nj
λj

max {λk+1, ρ}
⌋
.

To conclude the proof we need to show that

min
1≤k≤m

k∑
j=1

⌊
nj
λj

max {λk+1, ρ}
⌋
≥ 4 log(ρ−1) min

1≤k≤m

k∑
j=1

nj
λj

max {λk+1, ρ} . (4.4)

To that end, first observe that

min
1≤k≤m

k∑
j=1

⌊
nj
λj

max {λk+1, ρ}
⌋
= min

 min
2≤k≤jρ

k−1∑
j=1

⌊
nj
λj
λk

⌋
,

jρ∑
j=1

⌊
nj
λj
ρ

⌋ , (4.5)

and also that for each k ≤ jρ

k−1∑
j=1

⌊
nj
λj
λk

⌋
≥ max

1≤j<k

⌊
nj
λj
λk

⌋

≥ 1

2
max
1≤j<k

nj
λj
λk ≥ 1

2k

k−1∑
j=1

nj
λj
λk.
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Since ρ ≤ λjρ ≤ 2−(jρ−1) it follows that 2 log2(ρ
−1) ≥ log(ρ−1) + 1 ≥ jρ ≥ k, so that from

the above inequality we obtain that

k−1∑
j=1

⌊
nj
λj
λk

⌋
≥ 1

4 log2(ρ
−1)

k−1∑
j=1

nj
λj
λk.

By similar arguments, one can also show that

jρ∑
j=1

⌊
nj
λj
ρ

⌋
≥ 1

4 log2(ρ
−1)

jρ∑
j=1

nj
λj
ρ.

Combining the last two inequalities above with (4.5), we then deduce that

min
1≤k≤m

k∑
j=1

⌊
nj
λj

max {λk+1, ρ}
⌋
≥ 1

4 log2(ρ
−1)

min

 min
2≤k≤jρ

k−1∑
j=1

nj
λj
λk,

jρ∑
j=1

nj
λj
ρ


=

1

4 log2(ρ
−1)

min
1≤k≤m

k∑
j=1

nj
λj

max {λk+1, ρ} ,

proving (4.4), and the result follows.

4.3 Random codes are also adaptive in G((ni, λi)i=1,...,m)

Example 4.5 (Random code for grid cells). Again we use random codes on each of
the modules. More precisely, for each 1 ≤ i ≤ m, let Mi = {ni−1 + 1, . . . , ni−1 + ni}
denote the set of neurons in module i. Let (Aij)j∈Mi

and (Bij)j∈Mi
be independent and

uniformly distributed points on Sλi . The random code frgc for the grid cells is defined
as frgc = (frgc,11, . . . , f

r
gc,ij , . . . , f

r
gc,Mn), where frgc,ij is given by (2.2) with aij = Aij and

bij = Bij for each i ∈ [m] and j ∈Mi.

Proposition 4.6. There exist constants K1,K2 > 0 such that if min1≤i≤m{ni} ≥ K1 the
following property holds: for x ∈ R>0 and 0 ≤ ρ ≤ 1/2, T (frgc, ρ) is upper bound by the
inverse of the ceiling function of

min
1≤k≤m

k∑
i=1

ni
4

max
{
ρ, λk+1

2

}
λi

− K2

n
1/2
i

[
1 + (x+ log(m))1/2

[
1 +

(
(x+ log(m))

ni

)1/2
]] ,

with probability 1 − e−x, with the convention λm+1 = 0. In particular, denoting jρ =

max{1 ≤ k ≤ m : λk ≥ ρ} we have that

T (frgc, ρ) ≤
16⌊

min1≤k≤m

{∑k
i=1

ni

λi

}⌋ (4.6)

with probability 1 − e−x, that is frgc is adaptive in the range of ρ where the following
extra conditions holds:

• for all k ≤ jρ,

λk ≥ K3√∑
i<k

ni

λi

,

• and also that

ρ ≥ K3√∑
i≤jρ

ni

λi

,
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where K3 := 4
√
2K2(1 + x+ log(m) + (x+ log(m)1/2).

Proof. Fix 0 ≤ ρ ≤ 1/2, take s1, s2 ∈ S1 with d(s1, s2) ≥ ρ and define, as in the proof of
Proposition 4.4,

js1,s2 = max

{
i ∈ [n] :

λi
2

≥ d(s1, s2)

}
.

Lemma 7.2 ensures that for 1 ≤ j ≤ js1,s2 ,

d(s1 mod λj , s2 mod λj) = d(s1, s2) ≥ ρ.

Hence, by Proposition 4.1 we have that

∆
fr
gc
s1,s2 ≥ 1

2

js1,s2∑
i=1

∆
fr
gc,i
s1,s2 ≥ 1

2

js1,s2∑
i=1

min
u1,u2∈Sλi :d(u1,u2)≥ρ

∆
fr
gc,i
u1,u2 . (4.7)

Next, proceeding as in the proof of Proposition 3.8 one can show that

min
u1,u2∈Sλi :d(u1,u2)≥ρ

∆
fr
gc,i
u1,u2 ≥ ni

2

(
ρ

λi
−WCi

)
, (4.8)

where WCi
is the random variable given by

WCi = max
C∈Ci

1

ni

∑
j∈Mi

(1Ci(ξij)− E (1Ci(ξij))) ,

with the set Ci =
{
Cu1,u2

: u1, u2 ∈ Sλi : d(u1, u2) ≥ ρ
}

and ξij = (Aij , Bij) ∈ Sλi . Arguing
for each WCi

as it was done for WC in the proof of Proposition 3.8, one deduces that if
min1≤i≤m{ni} ≥ K1, then for all x1, . . . , xm ∈ R>0,

min
u1,u2∈Sλi :d(u1,u2)≥ρ

∆
fr
gc,i
u1,u2 ≥ ni

2

(
ρ

λi
− n

−1/2
i K2

(
1 + x

1/2
i

(
1 + (xi/ni)

1/2
)))

for all i ≤ m,

(4.9)
with probability at least 1−

∑m
i=1 exp(−xi). Therefore, combining inequalities (4.7), (4.8)

and (4.9) it follows if min1≤i≤m{ni} ≥ K2 then for all 1 ≤ k ≤ m and all x1, . . . , xm ∈ R>0

min
s1,s2∈S1:d(s1,s2)≥ρ,js1,s2

=k
∆
fr
gc
s1,s2

≥ 1

2

k∑
i=1

ni
2

(
max {ρ, (λk+1/2)}

λi
− n

−1/2
i K

(
1 + x

1/2
i

(
1 + (xi/ni)

1/2
)))

≥ 1

2
min

1≤k≤m

k∑
i=1

ni
2

(
max {ρ, (λk+1/2)}

λi
− n

−1/2
i K

(
1 + x

1/2
i

(
1 + (xi/ni)

1/2
)))

,

with probability larger or equal than 1−
∑m
i=1 exp(−xi). Finally, since

min
s1,s2∈S1:d(s1,s2)≥ρ

∆
fr
gc
s1,s2 = min

1≤k≤M
min

s1,s2∈S1:d(s1,s2)≥ρ,js1,s2
=k

∆
fr
gc
s1,s2 ,

the result follows from the above inequality with xi = x+ log(m).
It remains to prove (4.6). Denote ηx = (1 + x + log(m) + (x + log(m)1/2) and ηx,i =

(1 + (x+ log(m)1/2 + (x+ log(m)/n
1/2
i ), and observe that ηx ≥ ηx,i which ensures that

k−1∑
i=1

ni
4

(
λk
2λi

− n
−1/2
i K2ηx,i

)
≥ 1

8

k−1∑
i=1

niλk
2λi

− K2ηx
4

k−1∑
i=1

n
1/2
i

λ
1/2
i

λ
1/2
i .
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By Cauchy-Schwarz inequality, we know that

k−1∑
i=1

n
1/2
i

λ
1/2
i

λ
1/2
i ≤

√√√√k−1∑
i=1

ni
λi

√√√√k−1∑
i=1

λi ≤
√
2

k−1∑
i=1

ni
λi
,

where in the second inequality we have used that λi ≤ 2−(i−1) for each 1 ≤ i ≤ m. As a
consequence, we deduce that

k−1∑
i=1

ni
4

(
λk
2λi

− n
−1/2
i K2ηx,i

)
≥ 1

8

k−1∑
i=1

ni
λi

λk − 2
√
2K2ηx√∑k−1
i=1 ni/λi

 ≥ 1

16

k−1∑
i=1

ni
λi
λk,

Similarly, one can show that if the second extra condition holds then we also have that

jρ∑
i=1

ni
4

(
ρ

2λi
− n

−1/2
i K2ηx,i

)
≥ 1

16

jρ∑
i=1

(
niρ

λi

)
. (4.10)

From the last to inequalities above it is easy to deduce (4.6), concluding the proof of the
result.

4.4 What can we say about the general class Ḡ?

The rate
1

min1≤k≤m
∑k
j=1

⌊
2nj

λj
max

{
λk+1

2 , ρ
}⌋ ,

is very difficult to understand. What would be the best choice of ni’s and λi’s ?

Minimal range of detection

Example 4.7 (Extreme Dyadic code). In the extreme dyadic code fd, we have m = n

modules M1, . . . ,Mn where the i-th module Mi = {i} has period λi = (1/2)i−1 and whose
points aii := ai, bii := bi ∈ Sλi are such that θai = 0 and θbi = (1/2)i. In the sequel, let us
denote fd,ii = fd,i so that fd = (fd1, . . . , fdn).

Proposition 4.8. Let fd be the extreme dyadic code. For any ρ ≥ 1/2n, we have
T (fd, ρ) = 1.

Proof. First, we will show that T (fd, ρ, α) ≤ 1. To that end, we need to show that for all
s1, s2 ∈ [0, 1) such that d(s1, s2) ≥ ρ, we have max

{
|Ifds1 \ Ifds2 |, |I

fd
s2 \ Ifds1 |

}
≥ 1. Notice that

by Lemma 7.4, we can write (θsi) =
∑∞
j=1(θsi)j/2

j , i ∈ {1, 2}.
Claim. There exists j ∈ [n] such that (θs1)j ̸= (θs2)j .
Assuming that the claim is true, we can then use again Lemma 7.4 to conclude that

fdj(s1) ̸= fdj(s2) implying that max
{
|Ifds1 \ Ifds2 |, |I

fd
s2 \ Ifds1 |

}
≥ 1.

We now prove the Claim. We argue by contradiction. Suppose that (θs1)j = (θs2)j for
all j ∈ [n]. Suppose also that θs1 ≤ θs2 ≤ θs1 + 1/2 (if this is not the case we change s2 by
s1). In this case,

1/2n ≤ ρ ≤ d(s1, s2) = |θs1 − θs2 | =
∞∑

j=n+1

|((θs1)j − (θs2)j)|/2j ≤ 1/2n = λn/2,

and Lemma 7.2 implies that

d(s1 mod λn, s2 mod λn) =
1

2n
.
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This implies that fdn(s1) = fdn(s1 mod λn) ̸= fdn(s2 mod λn) = fdn(s2) and we can apply
Lemma 7.4 to deduce that (θs1)n ̸= (θs2)n, which is absurd. This concludes the proof of
the Claim.

To conclude the proof, observe that by taking θs1 = 0 and θs2 = 1/2, we have
(θs1)j = 0 for all j ≥ 1, (θs2)1 = 1 and (θs2)j = 0 for all j ≥ 2. By Lemma 7.4 we have that
fd1(s1) ̸= fd1(s2), fdj(s1) = fdj(s2) for all 2 ≤ j ≤ n and d(s1, s2) = |θs1 − θs2 | = 1/2 ≥ ρ.
Hence, T (fd, ρ) = 1 and the result follows.

This result needs to be put in perspective with Proposition 2.2 : the extreme dyadic
code is able to reach the best precision that one can have, that is 1/2n, but it is unable
to reach a faster minimax discrimination time when ρ increases. So either (whatever the
code in Ḡ) one cannot achieve a faster rate than 1 or it means that this extreme dyadic
code cannot be adaptive. The following example shows a faster rate for larger ρ, which
means that we are in the second case.

Example 4.9. (Grid cells - adaptive balanced) For a given 1 ≤ m ≤ n, let λi = 2−(i−1)

and ni = ⌊n/m⌋ for 1 ≤ i ≤ m − 1, and λm = 2−(m−1) and nm = ⌊n/m⌋ + n mod m.
We call balanced grid cells code the class Gb,m := G((ni, λi)i=1,...,m) corresponding to
these choices of λi’s and ni’s. Note that each code in this class has the same number of
neurons per module (except the last one). In what follows, let us denote gb,mgc the code
ggc defined in Example 4.3 belonging to the class of balanced grid cells code Gb,m.

Proposition 4.10. Let 1 ≤ m ≤ n such that n ≥ 2m. For any ρ such that 1/2m ≤ ρ ≤ 1/2,

1

3⌊n/m⌋
≤ T (Gb,m, ρ) ≤ Tmin(g

b,m
gc , ρ) ≤ 16

⌊n/m⌋
,

that is, the code gb,mgc is adaptive in the range ρ ≥ 1/2m in the class Gb,m.

Proof. Let us first compute the corresponding lower bound for T (Gb,m) provided by
Theorem 4.2. Notice that for all 2 ≤ k ≤ jρ we have that

k−1∑
i=1

nimax {ρ, λk}
λi

=

k−1∑
i=1

niλk
λi

= ⌊n/m⌋
k−1∑
i=1

2−i = ⌊n/m⌋
(
1− 2−(k−1)

)
:= xk−1.

Moreover, one can check that

jρ∑
i=1

nimax
{
ρ, λjρ+1

}
λi

≥ ρ⌊n/m⌋
jρ∑
i=1

1

λi

= ρ⌊n/m⌋(2jρ − 1) := xjρ .

Since xk+1 − xk = 2⌊n/m⌋2−(k−2) > 0 for 1 ≤ k ≤ jρ − 2, it follows that

min

 min
2≤k≤jρ

k−1∑
i=1

nimax {ρ, λk}
λi

,

jρ∑
i=1

nimax
{
ρ, λjρ+1

}
λi

 = min{x1, xjρ}.

Now, for any 1/2m ≤ ρ ≤ 1/2 it holds that 2−jρ = λjρ+1 ≤ ρ ≤ λjρ so that 2ρ(2jρ − 1) ≥
2(1 − ρ) ≥ 2(1/2) = 1, implying that x1 ≤ xjρ , that is min{x1, xjρ} = x1 = (⌊n/m⌋)/2.
Hence Theorem 4.2 implies that

T (Gb,m, ρ) ≥
1

3⌊n/m⌋
. (4.11)
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Next, we will compute the upper bound for Tmin(gm,bgc , ρ) using Proposition 4.4. First,
observe that for all 2 ≤ k ≤ jρ,

yk−1 :=

k−1∑
j=1

⌊
nj
λj

max {λk, ρ}
⌋
=

⌊
⌊n/m⌋1

2

⌋
+ . . .+

⌊
⌊n/m⌋ 1

2k−1

⌋
so that y1 ≤ y2 < . . . ≤ yjρ−1. Let,

yjρ :=

jρ∑
j=1

⌊
nj
λj

max
{
λjρ+1, ρ

}⌋
=

jρ−1∑
j=0

⌊
⌊n/m⌋ρ2j

⌋
.

implying that

min
1≤k≤m

k∑
j=1

⌊
nj
λj

max {λk+1, ρ}
⌋
= min{y1, yjρ}.

Since, ⌊n/m⌋/2 ≥ 1 we have that y1 ≥ ⌊n/m⌋/4 (here we use that ⌊x⌋ ≥ x/2 when x ≥ 1).
Moreover,

yjρ =

jρ−1∑
j=0

⌊
⌊n/m⌋ρ2j

⌋
=

jρ−1∑
j=0:⌊n/m⌋ρ2j≥1

⌊
⌊n/m⌋ρ2j

⌋
> (⌊n/m⌋/2)

jρ−1∑
j=0:⌊n/m⌋ρ2j≥1

ρ2j ,

so that if we denote jmin = min{0 ≤ j ≤ jρ − 1 :: ⌊n/m⌋ρ2j ≥ 1}, then

yjρ > (⌊n/m⌋/2)
jρ−1∑
j=jmin

ρ2j = (⌊n/m⌋/2)2jminρ(2jρ−jmin − 1).

Finally, since ρ2jρ ≥ 2 and since ⌊n/m⌋ ≥ 2, one can check that jmin ≤ jρ − 2. As a
consequence,

yjρ > (⌊n/m⌋/2)2jminρ(2jρ−jmin − 1)

≥ (⌊n/m⌋/2)(2jρ−jmin+1/2jρ − ρ)2jmin = (⌊n/m⌋/2)(2− ρ2jmin) ≥ ⌊n/m⌋(1− 1/4)

> ⌊n/m⌋/4.

Hence, we have shown that if ⌊n/m⌋ ≥ 2, then min{y1, yjρ} ≥ (⌊n/m⌋/4) and Proposition
4.4 ensures that

T (Gb,m, ρ) ≤ Tmin(g
b,m
gc , ρ) ≤ 16

⌊n/m⌋
.

The result follows from (4.11) and the inequality above.

This result about adaptivity is very interesting. Indeed it tells us that whatever the
balanced adaptive code that we use with m modules, the minimax discrimination time
does not vary as a function of ρ and in particular does not decrease when the distance
between two stimuli increases. It stays constant at m/n up to multiplicative constants.
In the extreme case with m = n modules, we recover the extreme dyadic code whose
minimax discrimination time is 1 whatever the distance. On the other hand, and as a
corollary of Proposition (4.10), we have the following result.

Corollary 4.11. For all 2−n/2 ≤ ρ ≤ 1/2, let m = ⌊log2(ρ−1)⌋. Then the code gb,mgc satisfies

1

6

⌊
log2(ρ

−1)

n

⌋
≤ 1

3⌊n/m⌋
≤ T (Gb,m, ρ) ≤ Tmin(g

b,m
gc , ρ) ≤ 32

⌈
log2(ρ

−1)

n

⌋
.
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The proof of Corollary 4.11 is straightforward. Note that this result shows that if
we know in advance at which distance ρ one needs to detect, one can use a balanced
adaptive code with m = ⌊log2(ρ−1)⌋ modules to reach a rate much faster than the place
cells codes. Indeed, log2(ρ

−1) ≪ ρ−1 when ρ is small. On the other hand, once m is
fixed Proposition 4.10 tells us that the minimax discrimination time is then constant
and cannot decreases when ρ increases as log2(ρ

−1)/n. In this sense, balanced grid cell
codes cannot be adaptive. The question remains open for unbalanced grid cells codes.

Summary of the results on grid cells codes

1. One can compute the minimax discrimination rate on G((ni, λi)i=1,...,m).

2. In general, grid cells code obtained with the adaptive code of Example 3 on
each module are able to reach this minimax discrimination rate, for every ρ up
to a log2(ρ

−1) factor but on a restricted range of ρ.

3. The random codes do not lose this extra log2(ρ
−1) factor but they have a

different range of ρ.

4. Extreme dyadic codes can reach the best possible precision in 2−n. However,
their discrimination rate cannot be faster for larger ρ.

5. Balanced grid cells code obtained with the adaptive code of Example 3 on
each module with number of modules m = log2(ρ

−1) are able to reach the rate
log2(ρ

−1)/n, which is faster than the corresponding minimax rate for place
cells code. However, balanced grid cells code cannot go faster when the
distance between the stimuli increases.

6. In particular, we do not know the minimax discrimination rate over the general
class Ḡ and we do not know if adaptivity is possible there. However, we do
know that the extreme dyadic code which achieves the precision 2−n or the
balanced grid cells code cannot be adaptive.

5 Numerical illustration

We have simulated what happens for n = 100 cells with firing rate µ = 30. We used 5
different configurations, as indicated below.

• Place cells - adaptive. That is the code f is given by Example 3

• Place cells - random. The code f is picked at random as in Example 4

• Grid cells - adaptive balanced. It consists in 20 modules with λi = 2−(i−1). All
the 20 modules have the same ni = 5. Inside each module, the code is taken as
Example 3.

• Grid cells - adaptive decreasing. It consists in 20 modules with λi = 2−(i−1), but
the vector of ni is given by (15, 13, 11, 10, 8, 7, 6, 5, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1). Inside
each module, the code is taken as Example 3.

• Grid cells - random balanced. It consists in 20 modules with λi = 2−(i−1). All the
20 modules have the same ni = 5. Inside each module, the code is taken at random
as Example 4.

We picked s = 1/3, which is not in any of the periods of the different modules. We
also picked s′ = s+ ρ with ρ in a grid between 2−21 and 0.5.

For various possible T in a grid from 0.001 to 20, we simulated 5000 times the test Ψ
given by (2.4) where we choose s1 = s and s2 = s′ if |Ifs \ Ifs′ | ≥ |Ifs′ \ Ifs | and the reverse
if this is not the case. In each case, we found Tmin(f, s, s

′, α) the smallest time in the
grid that gives an error less than α (the error is evaluated by Monte Carlo method on
the 5000 simulations). In Figure 3 on the left, we see Tmin(f, s, s′, α) as a function of
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Figure 3: Discrimination time as a function of ∆f
s1,s2 and ρ. On the left, Tmin(f, s1, s2, α)

as a function of 1/∆f
s,s′ for the 5 different codes. On the right, Tmin(f, ρ, α) as a function

of ρ for the 5 different codes.

1/∆f
s,s′ , with ∆f

s,s′ = max
{
|Ifs \ Ifs′ |, |I

f
s′ \ Ifs |

}
. As derived in (2.5), we also see in the

simulations that the same constant of proportionality holds whatever the code (this
constant depending only on µ and α) and that it was legitimate to study directly 1/∆f

s,s′ .
It was not possible to compute T (f, ρ) as defined by (2.6), so we used the following

quantity as a proxy:

T (f, s, ρ, α) = max
ρ′≥ρ in the grid

Tmin(f, s, s+ ρ′, α),

for s = 1/3. In Figure 3 on the right, we plotted T (f, s, ρ, α) as a function of ρ. We see
that place cells - adaptive are indeed following a curve in 1/ρ as expected and that place
cells - random have a similar behavior. In particular, with n = 100 they cannot detect a ρ
of order 1/(2n) = 0.005. On the other hand, all grid cells can reach this range, because
they can reach a much smaller range, at least 2−20. Besides, grid cells - (random or
adaptive) balanced cannot have a time of detection which decreases when ρ increases.
Hence there is a point where the place cells system is quicker in discrimination time
than the grid cells system.

We tried a non balanced version of the grid cells (grid cells - adaptive decreasing), to
make the discrimination time decreasing in ρ. However, as one can see on Figure 3 on
the right, even if the discrimination time becomes decreasing in ρ, it reaches a plateau
like behavior (up to logarithmic behavior that cannot be seen on the curve). Therefore,
even this non balanced version of the grid cells is still slower than the place cells system.

6 Conclusion, discussion and Perspectives

We have adopted a new point of view on rate coding : the testing point of view and
use it to enhance differences between a place cell system and a grid cell system with the
same number of neurons.
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On the testing point of view. The testing point of view is complementary to the
estimation/information theory point of view developed originally by [4] for place cells
or other cells with simple receptor field. Indeed, for place cells, Brunel and Nadal
proved in a similar framework as the random code of the present work that the Fisher
information is proportional to n, the number of cells. The only main difference is that
they used triangular codes f instead of step functions with two parameters. If the
Fisher information is proportional to n, it means that the standard deviation of the best
estimator of the stimulus s is in n−1/2. We have proved that a similar random place cell
system can discriminate between two positions as long as they are at least at distance of
order n−1/2. In this sense, both frameworks seem consistent. However, we have also
proved (see Example 3) that another place cells code achieves a much smaller precision
in 1/n. Moreover the testing set-up allows us to capture an interesting phenomenon,
which should take place in practice and might be tested via experiments. When two
stimuli are very different, the discrimination time between both should be smaller.

On the place cell system. We have shown that adaptivity in terms of ρ (the distance
between two stimuli) is possible. It means that not only certain codes have the ability
to discriminate faster when the stimuli are further away but it also means that the rate
1/(nρ) is up to constant not improvable by a place cell system. This is reached not only
by very particular codes such as the one of Example 3 but also by random codes, for
ρ ≥ c/

√
n, for some positive constant c.

On the grid cell system. As shown already by the study of the Fisher information
[9, 22], we can prove that grid cells can reach a precision that is much smaller than the
one of place cells and which is exponentially decreasing with n. We have also shown
that the rate 2−n for the discrimination time is in fact an absolute lower bound for all
kind of codes with only two values and that the grid cells in this sense are the ones
able to achieve the smallest precision not only with respect to place cells, but with
respect to any code. We have also been able to derive upper and lower bound on the
minimal discrimination time for grid cells with a given number of cells per module and
given period for each module. In particular, the distribution of the cells inside a module
is derived from their place cell equivalent and a random uniform distribution inside
a module leads to the best rate up to constant as soon as ρ is large enough. This is
coherent with the experiment of [24] that has found no structure in the distribution of
the center of the receptor field inside a given module. Finally, for a fix ρ, particular
balanced grid cells code are able to achieve the discrimination rate of log(1/ρ)/n which
is much faster than place cells, but we have not been able to find a fix grid cells code
whose discrimination rate would decrease when ρ increases in an interesting range (that
is past the detection range of the first module). Informally once ρ < 1/(2n1), it seems
that all codes are limited by what happens in the first module, that is all discrimination
rates seem to be equal to 1/(2n1). However, we have not been able to rigorously prove
this fact.

Place cells versus grid cells. As a consequence, and contrary to place cells, we have
not been able to find a general grid cell adaptive code that would achieve a minimax
discrimination rate that can only be smaller or equal to log(1/ρ)/n thanks to our results.
Our tentative non balanced codes as shown in the simulation were not satisfying. We do
not know if adaptation is possible for general grid cells. If it is not possible, then there
is definitely an advantage to have both systems (grid cells and place cells) at the same
time. The simulations show a compromise that can be made in using both systems at
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once (see Figure 3 on the right). Indeed, grid cells can go at much smaller precision that
place cells but are much slower when ρ increase than place cells. In this sense, having a
combination of both systems would allow a fast reaction time when stimuli are far away
and a good reaction time even if the stimuli are very close.

Limitations and Open problems. We restricted ourselves to one dimensional, periodic
stimuli (or circular maze). We do not know at the moment how to generalize it to larger
dimension, especially if we want grid cells to have an hexagonal pattern. Moreover, [24]
have proved that the periods progress in a geometric manner (see also [27] for similar
geometric progressions in 1d) but that the ratio is not an integer and so far our method
is relying too strongly on periodicity to allow that. To go beyond this, we would need to
consider stimuli with boundaries effect and if the adaptation to boundaries for grid cells
have been described [13] modeling precisely the boundary effect from a mathematical
point of view is not straightforward. Also one might want to add more realistic rate
functions f(s) that step functions, but we do not think this would massively change the
rates we found as long as the shape of f(s) is not authorized to vary much. Finally,
even in the 1d circular case, the problem of adaptivity and even the computation of the
minimax discrimination rate of the general grid cells codes remains open. It means that
we do not know what is the best choice in terms of discrimination rate for the number of
cells per module, the scales or even the number of modules.

7 Auxiliary Results

In this section, we collect all auxiliary results used throughout the paper. We start
with the following proposition.

Lemma 7.1. Let X be a Poisson random variable with parameter θ > 0. For any x ≥ 0,

P (X ≥ θ(1 + x)) ≤ exp

{
− θx2

2(1 + x/3)

}
, (7.1)

and for any 0 ≤ x ≤ θ,

P (X ≤ θ − x) ≤ exp

{
−x

2

2θ

}
. (7.2)

Proof. Let ψ(λ) = eλ − λ − 1 for λ ∈ R and notice that E(eλ(X−θ)) = eθψ(λ). One can
check that for all 0 ≤ λ < 3, we have

ψ(λ) ≤ λ2

2(1− λ/3)
.

so that for any t > 0,

P(X ≥ θ + t) ≤ exp

{
− sup
λ∈(0,3)

(
tλ− λ2θ

2(1− λ/3)

)}
= exp{−9θh1(t/3θ)},

where h1(x) = 1 + x−
√
1 + 2x, x > 0. Since h1(x) ≥ x2/(2(1 + x)) it follows that for any

t > 0,

P(X ≥ θ + t) ≤ exp

{
−θ (t/θ)2

2(1 + (t/3θ))

}
.

Taking t = θx we obtain (7.1).
To prove inequality (7.2), one can use the fact that ψ(λ) ≤ λ2/2 for λ ≤ 0, to deduce

for any 0 ≤ x ≤ θ,

P(X ≤ θ − x) ≤ exp{− sup
λ>0

(λx− θλ2/2)} = exp{−x2/2θ},
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concluding the proof.

Lemma 7.2. Let 0 < λ ≤ 1. For all s1, s2 ∈ S1 such that d(s1, s2) ≤ λ/2, it holds that
d(s1, s2) = d(s1 mod λ, s2 mod λ).

Proof. It is sufficient to analyse the case s1, s2 ∈ S1 are such that 0 ≤ θs1 ≤ 1/2, θs1 ≤
θs2 ≤ θs1 + 1/2 and d(s1, s2) ≤ λ/2. Write θs1 = kλ+ r1 where 0 ≤ r1 = θs1 mod λ < λ.

Suppose that r1 + λ/2 < λ. In this case, we must that r1 < λ/2 and θs2 = kλ+ r2 with
r1 ≤ r2 = θs2 mod λ ≤ r1 + λ/2. Hence

θs1 mod λ = θs1 mod λ = r1 ≤ r2 = θs2 mod λ = θs2 mod λ ≤ r1 + λ/2

so that

d(s1 mod λ, s2 mod λ) = (θs2 mod λ − θs1 mod λ) = (r2 − r1) = d(s1, s2).

Now, it remains to consider the case r1 + λ/2 ≥ λ. In this case, we have that
r1 ≥ λ/2. If θs2 = kλ+ r2 then we must have r1 ≤ r2 < λ so that d(s1 mod λ, s2 mod λ) =
(θs2 mod λ − θs1 mod λ) = r2 − r1 = d(s1, s2). Otherwise, θs2 = (k + 1)λ + r2 where r2 ≤
r1 + λ/2 − λ = r1 − λ/2 so that d(s1 mod λ, s2 mod λ) = r2 + λ − r1 = d(s1, s2) and the
result follows.

Lemma 7.3. Let 0 < σ1 ≤ σ2 ≤ 1/2 such that σ2 = pσ1 and 1 = qσ1 where p, q ∈ N are
such that q ≥ p. For all s1, s2 ∈ S1 such that d(s1, s2) = σ2, it holds that s1 mod σ1 =

s2 mod σ1.

Proof. Suppose that θ1 ≤ θ2 and write θs1 = kσ1 + r where 0 ≤ r = θs1 mod σ1 < σ1.
If 0 ≤ θs2 ≤ θs1 + 1/2 and d(s2, s1) = σ2, then θs2 − θs1 = d(s2, s1) = σ2 = pσ1 so that
θs2 = (p + k)σ1 + r, implying that θs2 mod σ1 = r = θs1 mod σ1. Since θs2 mod σ1

=

θs2 mod σ1 = θs1 mod σ1 = θs1 mod σ1
it follows that s1 mod σ1 = s2 mod σ1.

Now, if 1/2+θs1 ≤ θs2 < 1 and d(s2, s1) = σ2, then 1−(θs2 −θs1) = d(s2, s1) = σ2 = pσ1
so that θs2 = 1+(k−p)σ1+ r = (q+k−p)σ1 and once again θs2 mod σ1 = r = θs1 mod σ1,
and the result follows.

Lemma 7.4. For each x ∈ [0, 1), let x1 = ⌊2x⌋ and xj =
⌊
2j(x−

∑j−1
k=1 xk/2

k)
⌋

for j ≥ 2.

Then xj ∈ {0, 1} for all j ∈ N>0, x =
∑∞
j=1 xj/2

j and 0 ≤
∑∞
k=j xk/x

k < 1/2j−1 for any
j ∈ N>0. In particular, if fd = (fd,1, . . . , fd,n) denotes the dyadic code defined in Example
4.7, then for any i ∈ [n], we have fdi(s) = µ if and only if (θs)i = 0.

Proof. It is clear that x1 ∈ {0, 1}. To show that xj ∈ {0, 1}, first observe that denoting
u := x−

∑j−1
k=1 xk/2

k, we have u− ⌊2ju⌋/2j ∈ [0, 1/2j). Since ⌊2ju⌋ = xj , it follows then

that x −
∑j
k=1 xk/2

k = x − ⌊2ju⌋/2j ∈ [0, 1/2j). This implies that x =
∑∞
j=1 xk/2

k and

also that 0 ≤ 2j+1(x−
∑j
k=1 xk/2

k) = x− ⌊2ju⌋/2j) < 2 which ensures that xj+1 ∈ {0, 1}
and also that

∑∞
k=j+1 xk/2

k < 2−j .

It remains to show that fdi(s) = λ if and only if si = 0. To that end, first observe that
fdi(s) = fdi(s mod λi) = µ if and only if θs − ⌊2i−1θs⌋/2i−1 = θs mod λi = θs mod λi

< 1/2i.
Now, since θs−⌊2i−1θs⌋/2i−1 =

∑∞
j=i+1(θs)j/2

j+(θs)i/2
i, it follows that fdi(s) = µ implies

that
∑∞
j=i+1(θs)j/2

j + (θs)i/2
i < 1/2i, forcing (θs)i = 0. On the other hand, if (θs)i = 0

then
∑∞
j=i+1(θs)j/2

j + (θs)i/2
i =

∑∞
j=i+1(θs)j/2

j < 1/2i, where the inequality holds by

the first part of the proof. Recalling that
∑∞
j=i+1(θs)j/2

j+(θs)i/2
i = θ mod λi = θs mod λi

,
it follows that (θs)i = 0 implies that fdi(s) = µ, concluding the proof.
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Lemma 7.5. Let A,B be independent and uniformly distributed points in Sλ with λ ∈
R>0. For any pair s1, s2 ∈ Sλ, we have that

P (s1, s2 ∈ JA,BJ) = λ−2

(
λ2

2
− |θs2 − θs1 | (λ− |θs2 − θs1 |)

)
.

Proof. Suppose that θs1 ≤ θs2 and note that

P (s1, s2 ∈ JA,BJ) = P (θA ≤ θs1 , θs2 < θB < λ) + P (θs1 ≤ θA < θs2 , θs1 < θB < θA)

+ P (θB < θA ≤ θs1) + P (θs2 ≤ θA < λ, θs2 < θB < θA) .

We now compute each one of the probabilities appearing in the right-hand side of the
equality above. Since θA and θB are independent and uniformly distributed on [0, λ), one
can check that

P (θA ≤ θs1 , θs2 < θB < λ) =
θs1
λ

(λ−θs2 )
λ ,

P (θB < θA ≤ θs1) =
1
λ2

∫ θs1
0

(θs1 − θb)dθb = θ2s1/(2λ
2),

P (θs1 < θB < θA < θs2) =
1
λ2

∫ θs2
θs1

(θs2 − θb)dθb = (θs2 − θs1)
2/(2λ2),

P (θs2 < θB < θA < λ, ) = 1
λ2

∫ λ
θs2

(λ− θb)dθb = (λ− θs2)
2/(2λ2.)

Summing these fours terms, we obtain that

P (s1, s2 ∈ JA,BJ) = λ−2
(
θs1(λ− θs2) + θ2s1/2 + (θs2 − θs1)/2 + (λ− θs2)

2/2
)

=λ−2
(
λ2/2− λ(θs2 − θs1) + (θs2 − θs1)

2
)

=λ−2
(
λ2/2− |θs2 − θs1 |(λ− |θs2 − θs1 |)

)
,

and the result follows.
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