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Kalikow decomposition for counting processes with stochastic

intensity and application to simulation algorithms

Tien Cuong Phi∗, Eva Löcherbach†, Patricia Reynaud-Bouret‡

April 28, 2022

Abstract

We propose a new Kalikow decomposition for continuous time multivariate counting processes,
on potentially infinite networks. We prove the existence of such a decomposition in various cases.
This decomposition allows us to derive simulation algorithms that hold either for stationary pro-
cesses with potentially infinite network but bounded intensities, or for processes with unbounded
intensities in a finite network and with empty past before 0. The Kalikow decomposition is not
unique and we discuss the choice of the decomposition in terms of algorithmic efficiency in certain
cases. We apply these methods on several examples: linear Hawkes process, age dependent Hawkes
process, exponential Hawkes process, Galves-Löcherbach process.

Keywords: Kalikow decomposition; counting process; Hawkes process; Perfect Simulation; Sim-
ulation algorithms.

MSC 2010 subject classification: 60G55, 60K35

1 Introduction

Multivariate point (or counting) processes on networks have been used to model a large variety of sit-
uations: social networks [15], financial prices [2], genomics [30], etc. One of the most complex network
models comes from neuroscience where the number of nodes can be as large as billions [27, 23, 31]. Sev-
eral counting process models have been used to model such large networks: Hawkes processes [17, 16],
Galves-Löcherbach models [13] etc. The simulation of such large and potentially infinite networks is
of fundamental importance in computational neuroscience [23, 27]. From a more mathematical point
of view, the existence of such processes in stationary regime and within a potentially infinite network
draws also a lot of interest (see [13, 26, 18] in discrete or continuous time).

Kalikow decompositions [21] have been introduced and mainly used in discrete time. Such a de-
composition provides a decomposition of the transition probabilities into a mixture of more elementary
transitions. The whole idea is that even if the process is complex (infinite memory, infinite network),
the elementary transitions look only at what happens in a finite neighborhood in time and space. Once
the decomposition is proved for a given process, this can be used to write algorithms to simulate the
process. Indeed, by the Kalikow decomposition, the process can be decomposed in random elementary
transitions that do not need to access to the whole information to move forward in time. This is useful
in two ways. First one can simulate the points appearing for a given node in the network, without
needing the whole past history or even the whole network. This leads to Perfect Simulation algorithms
[13, 18, 26]. Here the word “perfect” refers to the fact that it is possible in finite time to simulate what
happens on one or on a finite number of the nodes of the potentially infinite network in a stationary
regime. Secondly, this decomposition can drastically reduce the time complexity of the simulation
algorithms, because we do not need to store and/or compute at each step what happens in the whole
network to proceed. Up to our knowledge, all existing papers referring to Kalikow decomposition are
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theoretical and focus on the first aim: indeed if one can prove that such a Perfect simulation algorithm
ends after a finite number of steps, it means at the same time that the process exists in a stationary
regime. This is of tremendous theoretical importance when dealing with infinite networks [18, 13].

In the present paper, we propose to go from discrete to continuous time. Therefore, we decompose
conditional intensities rather than transition probabilities. This leads to serious difficulties that usually
prevent a more practical application of the simulation algorithms. Indeed, up to our knowledge, the
only work dealing with continuous time counting processes is the one by Hodara and Löcherbach [18].
Their decomposition is constructed under the assumption that there is a dominating Poisson process
on each of the nodes, from which the points of the processes under interest can be thinned by rejection
sampling (see also [25] for another use of thinning in simulation of counting processes). To prove the
existence of a Kalikow decomposition and go back to a more classical discrete time setting, the authors
need to freeze the dominating Poisson process, leading to a mixture, in the Kalikow decomposition,
that depends on the realization of the dominating Poisson process. Such a mixture is not accessible in
practice, and this prevents the use of their Perfect Simulation algorithm for more concrete purposes
than mere existence.

More recently, in a previous computational article [27], we have used another type of Kalikow
decomposition, which does not depend on the dominating Poisson process. This leads to a Perfect
Simulation algorithm, which can be used as a concrete way for Computational Neuroscience to simulate
neuronal networks as an open physical system, where we do not need to simulate the whole network to
simulate what happens in a small part of it [27]. However, this approach was mainly done in direction
of computer science and the definition of the Kalikow decomposition was not sufficiently broad to
encompass the classical counting process examples such as classical linear Hawkes processes.

In the present work, we want to go further, by proposing a Kalikow decomposition in a general
frame, which does not assume the existence of a dominating Poisson process at all. We also prove
(and this is not done in [27]) that such a decomposition exists for various interesting examples, even
if it is not unique. Finally we propose two algorithms. The first one is essentially the one that is
proposed in [27], except that it is now proved to work for the more general definition of the Kalikow
decomposition that we have introduced here. This is a Perfect Simulation algorithm in the sense that
it can simulate the point process of a given node in a potentially infinite network in a stationary
regime (it moves backward to create the past that is needed to obtain a stationary process). To do so,
we need to assume the existence of a dominating Poisson measure. The second algorithm only moves
forward from an empty past (meaning no points before 0) in a finite network and therefore simulates
outside the stationary regime. In this case, the intensity does not need to be bounded, as in the more
classical Ogata’s algorithm [25].

The paper is organized as follows. In Section 2, we introduce the basic notation and give the precise
definition of a Kalikow decomposition. In Section 3, we present a very general method to obtain a
Kalikow decomposition for a counting process having stochastic intensity. We decline this method on
various examples including the linear Hawkes process [17, 16], the age dependent Hawkes process [28],
more general non-linear Hawkes processes with analytic rate function and Galves-Löcherbach models
[13].

Finally, in Section 4, we present the two algorithms based on the Kalikow decomposition written
in Section 3, and we discuss the efficiency of the Perfect simulation algorithm with respect to the
Kalikow decomposition.

2 Notation and Kalikow decomposition

2.1 Notation and Definition

We start this section by recalling the definition of simple locally finite counting processes and stochastic
intensities. We refer the reader to [3] and [9] for more complete statements.

Let I be a countable index set. We start by introducing a canonical path space for the sequence of
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points of a counting process having interacting components indexed by i ∈ I. This space is given by

X∞ =

({tin}n∈Z)i∈I s.t. ∀i ̸= j ∈ I, n,m ∈ Z,


tin ∈ [−∞,∞]
limn→±∞ t

i
n = ±∞

tin < tin+1 and tin ̸= tjm if they are not infinite

 .

Notice that we allow for the choices tin = ±∞ such that elements of X∞ may have only a finite number
of (finite) points before time 0 or only a finite number of (finite) points after time 0, or both. In the
sequel, whenever we speak of the points of a counting process, we implicitly mean finite points.

We then introduce, for any t ∈ R, i ∈ I and x = ({tin}n∈Z)i∈I,

Zi
t(x) =

∑
n≥1

1tin≤t, if t ≥ 0, and Zi
t(x) = −

∑
n≤0

1t<tin
, if t ≤ 0,

and we write for short Z = (Zi)i∈I for the associated collection of counting processes, indexed by
i ∈ I. Note that Z ∈ D(R,Z)I, where D(R,Z) is the space of non decreasing càdlàg piecewise
constant functions, see [20]. We denote Xt the canonical path space of points of Z before time t, given
by

Xt = X∞ ∩ (−∞, t)I,

and we identify (Zs)s<t with the past configuration Xt ∈ Xt defined by

Xt(x) = ({tin}tin<t)i∈I. (2.1)

We consider (Ft)t∈R, the past filtration of the process Z = (Zi)i∈I, defined by

Ft = σ(Zi
s, i ∈ I, s ≤ t).

Moreover, for any x =
(
{tin}n∈Z−

)
i∈I ∈ X and any i ∈ I, we denote the point measure associated to

index i by

dxis =
∑

m∈Z−
δtim(ds)

which is an element of the space N of locally finite point measures on R−, endowed with the topology
of vague convergence, and we endow X with the metric induced by the product metric on N I. Finally,
throughout this article, without further mentioning, the integral

∫ b
a stands for

∫
[a,b) with a, b ∈ R and

Zi([a, b)) (Zi((a, b]), respectively) stands for the number of points in the configuration with index i in
[a, b) (in (a, b], respectively).

In the present article, we are only interested by time homogeneous counting processes, that is,
informally, processes that at each time t depend in the same way on the past configuration xt. To be
more rigorous, let us define, for each xt =

(
{tin}tin<t

)
i∈I ∈ Xt,

x←t
t :=

(
{tin − t}n

)
i
,

which is the shifted configuration at time 0. The generic space for such a past configuration x←t
t that

is rooted at time 0 is denoted X := X0.
Under suitable assumptions, the evolution of the counting process Z = (Zi)i∈I with respect to

(Ft)t∈R is fully characterized by its stochastic intensity which depends on the past configuration, see
Proposition 7.2.IV of [9]. Hence, in this paper, for any xt ∈ Xt, given that the past before time t is xt,
we denote by ϕit(xt) the corresponding stochastic intensity of the process Zi at time t for any i ∈ I.
More precisely, for any xt ∈ Xt, we have

P
(
Zi has a jump in [t, t+ dt) | past before time t = xt

)
= ϕit(xt)dt.

Definition 1. For a given i ∈ I, a counting process Zi with stochastic intensity (ϕit(xt))t∈R is said to
be time homogeneous if there exists a measurable function ϕi : X → R+, called the generic intensity,
such that

ϕit(xt) = ϕi(x←t
t )

for all t ∈ R and xt ∈ Xt.
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Note that a process that is time homogeneous is not necessarily stationary. For instance, expo-
nential Hawkes Processes [5] (see Section 3.3 for more details) starting with empty past before time 0
(that is empty past history before time 0, or in other words, no points before 0) may explode in finite
time, but they are still time homogeneous in the sense of the previous definition. One can also think
of simple linear Hawkes processes with empty past before time 0 in the supercritical regime, that is,
for which the interaction function has L1−norm larger than 1 and thus produces an exponentially
growing number of points as time increases [2]. Therefore, if the process of interest is stationary, one
can think of X as X0 the set of configurations at time 0. However if this is not the case, X has to be
thought as just a generic space whose configurations are cut at time 0 (that is no points exists after
0) and which is the set on which ϕi is defined.

To define the Kalikow decomposition, we need to define neighborhoods and cylindrical functions
on neighborhoods. A neighborhood v is a Borel subset of I × (−∞, 0). This neighborhood is said to
be finite if there exists a finite subset J ⊂ I and a finite interval [a, b] such that:

v ⊂ J × [a, b].

Definition 2. For any neighborhood v and x, y ∈ X , we say x
v
= y whenever x = y in v. This means

that, for all i ∈ I, n ∈ Z, such that tin ∈ x and (i, tin) ∈ v, we have tin ∈ y and vice-versa.
A real valued function f is said cylindrical in v if f(x) = f(y) for any x

v
= y, and we usually stress

the dependence in v by denoting fv(x).

A family of neighborhoods V is a countable collection of finite neighborhoods v. It usually includes
the empty set ∅. One might have a different family of neighborhood for each i, even if in several
examples, the same family works for all i.

Definition 3. A time homogeneous counting process (Zi)i∈I of generic intensity ϕ
i admits the Kalikow

decomposition with respect to (w.r.t.) the collection of neighborhood families (Vi)i∈I and a given
subspace Y of X if, for any i ∈ I and any v ∈ Vi there exists a cylindrical function ϕiv(.) on v taking
values in R+ and a probability λi(.) on Vi such that

∀x ∈ X ∩ Y ϕi(x) =
∑
v∈Vi

λi(v)ϕiv(x). (2.2)

Remark 1. Note that the probability λi(.) in Definition 3 is a deterministic function, that is why
this decomposition is unconditional, whereas in [18], λi(.) was depending on the dominating Poisson
processes (see the discussion in the introduction). Secondly, we do not restrict ourself to a bounded
intensity, and we do not force all the ϕiv to be bounded with the same bound, which is a notable
improvement compared to [27].

2.2 About the subspace Y

A Kalikow decomposition does not exist for all intensities and all subspaces Y, and we stress the fact
that it depends on the choice of Y. The role of Y is to make the Kalikow decomposition achievable.
There are many possible choices for such a subspace, depending on the model under consideration and
the precise form of the intensity. In this paper, we will discuss two main examples. The first example
is the choice Y = X>δ which is the subspace of X where the distance between any two consecutive
possible points is greater than δ, that is,

X>δ = {x = ({tin}n∈Z−)i∈I ∈ X such that ∀n, i tin+1 − tin > δ}. (2.3)

Such a choice is convenient for counting processes with a hard exclusion role where by definition of
the intensity, any two consecutive points need to be at a distance at least equal to δ, see Section 3.2
below where we discuss the example of Age dependent Hawkes processes with hard refractory period.

In the case when ϕi is continuous for each i and we want to simulate the process starting from the
empty past before time 0, during some finite time interval [0, T ] and up to some activity level K > 0,
another possible choice of a subspace Y that we consider is

Y = X T,K = {x ∈ X , ∀i ∈ I, Zi
T (x) ≤ K}.
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By continuity of ϕi, it is clear that the intensities are bounded on X T,K . In this case, we will be able to
simulate the process, using the Kalikow decomposition, up to the first exit time of X T,K , see Section
4.1 below.

2.3 Representation, thinning and simulation

Locally finite simple counting processes with intensity ϕit(xt) can always be represented as thinning of
a bivariate Poisson measure. More precisely, if (πi)i∈I are independent Poisson random measures on
R×R+ with intensity 1, the point measures defined by

dXi
t =

∫
u≥0

1u≤ϕi
t(Xt)π

i(dt, du)

define points of counting processes (Zi)i∈I having intensity ϕit(xt) at time t, given that the past before
time t is xt, see e.g. Lemma 3 and 4 of [4] and Chapter 14 of [19].

This representation has been used for a long time to simulate processes forward in time, see e.g.
[25] and [22]. More precisely, consider for the moment the easy case where we have empty past before
time 0 and intensities which are bounded for any i by a fixed constant Γi > 0. The simulation of
the Poisson random measure πi then consists in a homogeneous Poisson process, N i, in time, having
intensity Γi (that can also be built by a succession of independent exponential jumps of parameter Γi),
and then to attach to each point T of this process, independently of anything else, independent marks
UT which are uniformly distributed on [0,Γi]. The couples (T,UT ) for T ∈ N i form the bivariate
Poisson random measure πi in the band of height Γi.

The classical thinning algorithm – in case of intensities which are bounded by Γi– then consists in
saying that the points of N i are accepted if UT ≤ ϕiT (XT ) and that these accepted points correspond
to a counting process of intensity ϕit(Xt). Equivalently, one can attach independent uniform marks
UT on [0, 1] and say that we accept T if UT ≤ ϕiT (XT )/Γ

i, or one can even just say that we accept a
point T in N i with probability ϕiT (XT )/Γ

i.
The Kalikow decomposition allows to go one step further thanks to the following result.

Proposition 1. Let (Vi)i∈I be a collection of families of finite neighborhoods and for any i ∈ I,
(λi(v))v∈Vi be probabilities on Vi and ϕiv be cylindrical functions on v for each v ∈ Vi. Let moreover
(Πi)i∈I be independent Poisson measures on R×R+ ×Vi with intensity measure dt du λi(dv).

Then for every i ∈ I,

dZi
t =

∫
u≥0,v∈Vi

1u≤ϕi
v(X

←t
t )Π

i(dt, du, dv)

defines a time homogeneous counting process Zi having generic intensity given by

ϕi =
∑
v∈Vi

λi(v)ϕiv. (2.4)

From a more algorithmic point of view, the construction of Πi is equivalent to attaching to each
atom (T,UT ) of πi (the bivariate Poisson random measure) a mark VT , independently of everything
else and distributed according to λi. The above theoretical result can be interpreted in the following
way. It is sufficient to draw at random the neighborhood VT for each point T according to λi and to
do as if the intensity was just ϕiVT

(X←t
t ) instead of having to compute the full sum in (2.4).

From a computational point of view, the main interest of this is to diminish drastically the number
of computations to be done, replacing the summation by a random selection. From a theoretical point
of view, the above representation enables us to define reset events at which the process forgets its past,
at least in a local way. These resets take place whenever, for instance, the empty set is picked as a
neighborhood, which happens with probability λi(∅), for a given i ∈ I. Indeed, this means that at this
time t, the history of the i−th component is reset and becomes independent of the past. In a nutshell,
the whole theoretical interest of using the Kalikow decomposition for Perfect simulation is therefore
to prove that such resets happen often enough and for sufficiently many coordinates i, and that one
can simulate the distribution between resets, without needing to simulate outside of this zone. The
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interest of this strategy is twofold. First of all, if this procedure works, this shows that the stationary
distribution exists and is unique (see Theorem 1 below). Moreover, it also allows to perfectly simulate
from this stationary distribution.

The above representation needs a tridimensional Poisson random measure. As we have seen above,
if it is easy to simulate such a measure within a band, we cannot simulate it without having an upper
bound on the intensity. That is why we distinguish two cases for the algorithms. Here is a brief
informal overview of them.

• If we seek for a stationary distribution, we need to “propose” a first point before thinning it in
a “Kalikow” way. To do so, we need a fixed upper bound, say Γi, that holds for all times, for
a given coordinate i. Then we will be able to recursively go back in time as follows: (i) pick
the random neighborhood (ii) simulate the points in the neighborhood according to a Poisson
process of intensity Γj if the neighborhood is on node j (iii) search again for the neighborhoods of
the points that we just simulated and go on. In this backward step, we create a clan of ancestors
for the first point. Under some conditions, this recursion ends in finite time, because either
the empty neighborhood is picked or because the simulation of the Poisson process inside the
neighborhood is empty. Hence the status of the first point, even inside the stationary distribution,
only depends on a finite set of points that we have been able to create. It remains to accept
or reject, in a forward movement, all these points according to the rule UT ≤ ϕiVT

(x←T
T ). See

Section 4.2 below.

• If there is no bound, which is typically the case of the linear or exponential Hawkes process, one
cannot “propose” a first point in a stationary manner. However, if we start with an empty past
before 0, the intensity at time 0 is usually bounded and we can “propose” a first point. The
main strategy is now to update this upper bound as time goes by and to change the size of the
steps we are making, one point after the other. This algorithm can only move in forward time
and one needs to know all the network to make it move forward. Hence this approach does only
work for finite networks with known past (empty past before time 0, typically). See Section 4.1
below.

Note that in particular for linear (multivariate) Hawkes processes, there is another way to do Perfect
Simulation, relying on the cluster representation of these processes, see [24], [6] and [7]. However the
approach we propose here is much more general, because we do not need this cluster representation,
but rely on the Kalikow decomposition which exists for a broader class of processes (for instance
non-linear Hawkes processes with hard refractory period and Lipschitz rate function, see Section 3.2
below).

The above proposition holds of course as long as
∑

v∈Vi

λi(v)ϕiv exists and it furnishes a way to

simulate a process with intensity ϕi. In the sequel, we will see how we combine it with a proper
definition of Y to make the simulation algorithms work in practice.

Proof of Proposition 1. To avoid confusion, we consider two filtrations. We write (Ft)t∈R for the
canonical filtration of (Πi)i∈I, containing the filtration (FZ

t )t∈R which corresponds to the one given
by the counting processes (Zi)i∈I.

To prove that (Zi)i∈I has the correct intensity, let us look at E
(
Zi((a, b]|FZ

a

)
, for any a < b. We

have that

E
(
Zi((a, b]|FZ

a

)
= E

(∫
s∈(a,b],u≥0,v∈Vi

1u≤ϕi
v(X

←s
s )Π

i(ds, du, dv)|FZ
a

)
.

The integral in v is independent from the rest, so we can integrate it and replace it by its corresponding
intensity measure, which leads to

E
(
Zi((a, b]|FZ

a

)
= E

∑
v∈Vi

λi(v)

∫
s∈(a,b],u≥0

1u≤ϕi
v(X

←s
s )π

i(ds, du)|FZ
a

 ,

6



where πi is the bivariate Poisson random measure of rate 1. Therefore we get

E
(
Zi((a, b]|FZ

a

)
=
∑
v∈Vi

λi(v)E

(∫
s∈(a,b]

ϕiv(X
←s
s )ds|FZ

a

)
,

that is

E
(
Zi((a, b]|FZ

a

)
= E

(∫
s∈(a,b]

ϕis(Xs)ds|FZ
a

)
,

which concludes the proof.

3 How to compute the Kalikow decomposition in various cases

To obtain the Kalikow decomposition, we try to rewrite the intensity as a convergent sum of cylindrical
functions over an adequate family of neighborhoods. To define properly such a family of neighborhoods,
let us start by introducing the minimal information that is needed to compute the intensity.

Let us consider a time homogeneous counting process Zi having intensity ϕit(xt) = ϕi(x←t
t ). Let

V i ⊂ I × (−∞, 0) be minimal such that ϕi is cylindrical on V i. We interpret V i as the support of
dependance for ϕi.

Definition 4. A coherent family of finite neighborhoods Vi for Zi is such that

V i ⊂
⋃

v∈Vi

v. (3.1)

Proposition 2. Let Z = (Zi)i∈I be a time homogeneous counting process having intensity ϕit(xt) =
ϕi(x←t

t ) at time t, let Vi be an associated coherent family of neighborhoods and Y ⊂ X a subspace of
X . If there exists a family of non-negative functions ∆i

v(x) which are cylindrical on v for each v ∈ Vi

and i ∈ I such that

∀x ∈ X ∩ Y,
∑
v∈Vi

∆i
v(x) is convergent and ϕi(x) =

∑
v∈Vi

∆i
v(x), (3.2)

then

1. whatever the choice of the probabilities λi on Vi, such that

λi(v) = 0 only if sup
x∈X∩Y

∆i
v(x) = 0,

then (Zi)i∈I admits the Kalikow decomposition with respect to the collection of neighborhood
families (Vi)i∈I and the subspace Y, with weights given by λi(v) and cylindrical functions ϕiv,
where

ϕiv(x) = ∆i
v(x)/λ

i(v),

with the convention 0/0 = 0.

2. if for all i ∈ I and v ∈ Vi, there exist nonnegative deterministic constants Γi
v such that

sup
x∈X∩Y

∆i
v(x) ≤ Γi

v <∞

and Γi =
∑

v∈Vi Γi
v ̸= 0 is finite, then one can in particular choose

∀i ∈ I, ∀v ∈ Vi, λi(v) =
Γi
v

Γi
and ϕiv(x) =

Γi

Γi
v

∆i
v(x). (3.3)

In this case, all functions ϕiv and ϕi are upperbounded by Γi.
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Proof. The first point is obvious. Note that for the second one, since
∑

v∈Vi Γi
v = Γi, the choice

λi(v) = Γi
v/Γ

i defines a probability.

The weights λi(v) in the Kalikow decomposition are not unique, and this even in the bounded case.
Indeed, Γi

v can always be chosen much bigger than supx∈X∩Y ∆
i
v(x). If we order the neighborhoods

from the most simple (the empty set) to the most complex (by size, or by distance to (i, 0)), this means
that it is always possible to choose large weights λi(v) on complex neighborhoods, but not that easy
to choose small weights on them. However, we would like the backward steps of the Perfect simulation
algorithm to end after a small finite number of iterations. Hence we typically need larger weights on
the empty set and on the less complex neighborhoods such that less computations are done or less
memory is stored in our algorithms. This means that one can try to optimize the weights to minimize
the complexity of the algorithms that we develop (see Section 4.2.6).

Note also that the above result leads directly to a very generic statement for continuous generic
intensities.

Corollary 1. Let Z = (Zi)i∈I be a time homogeneous counting process with generic intensity ϕi,
let Vi = {vik, k ∈ N} be an associated coherent family of neighborhoods which is increasing, that is,
vik ⊂ vik+1 for all k, and let Y be a subspace of X , such that for any i ∈ I, ϕi is strongly continuous on
Y, that is,

sup
i∈I

sup

x,y∈Y:x
vi
k=y

|ϕi(x)− ϕi(y)| → 0 (3.4)

as k →∞.
Then Item 1. of Proposition 2 holds with the choice

∆i
vi0
(x) = inf{ϕi(y) : y ∈ Y, y

vi0= x}

∆i
vik
(x) = inf{ϕi(y) : y ∈ Y, y

vik= x} − inf{ϕi(y) : y ∈ Y, y
vik−1
= x} for k > 0.

Let us now see how this method can be implemented on various more specific examples of processes
and various examples of neighborhood families.

3.1 Linear Hawkes process.

In the following, we consider a linear Hawkes process [17, 16], for a finite number of interacting
components, that is, I finite. In this framework, for any x ∈ X ,

ϕi(x) = µi +
∑
j∈I

∫ 0

−∞
hij(−s)dxjs, (3.5)

where the non negative interaction functions hij(.) measure the local dependence of process Zi on Zj

and the non negative parameters µi refer to the spontaneous rate of process Zi. The classical assump-
tion to have a stationary Hawkes process is to assume that the spectral radius of (

∫∞
0 hij(s)ds)i,j∈I is

strictly smaller than 1. We do not need to make this assumption here, we just assume that for any
i, j, hij ∈ L1

loc. In this case we have

V i =
⋃

j∈I:hj
i ̸=0

{j} × Supp(hij). (3.6)

Cutting the support of hij into small pieces of length ϵ, for some fixed ϵ > 0, we are led to consider
atomic neighborhoods of the type

wj,n = {j} × [−nϵ,−(n− 1)ϵ) (3.7)
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which are supported by one single neuron within a small interval of length ϵ. The most generic family
of neighborhoods that we can consider in this sense is

Vatom = {∅} ∪ {wj,n : j ∈ I, n ∈ N∗}

that we choose for all i. For this family, one can prove the following result, as a straightforward
corollary of Proposition 2.

Corollary 2. The multivariate linear Hawkes process defined by (3.5) admits the Kalikow decompo-
sition given by Proposition 2 Item 1., with respect to the collection of neighborhood families (Vi)i∈I
where for all i, Vi = Vatom, and with respect to the subspace Y = {x ∈ X :

∑
i∈I ϕ

i(x) <∞}, with

• if v = wj,n,

∆i
wj,n

(x) :=

∫ −nϵ+ϵ

−nϵ
hij(−s)dxjs

• if v = ∅,
∆i
∅ = µi.

Note in particular that the linear Hawkes process has an intensity which is not bounded by a fixed
constant, so we cannot use the second part of Proposition 2. In particular we stress that we will
not be able to use the above decomposition for the purpose of Perfect Simulation of the stationary
version of the linear Hawkes process (which does not necessarily exist under our minimal assumptions).
However, we will be able to use the decomposition for an efficient Sampling Algorithm of the process
in its non-stationary regime, starting from the empty past before time 0, see Section 4.1 below.

Remark 2. The choice of Y = {x ∈ X :
∑

i∈I ϕ
i(x) <∞} is the minimal choice to ensure that (3.2)

holds, by monotone convergence. By classical results on linear Hawkes processes, it is well known that,
starting from the empty past at time 0, Zt = (Zi

t)i∈I stays within Y almost surely, for any t ≥ 0, see
e.g. [10].

3.2 Age dependent Hawkes process with hard refractory period.

In this section, we are interested in writing a Kalikow decomposition for Age dependent Hawkes
processes with hard refractory period, for the purpose of Perfect Simulation of its stationary version.
This process was first introduced in [8], and no Kalikow decomposition has been established for this
process, even not in a conditional framework. In our setting, the stochastic intensity of an Age
dependent Hawkes process with hard refractory of length δ > 0 can be written as follows. For any
i ∈ I and x ∈ X ,

ϕi(x) = ψi

∑
j∈I

∫ 0

−∞
hij(−s)dxjs

1ai(x)>δ (3.8)

with the age of the process defined by

ai(x) = − sup{tik ∈ x such that tik < 0},

that is, the delay since the last point. If there is no such last point, we simply put ai(x) = +∞. The
function ψi is called the rate function, whereas the hij are still the interaction functions of the Hawkes
process. In this setting we allow for an infinite number of components, that is, I might be infinite. The
set V i remains defined by (3.6) but the set Y is not the same. Indeed, by definition of the stochastic
intensity (3.8), we observe that the distance between any two consecutive jumps has to be larger than
δ. This observation leads us to consider the subspace

Y = X>δ

which has been introduced in (2.3).
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We also change the family of neighborhoods. Now we envision a family of nested and increasing
neighborhoods. More specifically, from a nested family of subsets of I given by (ωi

k)k∈N∗ , with ω
i
1 =

{i}, ωi
k ⊂ ωi

k+1 and ∪k≥1ωi
k = I, one can design a nested family of neighborhoods Vi

nested by

Vi
nested = {vik = ωi

k × [−kδ, 0) for k ∈ N∗}.

Note that this family does not include the empty set. This is due to the presence of the hard refractory
period. As we will see in Section 4, the backward steps in the Perfect Simulation algorithm do not end
only because of the probability of picking the empty set but also because some neighborhoods might
just be empty (in the sense that no points appear in them). This the main difference with similar
Perfect simulation algorithms that exist in discrete time, see e.g. [26] or [18].

For this family, one can prove the following result, as a corollary of Proposition 2.

Corollary 3. Assume that for all i, j ∈ I, hij(.) is a non negative, non increasing L1 function and
that for every i, ∑

j∈I
∥hij∥1 <∞ and

∑
j∈I

hij(0) <∞.

Then the multivariate Age dependent Hawkes process with hard refractory period defined by (3.8)
admits a Kalikow decomposition w.r.t. Vi = Vi

nested and Y = X>δ, under the following conditions.

1. If for every i, ψi(.) is an increasing, non negative continuous function, then the Kalikow de-
composition of Proposition 2 Item 1. applies with ∆i

1(x) = ∆i
vi1
(x) = ψi(0)1ai(x)>δ and for all

k ≥ 2

∆i
k(x) = ∆i

vik
(x) = ψi

∑
j∈ωi

k

∫ 0

−kδ
hij(−s)dxjs

1ai(x)>δ−ψi

 ∑
j∈ωi

k−1

∫ 0

−(k−1)δ
hij(−s)dxjs

1ai(x)>δ.

2. If in addition ψi(.) is L-Lipschitz, the Kalikow decomposition of Proposition 2 Item 2. applies
for the choices Γi

1 = Γi
vi1
≥ Γ̄i

1 := ψi(0) and for all k ≥ 2

Γi
k = Γi

vik
≥ Γ̄i

k := L

 ∑
j∈ωi

k\ω
i
k−1

(
hij(0) + δ−1∥hij∥1

)
+

∑
j∈ωi

k−1

hij((k − 1)δ)

 ,
as long as

∑∞
k=1 Γ

i
k <∞.

In particular, since
∑∞

k=1 Γ̄
i
k ≤ ψi(0) + 2L

[∑
j∈I h

i
j(0) + δ−1

∑
j∈I ∥hij∥1

]
, Γi

k = Γ̄i
k is a valid

choice.

Proof. For the first point of the result, by assumption, (∆i
k(x))k≥1 is well-defined, non negative and

cylindrical on vik = ωi
k × [−kδ, 0), since the family of neighborhoods is nested. Let

rin(x) :=
n∑

k=1

∆i
k(x) = ψi

∑
j∈ωi

n

∫ 0

−nδ
hij(−s)dxjs

1ai(x)>δ

and let us show that rin(x)→ ϕi(x) when n→∞. Consider the inner-term of the parenthesis,∑
j∈ωi

n

∫ 0

−nδ
hij(−s)dxjs =

∫
I×R−

hij(−s)1(j,s)∈vindx
j
sdκj ,

where we denote dκ the counting measure on the discrete set I.

We have that
(
hij(−s)1(j,s)∈vin

)
n∈Z

is a non negative and non decreasing sequence in n. In addition,

it converges to hij(−s)1(j,s)∈I×(−∞,0) as n→∞. Moreover, since ψi(.) is a continuous and increasing
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function, the monotone convergence theorem for Lebesgue Stieltjes measures implies that rin(x) →
ϕi(x) as n→∞. As a consequence, Proposition 2.1 applies.

For the second part, ψi is L-Lipschitz. Hence we have

∆k
i (x) ≤ L×

 ∑
j∈ωi

k\ω
i
k−1

∫ 0

−kδ
hij(−s)dxjs +

∑
j∈ωi

k−1

∫ −(k−1)δ
−kδ

hij(−s)dxjs

 . (3.9)

So let us fix 0 ≤ k < l, j ∈ I, x ∈ X>δ and t ∈ R and let us concentrate first on upper bounding∫ t−kδ
t−lδ hij(t− s)dx

j
s by adapting Lemma 2.4 of [28]. For any ϵ > 0, we have

∫
[t−lδ,t−kδ−ϵ]

hij(t− s)dxjs =
∑

k≤m<l

∫
[t−(m+1)δ−ϵ,t−mδ−ϵ]

hij(t− s)dxjs

≤
∑

k≤m<l

hij(mδ + ϵ),

because hij is non increasing and because there is at most one jump in the interval of length δ.
Therefore, ∫

[t−lδ,t−kδ)
hij(t− s)dxjs = lim

ϵ↓0

∫
[t−lδ,t−kδ−ϵ]

hij(t− s)dxjs

≤ lim
ϵ↓0

∑
k≤m<l

hij(mδ + ϵ) ≤
∑

k≤m<l

hij(mδ),

by monotone convergence and the fact that hij(.) is a decreasing function.
Going back to (3.9), we have therefore that∫ −(k−1)δ

−kδ
hij(−s)dxjs ≤ hij((k − 1)δ))

and ∫ 0

−kδ
hij(−s)dxjs ≤

∑
0≤m≤k−1

hij(mδ) ≤ hij(0) + δ−1
∫ k−1

0
hij(t)dt ≤ hij(0) + δ−1∥hij∥1.

This shows that if Γi
k ≥ Γ̄i

k, we are indeed upper bounding supx∈X>δ ∆i
k(x). The last upper-bound on∑

k Γ̄
i
k is done in a similar way.

Remark 3. In particular this proves that ∆i
k(x) → 0 when k → ∞ for fixed x ∈ X>δ, and that this

convergence is uniform on X>δ, if ψi is Lipschitz.

Remark 4. It is straightforward to see that

inf

z
vi
k=x

ψi

∑
j∈I

∫ 0

−∞
hij(−s)dzjs

1ai(x)>δ = ψi

∑
j∈ωi

k

∫ 0

−kδ
hij(−s)dxjs

1ai(x)>δ,

because of the monotonicity property of ψi and since hij ≥ 0. Indeed the minimizing configuration is

obtained by having no points outside of vik. Hence, for k ≥ 2, we observe that

∆i
k(x) = inf

z
vi
k=x

ψi

∑
j∈I

∫ 0

−∞
hij(−s)dzjs

1ai(x)>δ

− inf

z
vi
k−1
= x

ψi

∑
j∈I

∫ 0

−∞
hij(−s)dzjs

1ai(x)>δ

 .
The above prescription corresponds to the classical method of obtaining a Kalikow decomposition in
discrete time, as discussed in [18, 13] (see also Corollary 1).

Remark 5. Notice that it is not possible to let δ tend to 0 and to recover Corollary 3 for linear or
even general non-linear Hawkes processes having Lipschitz continuous rate function, since typically
the bounds in Corollary 3 are exploding.
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3.3 Analytic rate function in a Hawkes process

In the previous examples, we have shown how one can easily derive the Kalikow decomposition if the
intensity is already in the shape of a sum, as it is the case for the linear Hawkes process, with an
atomic family of neighborhoods. In this case the complexity of all neighborhoods is very small. In the
case of the Age dependent Hawkes process, thanks to the refractory period and the monotonicity and
continuity properties of the underlying functions, we have been able to derive a Kalikow decomposition
as well, however with respect to a more complex family of neighborhoods which is nested. Moreover we
have shown that under Lipschitz properties, the intensities are bounded. In both cases the processes
were non exploding, that is, they only have a finite number of jumps within finite time intervals,
almost surely.

Now we want to reach much more erratic processes, that can even explode in finite time. To do so,
we cannot keep the refractory period and we consider nonlinear Hawkes processes Z = (Zi)i∈I with
intensity given by

ϕi(x) = ψi

∑
j∈I

∫ 0

−∞
hij(−s)dxjs

 (3.10)

for any x ∈ X , where ψi : R+ → R+ are measurable functions and where hij : R→ R+ belong to L1.

In [4] it has been proved that if ψi is Lipschitz, then – under suitable additional assumptions
on ∥hij∥1 – a stationary version exists. However, in the case where ψi is only locally Lipschitz, the
existence of a non-exploding or even a stationary solution is not guaranteed. For example, when
choosing ψi(x) = ex, then the process may explode in finite time with strictly positive probability, see
[5].

We are going to use analytical properties of ψi to perform a Taylor expansion of ψi. To do so, we
are considering a family of neighborhoods which is a sort of iterated tensor products of Vatom. For
a fixed ϵ, recall that an atomic neighborhood (see (3.7)) is such that wj,n = {j} × [−nϵ,−(n − 1)ϵ),
for j ∈ I and n ∈ N∗. A neighborhood of order k is then a union of k atomic neighborhoods. For
α1 = (j1, n1),..., αk = (jk, nk), we put

vα1:k
=

n⋃
k=1

wjk,nk
.

The family of all possible such unions is denoted V⊗k, with the convention that V⊗0 = {∅}.
The Taylor family of neighborhoods is then defined by

VTaylor =

∞⋃
k=0

V⊗k.

Note that if for instance, some of the αi’s are equal, then the neighborhood vα1:k
collapses on a

smaller union of less than k intervals and it is also possible that two neighborhoods with different
indices are in fact equal. We do not simplify the family and remove redundancies. It is important that
neighborhoods with different indices are considered different to define properly the probability λi.

We are limited by the radius of convergence of the function ψi, say K. This is why we are working
within the space

Y = X<K = {x ∈ X : sup
i∈I

∑
j∈I

∫ 0

−∞
hij(−s)dxjs < K}.

Corollary 4. Let us assume that for any i, j ∈ I, the function hij(.) is non negative and that for every
i,

sup
t

∑
j∈I

hij(t) <∞.

Let us also assume that for every i ∈ I, ψi(.) is an analytic function on R with radius of convergence
K > 0 around 0, such that its derivative of order k, [ψi](k)(0), is non negative for all k ≥ 0. Then
the multivariate non linear Hawkes process defined by (3.10) admits the Kalikow decomposition of
Proposition 2.1 w.r.t to Vi = VTaylor for all i and with respect to the subspace Y = X<K , with

12



• if v = ∅, ∆i
v(x) = ψi(0).

• if v = vα1:k
, for α1 = (j1, n1),..., αk = (jk, nk), then

∆i
v(x) =

[ψi](k)(0)

k!
aα1(x) · . . . · aαk

(x),

where for α = (j, n),

aα(x) :=

∫ −nϵ
−(n+1)ϵ

hij(−s)dxjs.

Proof. The condition ensures that the intensities are at least locally defined if, starting from an empty
past, one first point occurs. The proof of the convergence is then straightforward and consists in using
the analytic properties of ψi.

Note that the linear Hawkes process is a particular case of this Corollary with ψi(u) = µi + u
and K =∞. But the above strategy can also be applied to the exponential Hawkes process, ψi(u) =
exp(u), K = ∞ and [ψi](k)(0) = 1 for all k, which is only locally Lipschitz. One can also use it for
other functions, for instance ψi(u) = ch(u) = (eu + e−u)/2 with K = ∞, for which even derivatives
[ψi](2k)(0) = 1 and for which the other derivatives are null.

3.4 Galves-Löcherbach processes with saturation thresholds

We close this section with an example which is not directly related to Hawkes processes and for which,
using the same arguments as above, we may establish a Kalikow decomposition as well. This is the
model with saturation threshold which has already been considered in [18]. More precisely, we put

ϕi(x) = ψi

∑
j∈I

(
βij Z

j((−ai(x), 0))
)
∧Ki

j

 , (3.11)

for ψi : R → R+ a Lipschitz continuous non-decreasing rate function, βij ≥ 0 the weight of j on i,

where we choose βii = 0, and Ki
j ≥ 0 the saturation threshold. In this framework, analogously to

Corollary 3, we can prove the following

Corollary 5. Consider the Galves-Löcherbach process having generic intensity ϕi given by (3.11) and
suppose that

sup
i∈I

∑
j∈I

Ki
j <∞.

Then ϕi admits the Kalikow decomposition given by Proposition 2 Item 1., with respect to the collection
of neighborhood families (Vi)i∈I where for all i, Vi = Vi

nested ∪ {vi0 = ∅}, and with respect to the
subspace Y = X , with ∆i

0(x) = ψi(0) and for any k ≥ 1,

∆i
k(x) = ∆i

vik
(x) = ψi

∑
j∈ωi

k

[βij

∫ 0

−(kδ)∧ai(x)
dxjs] ∧Ki

j

− ψi

 ∑
j∈ωi

k−1

[βij

∫ 0

−((k−1)δ)∧ai(x)
dxjs] ∧Ki

j

 ,

where wi
0 = ∅.

4 Simulation algorithms

In this section we present two types of algorithms corresponding to the two items of Proposition
2. First, a simulation algorithm that simulates the time homogeneous counting process Z for finite
networks, starting from the empty past before time 0, up to some finite time, under the conditions
of Item 1. of Proposition 2. And secondly, a Perfect Simulation algorithm that simulates the process
Z in its stationary regime, within a finite space-time window, under the conditions of Item 2. of
Proposition 2.
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4.1 Simulating forward in time, starting from a fixed past

Suppose that we are in the situation of Item 1. of Proposition 2, with I finite and that we wish to
simulate the process until a certain tmax > 0 starting from the empty past before time 0. We might
never reach tmax because the process might typically explode, so we introduce

τ := tmax ∧ inf{t ≥ 0 : Zt /∈ Y}.

For simplicity we also suppose that in absence of further jumps, the intensities are non-increasing.
More precisely, introducing for all i ∈ I, for all t ≥ 0, for any x ∈ X , the configuration where all jumps
of x are shifted to the left by t and no further jumps are added within (−t, 0), which is denoted by
(x←t,0), we suppose

Assumption 1. For all i ∈ I, for all v ∈ Vi and for all t ≥ 0,

ϕiv((x
←t,0)) ≤ ϕiv(x).

This is typically the case for the linear or the exponential Hawkes processes with decreasing
interaction functions hij .

Let us now describe how we simulate forward in time, starting from the empty past before time 0,
up to some maximal number of simulation steps Nmax > 0.

Step 0. We initialize the set of points with X = 0 ∈ X , where 0 ∈ X designs the configuration
having no points, and T = N = 0.

While T ≤ τ and N ≤ Nmax do the following.

Step 1. For each i ∈ I, compute Γ̃i ≥ supv∈Vi ϕiv(X
←T ).

Step 2. Simulate the next jump T ← T + Exp(
∑

i∈I Γ̃
i).

If T > τ stop, else choose the associated index i with probability

P(I = i) =
Γ̃i∑
j∈I Γ̃

j
.

Step 3. Choose the associated interaction neighborhood VT = v with probability λi(v).

Step 4. Accept T as a jump of index i with probability ϕi
v(X

←T )

Γ̃i
and add (i, T ) to X in this case.

Put N ← N + 1. If the point is rejected, do nothing. Go back to Step 1.

Remark 6. The bound Γ̃i, computed in Step 1, is random since it depends on the configuration X
that has been simulated so far.

Corollary 6 (of Proposition 1). The previous algorithm simulates a time homogeneous counting
process Z of generic intensity given by Item 1. of Proposition 2.

Proof. Note that the random variable Γ̃i is a bound on the generic intensity ϕi in absence of appearance
of a new point in the future after time T . Hence the “new” T (see also Section 2.3) computed at Step
2 can be seen as the abscissa of a point of an hidden bivariate Poisson process in a band of height∑

i∈I Γ̃
i. The association of a particular index i is quite usual (see for instance Ogata’s algorithm [25])

and it means that if the chosen index is i, then the point T can also be seen as the next point of the
bivariate Poisson process πi that is discussed in Section 2.3 in the band of height Γ̃i. Since this is an
upper-bound on ϕi, the thinning procedure will not consider points of πi outside this band, at least
until a new point is accepted. The association of a neighborhood in Step 3 is therefore consistent
with the tridimensional Poisson process of Proposition 1, and the points that are accepted at Step
4 are the ones accepted in Proposition 1. Therefore this algorithm indeed simulates points with the
desired intensities as long as the the process stays in Y and the Kalikow decomposition holds.
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Remark 7. Note that this algorithm will indeed save computational time if both the computation
of Γ̃i and the verification that one stays in Y is easy. In the particular example of Linear Hawkes
process (Corollary 2), with decreasing hij’s, and bounded support say on [0, ϵ], one can take Γ̃i =

hij(0)Z
i([T − ϵ, T )) and we know that the process will stay in Y with probability 1. Further algorithmic

work, beyond the scope of the present article, might include a real handcraft on the design of Γ̃i to
save computational time.

4.2 Perfect simulation of the process in its stationary regime

Throughout this section we suppose that we are in the situation of Item 2. of Proposition 2, that is
the generic intensities ϕi’s are upperbounded by deterministic constants Γi and that the subspace Y
is invariant under the dynamics, that is, Zt ∈ Y implies Zt+s ∈ Y for all s ≥ 0. This is e.g. the case
for the Age dependent Hawkes process with hard refractory period considered in Section 3.2 above.
In particular, in this case, it is possible to restrict the dynamic to Y, and in what follows we will show
how to simulate from the unique stationary version of the process within this restricted state space Y.

In what follows, we propose to simulate, in its stationary regime, the process Zi for a fixed i ∈ I, on
an interval [0, tmax], for some fixed tmax > 0. Our algorithm is a modification of the method described
in [27], which works in the case where all the Γi’s are equal. The procedure consists of backward
and forward steps. In the backward steps, thanks to the Kalikow decomposition, we create a set of
ancestors, which is a list of all the points that might influence the point under consideration. On the
other hand, in the forward steps, where we go forward in time, by using the thinning method [25] in
its refined version stated in Theorem 1, we give the decision (acceptance or rejection) to each visited
point based on its neighborhood until the state of all considered points is decided.

The idea of relying on such a two-step procedure is not new and has already been proposed in
the literature, even in a continuous time setting, see e.g. [11], [14] and [12] where such an approach
is used to simulate from infinite range Gibbs measures and/or from the steady state of interacting
particle systems, relying on a decomposition of the spin flip rates as a convex combination of local flip
rates. The main difference of our present approach with respect to these results is twofold. Firstly,
in these articles, only spatial interactions are considered – while we have to decompose both with
respect to the spatial interactions and the history in the present article. And secondly and more
importantly, in all these articles the authors manage to go back to transition probabilities – and then
establish a Kalikow decomposition for these probabilities. So somehow this means that we are back
in the framework of discrete time processes as in [21] where these ideas have been introduced. Such a
discrete time approach is still used in [18]. The idea of decomposing directly the intensities, not to go
back to probabilities, and to decompose both with respect to time, that is, history, and space, that is,
the interactions, is – at least to our knowledge – completely new.

4.2.1 Backward procedure

Recall that according to Item 2. of Proposition 2, all functions ϕi and ϕiv are bounded by a fixed
deterministic constant Γi.

For the sake of understandability from a theoretical point of view, we will assume that the N i’s are
independent homogeneous Poisson processes on the real line with intensity Γi and that these points
are fixed before one starts the algorithm. Indeed following what has been said in Proposition 1, we
will recover the points of Zi as a thinning of a tridimensional Poisson process. The fact that the
intensities are bounded allows us to thin only in a band of height Γi, and that is why we are going to
thin N i into Zi.

Of course in practice, the infinite knowledge of the N i’s is not possible and the Step 1’ and Step
2’ are there to explicit concretely how this is done in practice.

Step 0. Fix i, set the initial time to be T0 = 0.

Step 1. Take T the first point of N i after 0. This is the first possible jump of Zi after T0.
Step 1’. Simulate this T as

T ← T0 + Exp(Γi).
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In particular this implies that the underlying N i is empty on [T0, T ).
If T > tmax, stop.

Step 2. Independently of anything else, pick a random neighborhood V i
T of (i, T ) according to

the distribution (λi(v))v∈Vi given in (3.3), that is

P(V i
T = v) = λi(v).

On {V i
T = v}, consider the shift of this neighborhood v by T defined by

v→T := {(j, u+ T ) : (j, u) ∈ v}

and, for any j ∈ I, the projection to the second coordinate of v→T by

pj(v
→T ) :=

{
t ∈ R : (j, t) ∈ v→T

}
.

Notice that if for some j, (j, t) /∈ v→T for all t, then pj(v
→T ) = ∅. Finally, we look for the set of points

of N that might directly influence the decision of acceptation/rejection of T :

C(i,T )
1 =

⋃
j∈I

{
(j, t) : t ∈ pj(v→T ) is a jump of N j

}
.

Step2’. Simulate independent Poisson processes in v→T , that is for each j ∈ I, we simulate the
points of N j independently of anything else as a Poisson process of intensity Γj on pj(v

→T ) to identify

as before C(i,T )
1 .

It is possible that at this point in the algorithm (especially in the iteration below), v→T intersects
with neighborhoods that have already been picked. In this case, simulate only on the portion of the
neighborhood that has never been visited before. Note in particular that we take for already visited
region the set {i} × [T0, T ), and that within this region there are no points by definition of T.

Step 3. Recursively, we define the nth set of ancestors of (i, T ) by

C(i,T )
n =

⋃
(j,s)∈C(i,T )

n−1

C(j,s)1 \
(
C(i,T )
1 ∪ . . . ∪ C(i,T )

n−1

)
,

by performing Step 2 or Step 2’ for each (j, s) ∈ C(i,T )
n−1 .

Note that C(i,T )
n exactly corresponds to the points that are really simulated as new in the iterated

Step 2’.

We denote
N (i,T ) = inf{n : C(i,T )

n = ∅},

where inf ∅ := +∞. The backward scheme stops when N (i,T ) < ∞, and we give below sufficient
conditions guaranteeing this fact (see Proposition 3 below). In this case we say that the total clan of
ancestors of (i, T ) is given by

C(i,T ) =

N(i,T )⋃
k=1

C(i,T )
k

In what follows we also consider the associated interaction support given by

V(i,T ) =
⋃

(j,t)∈C(i,T )

(V i
t )
→t

and we put
T (i,T ) := T − inf{s : ∃j ∈ I : (j, s) ∈ V(i,T )} (4.1)

which is the total time the backwards steps need to look back in the past.
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Remark 8. Let us emphasize that λi(∅) does not need to be strictly positive in order to guarantee that
N (i,T ) <∞. If λi(∅) = 0, at every step of the Backward scheme, we always need to simulate a Poisson
process in a non empty neighborhood. However, if there is no point simulated in such a neighborhood,
then we do not add any points to the clan of ancestors, and if this happens sufficiently often, then
the Backward step ends as well. This is one of the main advantages of our approach and a major
difference with respect to [18, 13]. We give in Proposition 3 below sufficient conditions implying that
the algorithm stops after a finite number of steps almost surely.

Remark 9. The steps Step 1’ and Step 2’ are consistent with recreating the processes N i’s in the
neighborhoods of interest, instead of taking them for granted beforehand. In particular this is the reason
why the algorithm is very careful when dealing with overlapping neighborhoods to not simulate twice
the same process on the same portion of the space.

4.2.2 Forward procedure

Supposing that N (i,T ) <∞, we now use a Forward procedure to accept or reject recursively each point
in C(i,T ), until the status of T is decided.

We start with the point (j, s) ∈ C(i,T ) which is the smallest in time, so that its associated neigh-
borhood is either empty (v = ∅) or non empty but without any point of the Poisson process in it.

Step 1. Accept (j, s) with probability
ϕj
V j
s
(X←s

s )

Γj
where V j

s is the neighborhood of (j, s) .

Step 2. Move to the next point of C(i,T ) in increasing time order. Repeat Steps 1 and 2 until the
status of T is determined.

Update step. To simulate on [0, tmax], go back to Step 0 of the Backward procedure and replace
the starting time of the initial step T0 by T . Repeat the Backward and Forward procedures until
T > tmax.

Remark 10. If one wants to adapt the algorithm to the simulation of a generic finite subset F of
I×R, it is sufficient to shift everything to the smallest time in F (which will be the initial T0) and to
repeat the process on all the i’s in F . Again in Step 2’, we need to be careful to simulate only on new
parts of I × R and not parts that have been already discovered and where one of the N i has already
been simulated.

4.2.3 Why the Backward procedure ends after a finite number of steps

Our procedure only works if N (i,T ) < ∞ almost surely. In what follows we give sufficient conditions
implying this. To do so, we compare our process to a spatio-temporal branching process. Let us define
this more mathematically.

The initial directed graph of ancestors T
We start with the ancestor which is the point (i, T ) constituting generation 0. All points belonging

to C(i,T )
n are called points of the n−th generation. For each point (j, t) belonging to generation n, all

elements of
C(j,t)1 =

⋃
k∈I

{
(k, s) : s ∈ pk((V j

t )
→t) is a jump of Nk

}
define the children of the point (j, t). The choices of the children of (j, t) and (j′, t′) for any two distinct
elements of generation n are not necessarily independent, since the associated neighborhoods might

overlap, that is, we may have V j
t ∩ V

j′

t′ ̸= ∅.
Note that T is not a tree, precisely because of this potential overlapping: two different parents

might have the same child.

The dominating branching process T̃
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To obtain sufficient conditions implying that N (i,T ) < ∞, we therefore construct a dominating
spatio-temporal branching process starting from the same ancestor (i, T ), where the choices of children
are independent. To go from generation n to the next generation n+ 1, to any point (j, t) belonging

to generation n we associate the same children C(j,t)1 as before whenever the chosen neighborhood V j
t

does not overlap with parts of I × R where we have already simulated in previous steps. However,
if there are parts of the neighborhood V j

t that intersect with already visited parts, we simulate –
independently of anything else – on the whole neighborhood. By doing so, we make the number of
children larger, but for each point, these choices are independent of anything else. If this dominating

branching process goes extinct in finite time, then so does the original process C(i,T )
n , and the backward

part of the algorithm terminates.

To formulate a sufficient criterion that implies the almost sure extinction of the dominating branch-
ing process T̃ , let us denote the product measure P on I×R, defined on the Borel subsets of I×R,
as follows.

P (J ×A) :=
∑
j∈J

Γj µ(A)

for any J ⊂ I, where A is a Borel subset of R and where µ is the Lebesgue measure. The following
proposition is already proved in [27] in a particular case where all the Γj ’s are equal.

Proposition 3. If

sup
i∈I

∑
v∈Vi

P (v)λi(v) =: γ < 1, (4.2)

then the Backward steps in the Perfect Simulation algorithm terminate almost surely in finite time.

Proof. For any neighborhood v, we have∑
j∈v
E
(
card

{
t : t ∈ pj(v) is a jump of N j

})
=
∑
j∈v

Γjµ(pj(v)) = P (v).

This implies that
∑

v∈Vi P (v)λi(v) is the mean number of children issued from one point of type i.
Then the condition (4.2) implies that the mean number of children is less than one in each step, which
is the a classical sub-criticality condition for branching processes, see [1]. The result then follows from

the fact that according to the above discussion, we can dominate L
(i,T )
n := card(C(i,T )

n ) by a classical
Galton Watson branching process having offspring mean γ < 1 which goes extinct in finite time almost
surely.

4.2.4 Why we sample from the stationary distribution

Theorem 1. Suppose we are in the situation of Item 2. of Proposition 2 and the subspace Y is
invariant under the dynamics, that is, the configuration associated to Z, X, satisfies that X←t

t ∈ Y
implies X←t+s

t+s ∈ Y, for all positive s. If (4.2) holds, then the process possesses a unique stationary
distribution in restriction to Y, and the accepted points of the forward procedure yield a perfect sample
of this stationary distribution within the space-time window {i} × [0, tmax].

Proof. In this proof we adapt the ideas of the proof of Theorem 2 in [12] to the present framework.
For any F a finite subset of I×R the Backward and Forward procedures produce a sample of a point
process within the space-time window F, and we write µF for the law of the output. By construction,
the family of probability laws {µF , F ⊂ I × R finite} is a consistent family of finite dimensional
distributions. Hence there exists a unique probability measure µ on (X∞,B(X∞)) such that µF is the
projection onto F of µ, for any fixed finite set F ⊂ I×R.

We show that µ is the unique stationary distribution of the process Z within Y. In order to do so,
we use a slight modification of our algorithm in order to construct Z starting from some fixed past,
say x ∈ Y, before time 0. The modification is defined as follows.
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We fix t, tmax > 0 and put F = {i} × [t, t + tmax]. Recall that the original Backward procedure
relies on the a priori realization of all the Poisson processes N i on (−∞, t + tmax]. In our modified
procedure we replace, for any i ∈ I, the points of N i within (−∞, 0) by those of xi, where x = (xi)i∈I
is our initial condition.

Step 0. Put T0 = t.
Step 1. Perform Steps 1-3 of the Backward procedure replacing the Poisson processes N i in

restriction to (−∞, 0) by the corresponding points of x, and stop this procedure at time

Ñ (i,T ) = inf{n : C(i,T )
n ⊂ I× (−∞, 0)} ∧N (i,T ).

Indeed, on the set {Ñ (i,T ) < N (i,T )}, at this time, only points having negative times have to be
considered, and all these points are determined by the initial condition x. In this modified version,

when we stop the algorithm, the output set C(i,T )

Ñ(i,T )
might not be empty. This set is exactly the set of

points before time 0 that have an influence on the acceptance or rejection of the point (i, T ).
Notice that the time

inf{n : ∃(j, t) ∈ C(i,T )
n : (V j

t )
→t ∩ I× (−∞, 0) ̸= ∅},

if it is finite, is the first time where the modified algorithm starts to be different from the original one.
In particular, if the backward steps stop before reaching the negative sites, that is, if we are on the

event T (i,T ) ≤ T (recall (4.1)), then C(i,T )

Ñ(i,T )
= ∅, Ñ (i,T ) = N (i,T ), and the two procedures produce the

same sets of points.
The forward procedure is performed as before, replacing the unknown points before time 0 by the

fixed past configuration x.
Then the law of the set {(τ̃ in)} printed at the end of the modified algorithm 2 is the law of Zi

|[t,t+tmax]
,

starting from the fixed past x before time 0. The output of the modified algorithm equals the output
of the unmodified perfect simulation algorithm 2 if T (i,T ) ≤ T.

We now give a formal argument proving that µ is indeed a stationary distribution of the process.
Let f : X∞ → R+ be a bounded measurable function which is cylindrical on {i} × [t, t+ tmax]. Then

E[f(Zi
|[t,t+tmax])|Z|R− = x] = E[f({(τ̃ in)}), T (i,T ) ≤ T ] + E[f({(τ̃ in)}), T (i,T ) > T ]

= E[f({(τ in)}), T (i,T ) ≤ T ] + E[f({(τ̃ in)}), T (i,T ) > T ], (4.3)

where (τ in) is the output of the original Perfect simulation algorithm.
But

E[f({(τ̃ in)}), T (i,T ) > T ] ≤ ∥f∥∞P(T (i,T ) ≥ t)→ 0 as t→∞,

since finiteness of the tree implies the finiteness of T (i,T ) and since by shift invariance, the law of T (i,T )

does not depend on T. Hence we obtain that

lim
t→∞

E[f(Zi
|[t,t+tmax]

)|Z|R− = x] = E[f(Zi
|[t,t+tmax]

)],

since 1T (i,T )≤T → 1 almost surely.
This implies that µ is a stationary distribution of the process. Replacing the initial condition x

by any stationary initial condition, chosen within Y, we finally get also uniqueness of the stationary
distribution.

4.2.5 The complexity of the algorithm

Throughout this section we suppose once more that we are in the situation of Item 2. of Proposition
2 and that the subspace Y is invariant under the dynamics, that is, Zt ∈ Y implies Zt+s ∈ Y for all
s ≥ 0. Our goal is to study the effect of the choice of the (λi(v))v∈Vi on the number of points simulated
by our algorithm. Until the end of this section, we suppose moreover that

Assumption 2.
1. The index set I = {1, . . . , N} is finite.
2. The sub-criticality assumption (4.2) is satisfied.
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Let us fix several notations that will be useful in the sequel. We denote ei the i-th unit vector of
RN , 1 is the vector (1, 1, . . . , 1)T and µ still stands for the Lebesgue measure. Finally, by a positive
vector, we mean that all its components are positive.

In the sequel we rely on the multitype branching process T̃ introduced in the beginning of Section
4.2.3 which is a space-time valued process starting from the ancestor (i, T ) in generation 0. In the sequel
we refer to these points as “particles” and we say the type of a particle is its associated index value i.
Recall that in the definition of this branching process, each particle (j, t) belonging to generation n,
independently of anything else, gives rise to offspring particles which are chosen as independent copies
of

C(j,t)1 =
⋃
k∈I

{
(k, s) : s ∈ pk((V j

t )
→t) is a jump of a Poisson process of intensity Γk

}
.

For n ≥ 1, let Ki(n) be the N−dimensional vector containing the numbers of offspring particles of
different types belonging to the nth generation of the process issued from (i, T ), that is, Ki(n) =
(Ki

1(n), . . . ,K
i
N (n))T , where Ki

k(n) is the number of particles of type k within generation n. We use
the convention that Ki(0) = ei for every 1 ≤ i ≤ N. For every j ∈ {1, . . . , N}, let

Xi
j := Ki

j(1) (4.4)

be the number of offspring particles of type j of the initial particle (i, T ). We have already seen that
Xi

j is the cardinal of the points that a Poisson process of intensity Γj produces on pj(V
i
T ), where V

i
T

is the random neighborhood chosen for particle (i, T ). In other words, if we denote P the Poisson
distribution, given that V i

T = v, we have

L(Xi
j |V i

T = v) = P
(
Γjµ(pj(v))

)
. (4.5)

Denoting Xi = K1(1) ∈ RN the associated vector, we consider for any θ ∈ RN the log-Laplace
transform of Xi given by

ϕi(θ) := logEi

(
eθ

TXi
)

where Pi denotes the law of the branching process starting from a single ancestor having type i and
Ei is the corresponding expectation.

Moreover, we consider

W i(n) =
n∑

k=0

Ki(k)

the total number of offspring particles within the first n generations. The log Laplace transform
associated to the random vector W i(n) is given by

Φ
(n)
i (θ) := logEi

(
eθ

TW i(n)
)
, and we put Φ(n)(θ) = (Φ

(n)
1 (θ), . . . ,Φ

(n)
N (θ))T .

Since we are working under the sub-criticality condition (4.2),

W i(∞) := lim
n→∞

W i(n) and W i =

N∑
j=1

W i
j (∞), (4.6)

are well-defined and almost surely finite. In the above formula, W i
j (∞) denotes the j−th coordinate

of the N−dimensional vector W i(∞), that is, the total number of offspring of type j issued from one
ancestor particle of type i.. In particular, W i is the total number of offspring particles issued from
one ancestor particle of type i. We introduce the associated log-Laplace transforms

Φi(θ) := logEi

(
eθ

TW i(∞)
)
, Φ(θ) = (Φ1(θ),Φ2(θ), . . . ,ΦN (θ))T .

We are now going to state an exponential inequality, inspired by Lemma 1 of [29]. To do so, let
∥.∥∞ be the∞− norm on RN , that is, for x = (x1, . . . , xN ), ∥x∥∞ = max{|xi|, 1 ≤ i ≤ N}, and denote
the open balls having center 0 ∈ RN and radius r with respect to this norm by B(0, r). We have to
introduce an additional assumption stating that the log-Laplace transform ϕi is finite within an open
ball around 0.
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Assumption 3. There exists R > 0 such that for all positive vectors θ belonging to B(0, R) we have

sup
i
ϕi(θ) = sup

i

N∑
j=1

log

∑
v∈Vi

λi(v) exp
[
(eθj − 1)Γjµ (pj(v))

] <∞.

Proposition 4. Grant Assumptions 2 and 3. Then the following holds.

1. There exists r ∈ (0, R) such that for all θ ∈ B(0, r), Φi(θ) <∞ and moreover

Φ(θ) = θ + ϕ(Φ(θ)).

2. In particular, for 0 ≤ ϑ < r, there exists a constant c0 that depends on M and i such that the
following deviation inequality holds for the total number of offspring particles

Pi

(
W i > Ei(W

i) + x
)
≤ c0e−ϑx (4.7)

for all x > 0.

Remark 11. Let M be the Jacobian matrix of ϕ(.) at 0. Since

ϕi(θ) = logEi

(
eθ

TXi
)
= logEi

 N∏
j=1

eθjX
i
j

 ,

we deduce that, using (4.5),

Mij = Ei(X
i
j) =

∑
v∈Vi

Γjµ (pj(v))λi(v), (4.8)

which is the mean number of offspring particles of type j, issued by a particle of type i. It is a well-known
fact in branching processes (see e.g. Chapter V of [1]) that

Ei

(
(Ki(n))T

)
= eTi M

n,

and that

Ei

(
(W i(n))T

)
= Ei

(
n∑

k=0

(Ki(k))T

)
= eTi

(
n∑

k=0

Mk

)
.

Thus by monotone convergence,

Ei(W
i) = eTi

( ∞∑
k=0

Mk

)
1, (4.9)

which is finite by (4.2). Hence (4.7) tells us that the number of points produced in the Backward
steps is well concentrated around its mean. If we think that the overall complexity of the algorithm is
governed by the number of points produced in the Backward steps, then (4.9) gives us a good way to
determine which distribution λi can lead to the less costly algorithm. We are looking basically at λi’s
that are minimizing (4.9), with M defined by (4.8).

Proof of Proposition 4.

Step 1. First, we prove that ϕi(θ) is well defined for all θ ∈ B(0, r). Indeed, since the (Xi
j)j=1,...,N

are independent, we have

ϕi(θ) = logEi

 N∏
j=1

exp (θjX
i
j)

 =

N∑
j=1

logEi

(
exp (θjX

i
j)
)
.

By (4.5),

Ei

(
exp (θjX

i
j)|V i

T = v
)
= exp

[
(eθj − 1)Γjµ (pj(v))

]
,
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and integrating with respect to the choice of V i
T , we obtain

ϕi(θ) =

N∑
j=1

log

∑
v∈Vi

λi(v) exp
[
(eθj − 1)Γjµ (pj(v))

] <∞.

Step 2. In the following, we prove that Φ
(n)
i (θ) satisfies the following recursion

Φ
(n)
i (θ) = θTKi(0) + ϕi(Φ

(n−1)(θ)). (4.10)

Indeed, by definition of W i(n) we have

Ei

(
eθ

TW i(n)
)
= eθ

TKi(0)Ei

(
eθ

T
∑n

k=1 K
i(k)
)
.

Now, let us introduce for any j and any 1 ≤ p ≤ Xi
j , K

j
(p)(n−1) which is the vector of offspring particles

within the (n− 1)th generation, issued from the p-th particle of type j in the first generation. Notice
that by the branching property, for p = 1, . . . , Xi

j , we have that the Kj
(p)(n − 1)’s are independent

copies of Kj(n− 1). Therefore, conditioning on the first generation offspring particles,

Ei

(
eθ

T
∑n

k=1 K
i(k)
)
= Ei

(
e
θT

∑n
k=1

∑N
j=1

∑Xi
j

p=1 K
j
(p)

(k−1)
)

= Ei

 N∏
j=1

Xi
j∏

p=1

e
θT

∑n
k=1 K

j
(p)

(k−1)

 = Ei

E
 N∏

j=1

Xi
j∏

p=1

e
θT

∑n
k=1 K

j
(p)

(k−1)|Xi

 .
Since the (Kj

(p)(k − 1))1≤j≤N are independent and independent of Xi, we obtain

Ei

E
 N∏

j=1

Xi
j∏

p=1

e
θT

∑n
k=1 K

j
(p)

(k−1)|Xi

 = Ei

 N∏
j=1

Xi
j∏

p=1

E

(
e
θT

∑n
k=1 K

j
(p)

(k−1) | Xi
j

)
= Ei

 N∏
j=1

Xi
j∏

p=1

E

(
e
θT

∑n
k=1 K

j
(p)

(k−1)
) = Ei

 N∏
j=1

(
E
(
eθ

TW j(n−1)
))Xi

j


= Ei

 N∏
j=1

eΦ
(n−1)
j (θ)Xi

j

 = Ei

[
eΦ

(n−1)(θ)TXi

]
= eϕi(Φ

(n−1)(θ)),

implying

Φ
(n)
i (θ) = θTKi(0) + ϕi(Φ

(n−1)(θ)),

or, in vector form,
Φ(n)(θ) = θ + ϕ(Φ(n−1)(θ)). (4.11)

Step 3. Let us consider the sums of the elements of the i−th line of the matrix M,

N∑
j=1

Mij =
N∑
j=1

Ei(X
i
j).

By definition, this is the mean number of offspring particles (of any type), issued from a particle of
type i, and by the arguments presented in the proof of Proposition 3, this mean number is given by

N∑
j=1

Mij =
∑
v∈Vi

λi(v)P (v) ≤ γ < 1,
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where the last upper bound holds by our assumptions. Hence, ∥M∥∞ = sup∥x∥∞≤1{∥Mx∥∞} =

supi
∑N

j=1 |Mij | ≤ γ < 1, where ∥.∥∞ is the induced norm for matrices on RN×N . Therefore, the
derivative of ϕ in 0 satisfies, ∥Dϕ(0)∥∞ ≤ γ < 1. Moreover, since the norm is continuous and Dϕ(s)
is likewise, for any γ < C < 1, there is a r̃ ∈ (0, R), such that, for ||s||∞ < r̃,

∥Dϕ(s)∥∞ ≤ C < 1.

Hence, ϕ(s) is Lipschitz continuous in the ball B(0, r̃) and moreover ϕ(0) = 0, which implies that

∥ϕ(s)∥∞ ≤ C∥s∥∞

for ∥s∥∞ < r̃.
Now, take θ such that |θi| ≤ r̃(1− C) for any 1 ≤ i ≤ N. Using (4.11), we can show by induction

that for all n,
∥Φ(n)(θ)∥∞ ≤ ∥θ∥∞(1 + C + . . .+ Cn) ≤ r̃ <∞.

Hence by monotone convergence of Φn(θ)→ Φ(θ) and the limit in (4.11), we have

∥Φ(θ)∥∞ ≤ r and Φ(θ) = θ + ϕ(Φ(θ)),

with r = r̃(1− C). In particular, choosing θ = ϑ1 ∈ B(0, r) with ϑ ∈ R, we have

Ei

(
eϑW

i
)
<∞,

where we recall that W i is the total number of offspring particles of i.

Step 4. We use Markov’s inequality and obtain for any ϑ ∈ (0, r),

Pi

(
W i > Ei(W

i) + x
)
= Pi

(
eϑW

i
> eϑEi(W

i)+ϑx
)
≤ eΦ̃i(ϑ)−ϑEi(W

i)−ϑx,

where Φ̃i(ϑ) = logEi

(
eϑW

i
)
. Using Taylor’s formula, we have

Φ̃i(ϑ) = Φ̃′i(0)ϑ+
1

2
Φ̃
′′
i (ϑ̃)ϑ

2 = Ei(W
i)ϑ+

1

2
Φ̃
′′
i (ϑ̃)ϑ

2,

for some ϑ̃ ∈ (0, ϑ). Choosing c0 = supϑ≤r e
1
2
Φ̃
′′
i (ϑ̃)ϑ

2
implies the assertion.

4.2.6 Choice of the weights on a particular example

In this section we discuss a very particular example to show how to calibrate the choice of the λi’s in
terms of minimizing the number of points produced int he Backward steps. Our example is the age
dependent Hawkes process with hard refractory period δ > 0 defined by (3.8) and with non-decreasing
ψi which is L-Lipschitz for all i, so that Corollary 3 Item 2. applies. The following choices are merely
directed to have the simplest possible computations on a non trivial infinite case.

In what follows, to simplify the computations, we consider that I = Z and that L = 1. Moreover,
for all i, we set

1. ψi(0) = 1.

2. hij(t) = βij exp (−t/δ), where βij =
1

2|j − i|γ
for j ̸= i, for some fixed positive parameter γ > 1,

and βii = 1, where βij ≥ 0.

Note that ∥hij∥1 = βijδ and that hij(0) = βij .

3. With the notation of Corollary 3, we use ωi
1 = {i} and ωi

k = {i− k+1, . . . , i, i+1, . . . , i+ k− 1}
for all k ≥ 2.
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With this choice, one can see that Γ̄i
k defined in Corollary 3 Item 2. is given for k ≥ 2 by

Γ̄i
k =

2

(k − 1)γ
+ e−(k−1)

(
1 +

k−2∑
m=1

1

mγ

)
.

Hence for some constant Cγ > 0 depending on γ, one can always choose for all k ≥ 1

Γi
k ≥ Cγk

−γ ,

as long as
∑

k Γ
i
k <∞. So let us take

Γi
k = Cγk

−p,

for some 1 < p ≤ γ. Notice that in this case, Γi is independent on i, since

Γi =

∞∑
k=1

Γi
k = Cγcp, where cp =

∞∑
k=1

k−p.

By applying Proposition 2 Item 2. combined with Corollary 3 Item 2, we obtain that

λi(vik) = (cp)
−1k−p.

Now let us turn to finding p such that the λi’s are minimizing (4.9), that is

Ei(W
i) = eTi

( ∞∑
k=0

Mk

)
1

with M defined by

Mij = Ei(X
i
j) =

∞∑
k=1

Γjµ
(
pj(v

i
k)
)
λi(vik).

Summing over all possible types j, we obtain the mean number of offspring particles of a particle of
type i, which is given by

Mi =

∞∑
j=1

Mij = Cγδ

∞∑
k=1

(2k − 1)k1−p =: Cγδf(p), where f(p) =

∞∑
k=1

(2k − 1)k1−p.

Clearly, f(p) <∞ if and only if p > 3, and thus, a fortiori, γ > 3. Since f is a decreasing function of
p, the optimal choice for p is thus p = γ.
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[13] Antonio Galves and Eva Löcherbach. Infinite systems of interacting chains with memory of
variable length—a stochastic model for biological neural nets. Journal of Statistical Physics,
151(5):896–921, 2013.
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