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S.I. NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN
ARBITRARILY CLOSE BODIES

To highlight the issues encountered with the near-field
radiation model when the distance separating the emission
and absorption location, we consider here a simple system,
for which the near-field transmission coefficient can be ex-
pressed analytically. This system is composed by three slabs
(numbered 1 to 3) placed between two semi-infinite media
(numbered 0 and 4). All layers are made of the same lossy
material, and we focus on the transmission coefficient between
slabs 1 and 3 (see Fig. S1a) which can be expressed as [1],
[2]
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γ being the polarisation (TE or TM), kz1 is the perpen-
dicular component of the wavevector in medium 1, and tγ2 is
the transmission coefficient through slab 2. κγ

i is an effective
wavenumber in layer i, which respectively equals Re(kzi)
for TE and Re(εrik∗zi)/|εri| for TM polarisation. At last,
ϑi = 1− e−2Im(kzi)ti is a factor that accounts for the limited
thickness ti of layer i.

The transmission coefficient obtained between 1 nm thick
slabs at a photon energy of 1.42 eV and for a dielectric
function ϵ = 10 + i is depicted in Figure S1b. For both
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Fig. S1: (a) Schematic of the system considered to highlight
radiative heat transfer divergence for vanishing gap distance.
(b) Variations of the photon transmission coefficient with kρ
obtained for various separation distances.
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polarisations, decreasing the gap distance leads to an in-
crease in the transmission coefficient for propagating modes
- especially close to kρ = nω/c - and gives rise to the
transmission of photons through evanescent modes. But while
the TE transmission coefficient goes to zero as kρ → ∞ for
d approaching 0, it goes to a constant non-zero value in the
case of TM modes. Consequently, the monochromatic heat flux
obtained after integration over kρ converges for TE modes as
d → 0, but diverges for TM modes.

Such a divergence is caused by the absence of non-local
effect (i.e., spatial dispersion) at small scale [3]. In the present
work, as in most of the literature on near-field radiation,
we have assumed optical properties to be local, i.e. that the
movement of dipoles at a given position has no impact at any
other position at the same time. While correct in most cases,
this hypothesis definitely breaks down when the gap distance
goes below the nanometre, and may have a significant impact
at larger distances. To take non-local effects into account, the
dielectric function must be modified to include dependence
on kρ [3]. [4] also proposed to replace the Dirac function
δ(r′−r′′) in the fluctuation-dissipation theorem by a Gaussian
function depending on a local distance l. While being a
promising solution due to its simplicity, some discrepancies
were found in our implementation of the article, with some
expressions that may lead to non-zero heat flux between two
media at the same temperature for instance. Additional work
would thus be required. We note that works dealing with heat
conduction by radiative modes performed the kρ-integration
up to nω/c only [5].

S.II. MATERIAL PROPERTIES

We provide in Table I the source of the various material
properties used for InGaAs and InGaP. Because of the lack
of accurate data, only the bandgap energy, the interband
contribution to the dielectric function and the charge carrier
mobility are temperature-dependent quantities. The other ones
are taken at room temperature. The interband contribution
given in [6] lacks composition and temperature dependence,
but these are included by gathering the variations of Eg with x
and T from the literature; we then assume that each transition
energy E0 = Eg , E1 and E2 varies as Eg . For the temperature
dependence, we consider the linear variation given in [7]. The
composition-dependent bandgap is obtained from a second-
order polynomial fit from the data at xGa = 0 (Eg = 1.34
eV [8]), xGa = 0.51 (Eg = 1.89 eV [6]) and xGa = 0.71
(Eg = 2.2 eV [9]). Similarly, the composition dependence of
the phonon contribution in InGaAs is modelled using linear
interpolation between GaAs [10] and InAs [11] data.

We do not take into account the composition dependence of
the phonon contribution in InGaP, nor that of the non-radiative
recombination coefficients of both InGaAs and InGaP. In fact,
for InGaP, no accurate data was found for the SRH lifetime,
and we have therefore used that of GaAs - this should only
bring a limited error in the final result since most of the
recombinations occur in the InGaAs active layers. As shown
in [16], including temperature and composition dependence
of these coefficients in (at least) InGaAs will be essential to
correctly estimate the performance of TPX devices.

TABLE I: Material properties used for InxGa1−xAs and
InxGa1−xP alloys.

Parameter Symbol InGaAs InGaP

High freq. dielectric cst. ε∞ [10], [11] [8]
Static dielectric cst εrs [8] [8]
Dielectric function εr
Phonon contrib. (Lorentz) [10], [11] [12]
Interband contribution [13] [6]

Lattice constant a [8] [8]
Bandgap energy Eg [13] [6]
Electron affinity χ [8] [8]
Electron/hole effective mass m∗

n/p
[8] [8]

Electron/hole mobility µ [14] [14]
SRH lifetime τn/p,SRH [15] [15]
Auger rec. coefficient Cn/p [15] [8]

Although plasmon contribution to the dielectric function is
not mentioned in Table I, it is included in the solver using the
classical Drude model

εr = ε∞

(
1−

ω2
p

ω(ω + iΓ)

)
, (S2)

where the plasmon frequency ωp and the damping coefficient
Γ are expressed as

ωp =

√
Ne2

m∗ε∞ε0
, (S3a)

Γ =
e

m∗µ
. (S3b)

For simplicity, in each layer, we only consider the plasmon
contribution related to the carriers corresponding to the doping
type, and the charge carrier density N is approximated by the
doping level.

Finally, we should mention that only rough estimation of
the lattice constant given in [8] has been considered for ease:
a(Å) = 5.7 + 0.4x for InGaAs, and a(Å) = 5.9 − 0.4x for
InGaP.

S.III. DETAILS ON THE THERMIONIC EMISSION AND
CHARGE CARRIER TUNNELLING MODEL

In CRESCENT-1D, only abrupt heterojunctions are con-
sidered. The presence of potential barriers at such junctions
causes the transmission probability of charge carriers from one
side to the other to be asymmetric, eventually giving rise to a
discontinuity in the quasi-Fermi levels. To express the relation
between the current flow perpendicular to heterointerfaces (z-
direction) and the quasi-Fermi levels, one can start with the
general expression for the net current density of charge carrier
c between layers i and j [17], [18]:

Jc = A−T 2

∫∫
T (Ẽ)

(
f+(Ẽ)− f−(Ẽ)

)
dẼ−

ρ dẼ−
z , (S4)

where A− represents the effective Richardson constant in the
layer placed before the interface, and equals em∗,−

c k2B/2π
2ℏ3.

T represents here the transmission coefficient of charge car-
riers and f their distribution function. Ẽ = E/kBT is the
normalised energy of the carrier, and is conserved through
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Fig. S2: Representation of the different quantities useful for
modelling charge carrier tunnelling.

the interface: E− = E+. Taking the example of electrons
in the conduction band, this energy can be decomposed as
E− = (E−

ρ +E−
z )+E−

C , Eρ and Ez representing respectively
the kinetic energy in the direction parallel and perpendicular
to the interface and being equal to ℏ2k2ρ/2m∗

n and ℏ2k2z/2m∗
n.

We first consider thermionic emission. Then, T (Ẽ) is equal
to one only if Ẽ is larger than ẼC,max; else, it equals zero.
To determine the domain of integration for Ẽ−

ρ and Ẽ−
z , we

only consider what happens at the interface, as in [17] and
contrarily to [18] in which the maximum of the conduction
band is not forced to be at the interface. We can then make
use of several equations:

• the conservation of momentum parallel to the interface
m∗,−

c Ẽ−
ρ = m∗,+

c Ẽ+
ρ ;

• the conservation of energy Ẽ− = Ẽ+;
• the condition that every kinetic term should be positive.

From these, we obtain that the integration on Ez,i should be
carried from α = max (EB, 0) to infinity, where EB represents
the barrier height (e.g. equal to E+

C−E−
C for electrons). For the

integration on Eρ,i, it must be computed from 0 to a parameter
β(Ez,i) which depends on the ratio θ = m∗,+

c /m∗,−
c : β = ∞

for θ ≥ 1, but β = (E−
z − EB)/(1/θ − 1) else. Using

Boltzmann’s approximation to simplify the Fermi-Dirac dis-
tribution of charge carriers, the integration is straightforward.
Considering electrons once more (a similar result can be
obtained for holes), it leads to

Jn,thermionic = AT 2ηne
−ẼC,max(Φ+

n − Φ−
n ), (S5)

where A is the free electron Richardson constant. ηn includes
the effects related to effective mass asymmetry and is ex-
pressed as

ηn =
m∗

min

m0
+

∆m∗

m0

(
1− exp

(
−m∗

min

∆m∗ max(∆ẼC, 0)

))
,

(S6)
where m0 is the free electron mass, ∆m∗ = m∗

max −m∗
min

and ∆ẼC = ẼC,m∗
max

−ẼC,m∗
min

. In SCAPS, ηn is supposed to
be equal to m∗

min [19]: we see here that this approximation,
although being mostly correct, fails when ∆ẼC ≫ 0 as ηn
moves from m∗

min to m∗
max.

We now move on to the modelling of charge carrier tun-
nelling, i.e. to the quantum transport of charges through a

normally forbidden region. In CRESCENT-1D, only intraband
tunnelling is included, meaning that charges that are tunnelling
remain in the same band. The current at the heterojunction
can be once more obtained from Eq. (S4), however with
different integration bounds. Integration can be done separately
for classical and quantum transmission, so that the current
can be expressed as the sum of the two contributions. In the
following, we take once more the example of electrons in the
conduction band, the development being similar for holes in
the valence band. In order to compute Jtunnel at a position
z, the integral over energy should only be performed below
EC(z), as electrons with higher energy are located inside the
conduction band and are no longer tunnelling. At the interface,
the integral should thus be computed up to EC,max, larger
energies being already included in Jthermionic. The value of
the lower bound Emin depends on the shape of the barrier,
and corresponds to the largest energy between

• the lower value of the conduction band at the interface
EC,min (as electrons must be in the conduction band);

• the value of EC far from the interface on the side of the
spike EC,∞ (as electrons with lower energy face a barrier
with infinite thickness and thus cannot tunnel through it).

The transmission coefficient of charge carriers crossing a
potential barrier is expressed using the one-dimensional WKB
approximation, following [20]:

Ttunnel(E) = exp

(
−2

ℏ

∫ z(E)

0

√
2m∗

n,t(EC(z′)− E)dz′

)
.

(S7)
m∗

n,t corresponds to the effective mass of electrons in the layer
in which they tunnel, and z(E) is the first position in this
layer where EC(z) = E, as represented in Figure S2. The
transmission coefficient at a given energy E logically depends
on the shape of the conduction band between 0 and z(E),
i.e. above E. When Emin = EC,∞ - as represented in Figure
S2 - the lower bound corresponds to the asymptotic value
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Fig. S3: Simple heterostructure-based AlGaAs/InGaP TPX
device used for comparison with SCAPS.
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of EC and z(E) can become large, making the integral over
z time-consuming. Since the transmission coefficient goes to
zero as E approaches EC,∞, the integral over depth is cut
at an arbitrary distance zc from the interface, which means
that integration only starts at Emin = EC(zc). The results
presented in the main paper had been obtained setting this
distance to 50 nm, which allows practically including the
complete tunnelling contribution. Also, if the layer in which
carriers tunnel is thinner than z(Emin), the integral is cut at
the thickness of the layer, and reflection and transmission at
this second interface are neglected.

The integration over energy for computing tunnelling cur-
rent is simpler than in case of thermionic emission. Indeed,
the condition of conservation of the momentum parallel to the
interface no longer holds as the kinetic energy of tunnelling
charges is not properly defined in the barriers. Therefore,
only one integral over energy remains, and the current density
of tunnelling electrons at a distance z from the interface is
expressed as:

Jn,tunnel(z) = AT 2φn(z)e
−ẼC,max(Φ+

n − Φ−
n ), (S8)

where φn(z), defined for z between 0+ and z(Ẽmin), is

φn(z) =
m∗

EC,min

m0

∫ ẼC(z)

Ẽmin

eẼC,max−ẼT (Ẽ)dẼ. (S9)

Since the way we define the energy of charge carriers is not
valid in the barrier, we consider that this expression can only
be derived in the layer where EC,min is located: this is why
m∗

EC,min
appear in the above expression, as the final effective

Richardson constant is then that of the aforementioned layer.
The overall current density at the heterointerface can then be
obtained by adding Eqs. (S5) and (S8) at z = 0+, leading
to Eq. (10) of the main paper (in which φn corresponds to
φn(0

+)).

S.IV. MESH SIZE AND COMPUTATIONAL TIME

The maximum power output returned by CRESCENT-1D
along with the computational time are summarised in Table II
for two sets of mesh sizes. Meshes are made from the concate-
nation of linear meshes, obtained either in each layer for z, in
each frequency range above and below bandgap frequencies

TABLE II: Result and computational time obtained using two
different sets of mesh sizes.

Section Parameter Low res. High res.

Rad.
Mesh size

z (301,201) (401,301)
ω 31 201
kρ 60 300

Comp. time Wall-clock 50 s 30 min
CPU 2 min 19 s 1h30

Elec.
Mesh size z (1801,1401) (7001,6001)

U (25,25) (121,121)

Comp. time Wall-clock 1 min 35 s 1h07
CPU 4 min 52 s 3h18

Total
Comp. time Wall-clock 2 min 25 s 1h37

CPU 7 min 11 s 4h48
Result Pmax 1.53 W.cm−2 1.63 W.cm−2

Fig. S4: Comparison of the drift-diffusion results obtained for
the PV cell, compared to SCAPS.

for ω, or for each radiative mode (propagating, frustrated,
surface) for kρ. In the electrical solver, the spatial mesh is
slightly modified to improve convergence at heterointerfaces.
If 0 and t are the positions of the two boundaries of the layer,
the spatial mesh includes these two positions and is linear
between δz and t − δz, with δz being small (1 pm in the
calculations presented in the article). This allows to compute
precisely the derivatives at the interfaces.

When two mesh sizes are given for a parameter, they are
respectively associated to the LED and the PV cell. CPU time
is much greater than wall-clock time due to the simultaneous
use of several processing cores.

S.V. COMPARISON WITH SCAPS
To compare CRESCENT-1D with SCAPS [21], we consider

the heterostructure shown in Figure S3. The LED and the PV
cell are supposed to have the same composition for simplicity,
the device being not optimised for TPX operation. Since
SCAPS cannot take a negative generation rate as an input,
we cannot compare results relative to the LED: still, studying
the PV cell is sufficient to ensure the solver works as expected.
In this section, the iterative process on the chemical potential
is not applied to make the analysis easier. The radiative
quantities must be fed to SCAPS to allow for comparison,
and are computed from our radiative solver. The generation
rate can directly be used in SCAPS; to take the near-field
electroluminescent emission of the PV cell into account, the
radiative recombination coefficient B is directly computed
from the photon emission rate as B = Ṅem(U = 0)/(n2

i tPV).
The PV cell I-V characteristic is provided in panel (a) of

Figure S4 for different LED voltages. The results from our
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solver and from SCAPS match well for any of the LED voltage
considered, even for ULED = 1.15 V where JPV slowly
decreases before reaching Uoc. Due to the large current flowing
through the device under such illumination, thermionic emis-
sion and charge carrier tunnelling have a considerable impact
on the charge transport, and the match of I-V characteristics
can therefore give confidence in the implementation of these
phenomena. For ULED = 1.15 V however, CRESCENT-1D
was not capable of converging close to Uoc precisely because
of the large currents and of the different phenomena occurring.
Nevertheless, this is not a significant issue for TPX devices as
the PV cell performance is already too low at such voltages
to allow efficient TPX operation.

For a more detailed comparison, the variation of the differ-
ent PV cell generation and recombination rates with PV cell
voltage are represented in panel (b) of Figure S4, considering
an illumination obtained for ULED = 1 V. The match with
SCAPS results is almost perfect for all voltages and all
phenomena except for Auger recombinations at low voltage,
whose rate obtained by our solver is slightly larger than the
one returned by SCAPS - the ratio being almost equal to 2 for
UPV = 0 V. Under such low biases, Auger recombinations
are mostly present in the intermediate layer and close to
the interface. Since the charge carrier densities and currents
vary rapidly there, the Auger recombination rate is highly
sensitive to small differences present between solvers (spatial
grid, numerical scheme, etc.), which can cause the observed
difference.
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électromagnétique,” Ph.D. dissertation, 2004.
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