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Abstract

In ecological studies, machine learning models are increasingly being used for

the automatic processing of camera trap images. Although this automation

facilitates and accelerates the identification step, the results of these models may

lack interpretability and their immediate applicability to ecological downstream

tasks (e.g. occupancy estimation) remains questionable. In particular, little is

known about their calibration, a property that allows confidence scores to be

interpreted as probabilities that model’s predictions are true. Using a large and

diverse European camera trap dataset, we investigate whether deep learning

models for species classification in camera trap images are well calibrated. Addi-

tionally, as camera traps are often configured to take multiple photos of the

same event, we also explore the calibration of predictions aggregated across

sequences of images. Finally, we study the effect and the practicality of a

post-hoc calibration method, i.e. temperature scaling, for predictions made at

image and sequence levels. Based on five established models and three indepen-

dent test sets, we show that averaging the logits over the sequence, selecting an

appropriate architecture, and optionally using temperature scaling can produce

well-calibrated models. Our findings have clear implication for, for instance,

the calculation of error rates or the selection of confidence score thresholds in

ecological studies making use of artificial intelligence models.

Introduction

Camera traps have become a central tool in the monitor-

ing and conservation of communities and populations.

They generate a lot of data that can be used to infer, for

instance, species richness, occupancy or activity patterns

(Sollmann, 2018). To exploit these data, it is first required

to identify the species present in the photos or videos.

This manual annotation task is generally long and

tedious, but it has been shown in recent years that it can

be replaced by an automatic classification made by artifi-

cial intelligence (AI; e.g. deep learning models), often

with an accuracy of over 90% (Norouzzadeh et al., 2018;

Whytock et al., 2021; Willi et al., 2019).

However, a responsible use of AI (Wearn et al., 2019)

requires understanding whether results can be trusted or

not, generally or per prediction. In a species classification

model, accuracy (i.e., rate of true predictions) provides

this information at the model’s level, whereas confidence

scores should provide this at the prediction level. In many

ecological studies, downstream tasks may directly rely on

these scores, for instance when subsetting data consider-

ing that values above a certain threshold indicate true

detections, or when propagating model uncertainty into

subsequent statistical models. In these applications, confi-

dence scores are frequently interpreted as probabilities of

the predictions being true. However, it is often neglected

(as probably unknown) that there is no guarantee that

these scores can be interpreted this way, as many deep

learning models may return biased confidence scores

(Gawlikowski et al., 2022).

In the context of classification models, a model return-

ing confidence scores that can be reliably interpreted as

probabilities of the prediction being true is said to be well
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calibrated. For instance, if a well calibrated model predicts

the label of 100 images with a confidence score of 0.8, we

would expect to observe an actual accuracy of 80% on

these images. Conversely, models can be miscalibrated in

a number of ways. For instance, it is common for models

to tend to globally over- or under-estimate confidence

scores, and are said to be over/under-confident. Other,

more complex forms of miscalibration are possible. For

instance, a model may be both over-confident for high

confidence scores and under-confident for low scores

(Calster et al., 2019). Alternatively, a model may be glob-

ally well-calibrated but miscalibrated with respect to a

variable of interest (Kelly & Smyth, 2023). There are vari-

ous reasons why a model may be poorly calibrated,

including the architecture, the distribution of the training

set and overfitting (Guo et al., 2017; Minderer

et al., 2021; Mukhoti et al., 2020). Although the question

of calibration of confidence scores has been shown to be

crucial in different fields such as autonomous driving

(Bojarski et al., 2016) or medical diagnosis (Nair

et al., 2018), it has rarely been considered in ecological

studies.

In the field of ecology, a poorly calibrated model can

induce several issues in use cases where ecological infer-

ences are made using the confidence scores. Indeed, as

the score distribution is biased, confidence scores can not

be interpreted as probabilities so that it is impossible to

control for the accuracy (or error rate) associated to a

given threshold value without manually labelling at least

part of the dataset. In contrast, good calibration enables

the interpretability of the scores as probabilities allowing

to control for the error rates in downstream tasks such as

occupancy estimation (Gimenez et al., 2022; Rhinehart

et al., 2022), inference of species interaction (Nicvert

et al., 2024; Parsons et al., 2022), realtime alert to guide

law-enforcement (Whytock et al., 2023), confidence-based

checking on citizen science platforms (e.g. Zooniverse

(Lotfian et al., 2021; Simpson et al., 2014)) or confidence-

based uploads to biodiversity inventories (August

et al., 2020).

In this paper, we explore the calibration of confidence

scores in the context of species classification models for

camera trap data. For that task, a common approach, as

assessed in recent iWildcam competitions (Beery

et al., 2021), consists in two steps: (step 1) detecting ani-

mals, humans and vehicles and filtering out empty images

using a robust detection model such as MegaDetector

(Beery et al., 2019; Mitterwallner et al., 2023) and (step

2) using a convolutional neural network (CNN) classifica-

tion model to identify the species in the bounding box

returned by the detection model, when an animal has

been detected. We therefore focus on these species classi-

fication models (step 2), which are developed for a large

range of species all over the world. We explore the inter-

play between accuracy and calibration for five state-of-

the-art model architectures applied to camera trap data

collected in three out-of-sample test data sets. Also, we

consider the calibration of confidence scores at the level

of sequences of images. Indeed, camera traps are often

configured to take multiple photos at each trigger so that

predictions are aggregated at the level of the sequence of

images (sometimes called the “observation” or “event”).

The issue of the calibration of confidence scores aggre-

gated at the sequence level has not, to our knowledge,

been addressed in the literature. Furthermore, we study

the relevance of a popular post-hoc calibration method

called temperature scaling (Platt, 2000), for both image

and sequence levels. Overall, in addition to providing a

solution to produce calibrated scores, our work intends

to illustrate the benefits and effectiveness of calibration in

downstream tasks with a practical use-case. Our findings

show that we can estimate accurately the rate of classifica-

tion errors made by a model and this important step can

improve the pipeline of analyses based on camera trap

data. Lastly, we use our results to provide a set of best

practices for researchers and practitioners in the field.

Materials and Methods

The DeepFaune dataset

We use the dataset of the DeepFaune initiative (Rigoudy

et al., 2023), which is a collaborative effort involving over

50 partners who, together, have gathered over 2 million

camera trap images and twenty thousand camera trap

videos that they had manually annotated. These partners

are affiliated to a wide range of institutions, such as orga-

nizations managing protected areas, hunting federations,

and academic research groups. Images and videos were

mainly collected in France, but also in a few European

countries. Most of the annotations were at the species

level, but some were at a higher taxonomic level (e.g.

mustelid) and were provided for the whole camera trap

event (a single image, an image sequence or a video).

Videos were converted into images by extracting frames

of the first 4 s, with a time step of 1 s. The dataset pro-

vides a great diversity of habitats, elevations and weather

conditions, as well as a wide variety of camera trap

models with different settings, resolutions, flash type and

image processing.

Training and validation datasets

Recent studies on species classification suggest that

two-step approaches may be more efficient than classifiers

processing the whole image (Bothmann et al., 2023; Celis
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et al., 2024; Norman et al., 2023), and many softwares or

cloud-based platforms use this approach (Agouti (www.

agouti.eu), TrapTagger (https://wildeyeconservation.org/

traptagger/), EcoAssist (https://addaxdatascience.com/

ecoassist/)). We use MegaDetector v5 (MDv5) (Beery

et al., 2019) to extract bounding boxes of animals, human

and vehicles. Because MDv5 has already near-perfect

accuracy on human and vehicles we only kept, for the

training of our classifier, the bounding boxes that pre-

dicted the presence of an animal. For each bounding box,

we created a cropped image of the original image and

propagated the label of the event to which the image

belongs, resulting in 429 347 cropped images of 22 differ-

ent classes (the distribution of the classes is shown in

Figures S1 and S2).

To avoid overfitting and shortcut learning between the

background of the images (i.e. camera trap site) and the

observed species, we designed the training and validation

sets to have disjoint pairs of background and species

while having the same balance of species and diversity of

habitats. The validation set represented about 20% of the

images available while being disjoint from the training set

at the species level: for each species, the validation set is

made of images originating from partners different than

the ones used in the training set, while being as close as

possible to a 80/20 split. Ultimately, we had 368 786

images in the training set and 60 561 in the validation set.

Out-of-sample test sets

To demonstrate that the results of the classifier could

generalize beyond the images collected in the DeepFaune

initiative, three out-of-sample test datasets were used.

These datasets originated from ecological programs con-

ducted in three geographically distinct areas. We refer to

these datasets by the name of the areas they originate

from:

• Pyrenees: camera trap study in the national reserve of

Orlu in the French Pyrenees, conducted by the French

Biodiversity Agency (OFB), 100 266 images and 12 spe-

cies after preprocessing.

• Alps: camera trap study in the Ecrins national park in

the French Alps, conducted by S. Chamaillé-Jammes,

8106 images and 12 species after preprocessing.

• Portugal: camera trap study in the Peneda-Gerês

National Park in Portugal (Zuleger et al., 2023), pub-

licly available. 99 750 cropped images and 16 species

after preprocessing.

Sequences of images

It is common to configure camera traps to take a series

of images after each trigger. It is therefore relevant to

have a single prediction for the whole series of images.

We thereafter name such series “sequences”. In our test

sets, we considered that two consecutive images taken

within 10 s, at the same site (i.e. the same camera trap),

belonged to the same sequence. We obtained sequences of

1 to 213 images.

Confidence score at sequence level

A sequence with S images has S individual predictions

that can be aggregated in many different ways to produce

a single prediction for the whole sequence. Formally, for

a sequence of S images xi, the model predicts the logits

zi = zi1, . . . , ziKð Þ for each image, with K the number of

classes. In our framework, only one label is predicted per

image, therefore confidence scores are derived using the

softmaxfunction:pi = pi1, . . . , piKð Þ= softmax zi1, . . . , ziKð Þ.
However, it is important to note that another function

could be used for other tasks (e.g. sigmoid

function could be used in a multi-label classification

task). We aimed at predicting the confidence score

pseq = pseq1, . . . , pseqK

� �
as a function of the predictions

at the image level. We explored four different aggregation

functions (Fig 1):

• Average Score: We averaged, over the sequence, the

scores for individual pictures of the sequence:

pseq =
1

S
∑
S

i= 1

pi1, . . . ,
1

S
∑
S

i= 1

piK

� �
(1)

• Average Logit: We averaged, over the sequence, the

logits for individual pictures of the sequence, and then

applied the softmax function:

pseq = softmax
1

S
∑
S

i= 1

zi1, . . . ,
1

S
∑
S

i= 1

ziK

� �
(2)

• Max Score: We kept the scores of the image that had

the highest score among all scores of all images of the

sequence:

pseq = pi� with i� = argmax
i∈ 1, S½ �

max
k∈ 1,K½ �

pik
� �� 	

(3)

• Max Logit: We kept the scores of the image that had

the highest logit among all logits of all images of the

sequence:

pseq = pi� with i� = argmax
i∈ 1, S½ �

max
k∈ 1,K½ �

zikf g
� 	

(4)

Calibration metrics

For a set of N images, we define the true class of the i-th

image as yi and the confidence scores of the K classes for
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that image as pi = pi1, . . . , piKð Þ. The predicted class byi is
the top-1 classification prediction, that is the class with

the greatest confidence score, denoted si:

byi = argmax
k∈ 1,K½ �

pi and si = max
k∈ 1,K½ �

pi (5)

We define M evenly spaced bins: for m∈ 1,M½ �, the

bin bm is the set of indices i such that si ∈ m�1
M , m

M


 

. From

these, we can compute the average bin accuracy and the

average bin confidence score:

acc bmð Þ= 1

bmj j ∑
i∈ bm

1 byi = yi
� �

(6)

conf bmð Þ= 1

bmj j ∑
i∈ bm

si (7)

The bin-wise accuracy can be plotted to construct the

reliability histogram (Guo et al., 2017) (e.g. Figure S3). It

facilitates visualization of a model’s calibration: the closer

the tops of the histogram bars are from the identity line,

the better calibrated the model is. In addition, if the tops

of the histogram bars are mostly above (resp. below) the

line, the model is said to be under-confident (resp. over-

confident).

The most common metric to measure a model’s cali-

bration quantitatively is the Expected Calibration Error

(ECE) (Guo et al., 2017). ECE is defined as the bin-wise

calibration error weighted by the size of the bin:

ECE= ∑
M

m= 1

bmj j
N

acc bmð Þ�conf bmð Þj j (8)

Due to the large number of images in our test sets, we

decided to use a greater number of bins, specifically 20

instead of the standard 15, to obtain a more precise mea-

surement of calibration with the ECE. In addition to this

metric, we evaluated the classification performance of our

classifier with the accuracy metric. These two metrics can

also be used to evaluate the classification and the calibra-

tion at the sequence level, using the score pseq and the

associated predicted label byseq = argmax
k∈ 1,K½ �

pseq.

Figure 1. Illustration of the four aggregation methods. We represent a sequence of three images and a three-class classification problem. For

each image, three logits are predicted and represented on the same row. The logits of each image are transformed into confidence scores by the

softmax function. In this illustration, each aggregation method (to the right of the brackets) would have given different scores. The greatest

overall logit and score are in red. The top-1 score is hatched to emphasize that only this score is used to calculate the calibration for the

sequence.
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Temperature scaling

Temperature scaling (Platt, 2000) is a post-processing

method to improve the calibration of the model after the

training. The scores predicted by the model are rescaled

by a temperature parameter T> 0 using a generalization

of the softmax function:

pij =
exp

zij
T

∑K
k= 1exp

zik
T

(9)

For T= 1, the scores obtained are the same as with the

standard softmax function.

T> 1 leads to lower scores and helps when the model

is on average too over-confident. Conversely, T< 1

increases the scores and helps under-confident models.

For a given dataset, it is possible to determine the optimal

temperature T�, that minimize the ECE. However, this

optimum temperature may differ from one dataset to

another, and determining the optimum requires access to

the labels. It is therefore unrealistic to report the perfor-

mance metrics calculated with these individual tempera-

ture T�, as it cannot be calculated for a new dataset

without manually annotating a fraction of the data.

Instead, we propose to look at performance using a single

temperature T shared across the three datasets. We define

T as the temperature that minimizes the average ECE

across the three test datasets. Temperature scaling can be

combined with the four aggregation methods (Section 2.5)

to calibrate sequence level predictions by simply replacing

the standard softmax function with Equation 9.

Deep learning models

To demonstrate the robustness of our findings, we used 5

established machine learning architectures: EfficientNetV2,

ConvNext, ViT, Swin Transformer V2, and MobileNetV3

(Dosovitskiy et al., 2021; Howard et al., 2019; Liu

et al., 2021, 2022; Tan & Le, 2021). We have selected these

architectures to represent CNNs (EfficientNetV2, Con-

vNext), Transformers (Swin, ViT) and light architectures

that could be deployed in camera traps that do the classifi-

cation at the edge (MobileNetV3). Models were trained

using the timm library (Wightman, 2019) with

transfer-learning from ImageNet-22 k (Ridnik et al., 2021),

the largest publicly available database. Data augmentation

was applied using the imgaug library (Jung et al., 2020)

using only standard transformations such as flips, crops,

conversion to grayscale and affine transformation. The

optimization was done using Stochastic Gradient Descent

(SGD), with a batch size of 32 and a different learning rate

adapted for each architecture. Early stopping was used to

avoid overfitting, this process monitors a metric and stops

the training prematurely if there was no improvement for a

specified patience. In our case, we monitor the validation

accuracy with a patience of 10 epochs.

Error rate estimation

For calibrated models, a predicted score is equivalent to

the probability of the prediction being correct. Hence, for

a given dataset analyzed with a classification model, the

sum of the predicted scores gives an estimate of the num-

ber of correct predictions (true positives). The estimated

number of errors (incorrect predictions, or false positives)

is therefore the difference between the total number of

images and this number. The error rate estimate can then

be defined as the ratio of the estimated number of incor-

rect predictions over the total number of images. This

calculation can also be restricted to predictions for which

confidence scores are above a given threshold, which

allows (i) estimation of a threshold-specific error rate (ii)

identification of the threshold associated with a given

error rate. We evaluated the effectiveness of this approach

Figure 2. Scatterplot of ECE vs. accuracy values for five models (colored points) and three test data sets (panels), computed at the image level.

Here, the ECE is not postcalibrated with temperature scaling (i.e. the temperature is 1 for all models).

ª 2024 The Author(s). Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 5
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in practice by testing it with the ConvNext model and the

three test datasets pooled together. We compared the

error rate using different aggregation methods, and a wide

range of thresholds and temperature scaling.

Results

Calibration at the image level

Generally, we observed that without temperature scaling,

more accurate models were better calibrated (Fig. 2), as

indicated by lower Expected Calibration Error (ECE).

ConvNext was the model providing the best overall per-

formance: by averaging the metrics over the three data-

sets, it had the best accuracy (90.27%) and the best ECE

(1.68%). The models exhibited comparable relative per-

formances across the three datasets. ViT and Swin Trans-

former V2 performed close to ConvNext, while

EfficientNetV2 showed substantially lower performance

on both metrics. Additionally, the lightweight model,

MobileNet, had bad to very bad (ECE of 34.27% on the

Portugal dataset) accuracy and calibration performances.

As expected, temperature scaling allowed improving

ECE values, for all models and datasets. We almost always

observed a V-shaped relationship between ECE and tem-

perature, with ECE increasing quickly and by several per-

cents around the optimum temperature value (Fig. 3).

This optimum temperature was generally greater than 1,

suggesting that all models were initially overconfident to

a greater or lesser extent. Interestingly, the V-shaped

curves of the different datasets overlapped well for the

most accurate models (ConvNext and transformed-based

models, ViT and Swin), and optimum temperature were

similar across datasets. This suggested that we find a tem-

perature value that, although common to all datasets,

would help to improve the calibration in post-processing

for each dataset. Indeed, in the best case (ConvNext), the

temperature T reduced the calibration error by 28%

compared to the situation without temperature scaling

(T= 1) (dashed line in Fig. 3), versus a reduction of 38%

of the calibration error with a distinct temperature per

datasets (T�). In the worst case (EfficientNetV2) T leads

to a reduction of 31% versus 80% for per-dataset T�.

Calibration at the sequence level

All the sequence aggregation methods led to a model with

an overall accuracy much greater than without aggrega-

tion (i.e. at the image level) (Fig. 4 top). This was true

for all models and all datasets, with up to +10% of accu-

racy for MobileNetV3 on the Portugal dataset. The Aver-

age Score and Average Logit were the two best methods

for maximizing accuracy, with a slight advantage for the

former (respectively 3.71% and 3.56% ΔAccuracy on

average). Importantly, of the two aggregation methods

that improved accuracy most (Average Score and Average

Logit),Average Logit provided better calibrated scores

(Fig. 4 bottom, 3.32% and 6.08% ECE on average).

Therefore, considering both accuracy and calibration met-

rics, the Average Logit was the best aggregation method.

We finally studied the interplay between temperature

scaling and aggregation methods. While all models dem-

onstrated overconfident predictions at the image-level,

some aggregation methods, especially the Average Score

method, resulted in under-confident predictions. We

observed that the aforementioned V-shaped was more flat

for the Average Score method than for the other methods

(first column in Figure S4 versus the others). Conse-

quently, Average Score has the worst calibration of the

four methods with temperature scaling (3.99% ECE), sig-

nificantly behind the second-worst method (Max Score,

1.47% ECE). We also noted that the Average Logit

method provided the lowest ECE values overall (1.17%

on average), and thus remained the best method, with

temperature scaling further improving calibration at

sequence level. Finally, and as observed at the image level,

Figure 3. Calibration transferability using temperature scaling, at the image level. Curves of ECE values along the gradient of temperature values,

for five models (panels) and three test data sets (colored curves). An optimum temperature below 1 indicates amodel that is on average too

underconfident (light gray area), and above 1 indicates a model on average too overconfident (dark gray area). The vertical dashed line shows T ,

the temperature minimizing the average ECE across the three test datasets.
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a single temperature (possibly close to 1) would be suffi-

cient to improve the calibration with the Average Logit

method. Using one temperature for all datasets with the

ConvNext model reduces ECE by 25.5% and can be fur-

ther reduced to 41.4% of the original ECE with individual

temperatures. However, using MobileNetV3, we observed

a reduction of 25.5%, which is significantly less than the

optimal temperature scaling (77.6% with three tempera-

tures), this difference can be attributed to the Portugal

dataset having a very different value.

Calibration use case: controlling the number
of errors along the score distribution

A practical implication of calibration is the ability to pre-

cisely estimate the number of incorrect predictions on a

novel test set without labels. Here we show the impact of

calibration on the quality of this estimation, using the

ConvNext model (Fig. 5), on the 23 353 sequences gath-

ered after pooling the three data sets. Average Score and

Max Score methods provide underconfident and

Figure 4. ΔAccuracy (top, the greater the better) and ECE (bottom, the lower the better) for the four aggregation methods (colored curves) and

five models (x-axis) on three test data sets (three panels). ΔAccuracy is the difference between the accuracy at the sequence level and the

accuracy at the image level. For the sake of clarity, solid lines represents the two best methods in terms of accuracy, Average Score and Average

Logit. On the ECE plots (bottom), Average Logit outperforms Average Score in terms of calibration.

Figure 5. Estimation of the number of errors (i.e. misclassified sequences) when using different thresholds on the confidence scores (dash line),

compared to the actual number of errors (solid line), for different aggregation methods (panels). Results shown are for the ConvNext model, the

three test sets Pyrenees, Alps and Portugal being pooled together. The expected number of errors is obtained from the scores (see Material and

Methods). The actual number of errors is simply the number of incorrect predictions with a score above a certain threshold, and can be known

only if species labels are available. An accurate estimation of the number of errors is observed when the two lines overlap. TS means temperature

scaling.
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G. Dussert et al. Calibration of Species Classification Models

 20563485, 0, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.412 by South A

frican M
edical R

esearch, W
iley O

nline L
ibrary on [17/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



overconfident scores respectively, produce inaccurate

error estimations (ECE values of 6.67 and 4.38%) and

under-estimate (respectively over-estimate) the number of

errors by a wide margin for every threshold. For instance,

with the Average Score approach, if we consider a thresh-

old of 0.8 (often used in ecological studies (Whytock

et al., 2021)), one would predict that the number of

errors in the predictions would be approximately 500

images greater than the actual number (from 300 to 800,

Fig. 5). Conversely, with the Max Score approach, one

would predict that the number of errors in the predic-

tions would be approximately 800 images less than the

actual number (from 1200 to 400, Fig. 5). Using Average

Logit, the best-calibrated method without temperature

scaling (ECE of 1.65%), the estimation of the number of

errors is very close to the actual number. Finally, by add-

ing temperature scaling with a temperature T= 0:93

(ECE of 0.79%), the two curves overlap. These conclu-

sions hold with the other models except MobileNetV3

(Figure S5).

Discussion

This study assessed the calibration of confidence scores, at

image and sequence level, for different deep learning

models in the context of species classification in camera

trap data. Using five state-of-the-art models and three

out-of-sample test datasets, we showed that score calibra-

tion can vary greatly across model architectures, in a way

that is consistent across test sets. Further, we showed that

the different aggregation methods to obtain scores at the

sequence level gave very different calibration values, and

that the Average Logit method provides better results

than the others in terms of both accuracy and calibration.

Finally, we showed that temperature scaling can be used

both at image level and sequence level, with a single tem-

perature T that, for most models, improves calibration

similarly across all datasets.

Our results about the importance of calibration in classi-

fication models are crucial for researchers and practitioners

dealing with camera trap images. We argue that the inte-

gration of machine learning predictions directly into subse-

quent ecological tasks can be facilitated by achieving

calibration. Many ecological downstream tasks (e.g. esti-

mating occupancy, abundance or activity patterns) based

on deep learning predictions use an empirical threshold

(Krivek et al., 2023; Lonsinger et al., 2023) to consider that

a prediction is correct, or test a series of thresholds to

determine the optimal one given known species labels

(Mitterwallner et al., 2023; Whytock et al., 2021). Fortu-

nately, we showed that calibrated models make it possible

to estimate accurate error rates for any threshold. This is

critical as it allows one to conduct an analysis with a

known error rate, whose level could depend on the context

of the study. Calibrated models will also be central in the

development of methods that can handle probabilistic

uncertainties (i.e. that directly uses predictions and associ-

ated scores rather than relying on thresholding of scores)

(Rhinehart et al., 2022). Nevertheless, it’s important to rec-

ognize the limitations of model calibration in the context

of ecological applications. In many scenarios, a gain in cali-

bration can be less profitable than a gain in accuracy.

Indeed, if confidence scores are not used in downstream

tasks, or if predictions of non-empty images are verified by

a human (which is a major use of classification models),

then model calibration is not a priority.

Differences in models’ performance can be partly

explained by model size. Indeed, we found that models

with the highest number of parameters (ConvNext, ViT,

SwinTransformer) gave the best accuracy and ECE values.

On the other hand, the only lightweight model, Mobile-

NetV3, was consistently the worst model. This result sug-

gests that edge computing models are unlikely to be

calibrated without post-processing. Despite some literature

showing that neural networks can be poorly calibrated,

our result shows that this is not always the case (see also

Minderer et al., 2021), and that certain families of model

architectures, such as ConvNext here, are intrinsically bet-

ter calibrated than others, independently of the size of the

model. The calibration of each model can be further

improved on each dataset using temperature scaling as

post-processing function. However, determining the opti-

mal temperature requires annotating at least a fraction of

the target set of images, a step that practitioners would

like to avoid if possible. Fortunately, our empirical find-

ings across three different datasets show that the optimal

temperatures remain similar across datasets, both at the

image level and sequence level when using the Average

Logit aggregation method. This suggests the generalizabil-

ity of a single temperature that can be determined and

fixed for future test sets. That said, we do not claim that

the optimal temperatures defined in this paper can be

used directly when using one of the studied architectures.

Indeed, these temperatures are valid for a given training

procedure (datasets, hyperparameters). In practice, it is

necessary to estimate the temperature using available test

dataset(s) and subsequently maintain this temperature for

deployment (since we showed it will be generalizable).

This way, when the model will be used to classify new

data, the previously estimated temperature will ensure a

much better calibration of the predicted scores (though

still perfectible using image annotation). We however

found that this approach had limitations when applied to

the MobileNetV3 model, suggesting that lightweight

models for edge computing would be difficult to calibrate

even after temperature scaling on an annotated dataset. It
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would be interesting to validate this on other lightweight

models in future work.

Proper model calibration at the image level is not

always sufficient, as many software programs and scien-

tific studies operate at the scale of the sequences that

define the relevant “observations” or “events” from an

ecological viewpoint. It is therefore extremely important

to be able to calibrate the predictions at sequence level.

For the first time, we showed that the most intuitive

approach, in which scores are averaged, did not provide

the best accuracy and had the worst calibration, with

largely under-confident predictions. Interestingly, our

findings can be confirmed by the analogy with ensemble

models. These approaches use N models to make a pre-

diction on one image, whereas we use N images to make

a prediction with one model at the sequence level. Wu

and Gales (2021) showed that for ensemble models, indi-

vidual model calibration is not sufficient to yield a cali-

brated ensemble prediction, and that their own method,

which is equivalent to Average Score approach also leads

to under-confidence. Moreover, Rahaman and Thi-

ery (2021) show that, thanks to this natural shift in the

optimal temperature when models are ensembled, if the

individual models were slightly overconfident (T> 1, as is

often the case in deep learning) then the ensemble model

was naturally calibrated T � 1ð Þ. Our results strongly sup-

port the use of the Average Logit method for aggregating

individual scores at the sequence level. It shifts slightly the

optimal temperature towards underconfidence, which

counterbalanced the overconfident nature of deep learning

networks, and resulted in sequence-level prediction that

are almost calibrated without post-processing. With Aver-

age Logit, it is still interesting to use temperature scaling

to improve calibration as much as possible, especially

given that the ECE minima are again very close to each

other and allow a single temperature to be set.

In this work, we focused on temperature scaling and

did not consider other methods that have been shown to

sometimes improve calibration, such as label smoothing

and mixup (Szegedy et al., 2015; Zhang et al., 2018). We

did so because these two methods are debated, as several

studies have showed that they can worsen calibration

when combined with temperature scaling (Minderer

et al., 2021; Wang et al., 2023). As Minderer et al. (2021)

state, “label smoothing creates artificially underconfident

models and may therefore improve calibration for a spe-

cific amount of distribution shift”. Label smoothing also

assumes that all incorrect classes are equally likely (Maher

& Kull, 2021), which is obviously problematic in ecology

(e.g., a wrongly predicted roe deer is much more likely to

be a red deer than a wolf). Mixup also deteriorates cali-

bration properties of networks by creating non-realistic

images in the training set and leading to substantial

distributional shift (Gawlikowski et al., 2022; Rahaman &

Thiery, 2021). Furthermore, we have focused our work

on the calibration of the top-1 label on a multiclass classi-

fication task, and with a relatively small number of clas-

ses. But in future work, it would also be interesting to

look at the calibration of the predictions on other tasks

of interest for models applied to ecology. For instance,

calibration could be explored in multi-label classification,

hierarchical classification, object detection or classification

over a very large number of classes.

Our work concludes with some recommendations. For

certain use cases, we encourage ecologists to consider the

implications of calibration as well as accuracy. Secondly,

we recommend using the Average Logit method to aggre-

gate information at sequence level, as it performs very

well in terms of accuracy and calibration. Finally, to use

temperature scaling and make calibration even better, the

optimum temperature can be calculated on a test dataset

and kept for future datasets. We acknowledge that these

considerations may look too difficult to take into account

for many practitioners. We therefore hope that developers

of camera-trap analysis software or platforms will be able

to integrate the knowledge brought by this work into

their software solutions.
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Figure S1. Number of images in the training and valida-

tion sets, for each species. Log scale is used to improve

the readability of the rarer classes.
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Figure S2. Number of images in the three out-of-sample

datasets, for each species. Log scale is used to improve

the readability of the rarer classes.

Figure S3. Reliability histogram of the ConvNext model,

using the 3 test sets pooled together, and without temper-

ature scaling.

Figure S4. Calibration transferability using temperature

scaling, at the sequence level.

Figure S5. Estimation of the number of errors (i.e. mis-

classified sequences) as a function of the confidence score

(dashed line), compared to the actual number of errors

(solid line), for different methods.
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