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ABSTRACT

1. Animal social and spatial behaviours are inextricably linked. Animal movements are 

driven by environmental factors and social interactions. Habitat structure and changing 

patterns of animal space use can also shape social interactions.

2. Animals adjust their social and spatial behaviours to reduce the risk of offspring 

mortality. In territorial infanticidal species, two strategies are possible for males: they 

can stay close to offspring to protect them against rivals (infant-defence hypothesis) or 

patrol the territory more intensively to prevent rival intrusions (territorial-defence 

hypothesis). Here, we tested these hypotheses in African lions (Panthera leo) by 

investigating how males and females adjust their social and spatial behaviours in the 

presence of offspring.

3. We combined data sets on the demography and movement of lions, collected 

between 2002 and 2016 in Hwange National Park (Zimbabwe), to document the 

presence of cubs (field observations) and the simultaneous movements of groupmates 

and competitors (GPS tracking).

4. We showed a spatial response of lions to the presence of offspring, with females with 

cubs less likely to select areas close to waterholes or in the periphery of the territory 

than females without cubs. In contrast, these areas were more selected by males when 

there were cubs in the pride. We also found social responses. Males spent more time 

with females as habitat openness increased, but the presence of cubs in the pride did 

not influence the average likelihood of observing males with females. Furthermore, 

rival males relocated further after an encounter with pride males when cubs were 
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present in the prides, suggesting that the presence of cubs leads to a more vigorous 

repulsion of competitors. Males with cubs in their pride were more likely to interact 

with male competitors on the edge of the pride's home range and far from the 

waterholes, suggesting that they are particularly assiduous in detecting and repelling 

rival males during these periods.

5. In general, the strategies to avoid infanticide exhibited by male lions supported the 

territorial-defence hypothesis. Our study contributes to answer the recent call for a 

behavioural ecology at the spatial-social interface.

Keywords: habitat selection; infanticide; male-female association; movement ecology; 

Panthera leo; social behaviour; social environment; territoriality

1. INTRODUCTION

Animal movement decisions are naturally shaped by factors in their environment 

(resources, refuges, breeding areas), but they are also influenced by social interactions. 

For example, depending on species, sex, age, and other factors, individuals may be 

attracted to, or avoid, a food source already being used by a conspecific. Individuals can 

also track the movement of potential mates and avoid sexual competitors or repel 

them to minimize sexual competition for mates. Socially-influenced movements occur 

continuously in group-living species (Fichtel et al., 2011), and even solitary animals 

respond to the presence of conspecifics, as they need at times to engage in exploration 

to find a mate to reproduce (Leyhausen, 1964). Despite social and spatial behaviours 

being intertwined, studies investigating these processes simultaneously are rare, 

especially because social behaviour is traditionally studied from direct observation of 
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focal groups whereas spatial behaviour is mostly studied at the landscape-scale 

(Webber et al., 2023). 

The presence of offspring is a major source of adjustment of the social and 

spatial behaviours in animals, especially regarding the risk of predation on offspring or 

the risk of infanticide. For example, species that live in fission-fusion societies can form 

larger groups, potentially in safer habitats, to prevent the risk of predation on offspring 

(Bond et al., 2019; Holmes et al., 2016). Even carnivores adjust their movement rate to 

the presence of offspring in response to the risk of intra-guild predation (Goodheart et 

al., 2022). Among taxa in which infanticide occurs, such as primates, carnivores, and 

rodents (Agrell et al., 1998), the infant safety hypothesis proposes that females with 

offspring are less gregarious and avoid males to reduce the risk of infanticide (Otali & 

Gilchrist, 2006; Smith et al., 2008). Such social-avoidance behaviours are expected to 

shape the spatial behaviour of females. For example, adult females with offspring move 

further from territory edges and maintain smaller home ranges (Benson & 

Chamberlain, 2007; Boydston et al., 2003; Klevtcova et al., 2021). However, females 

have the option to adjust many other behaviours to decrease the risk of infanticide 

(Agrell et al., 1998), such as by increasing the frequency and intensity of agonistic 

interactions (Elwood et al., 1990), or by the formation of maternal groups (Grinnell & 

McComb, 1996).

In social species, males also adopt counterstrategies to infanticide (Agrell et al., 

1998). Two strategies may exist for territorial males to reduce the risk of infanticide: 

staying close to females to protect offspring against rivals (here formulated as the 

“infant-defence hypothesis”; Van Schaik & Kappeler, 1997) or patrolling the territory 
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more intensely to prevent the intrusion of rivals (here formulated as the “territorial-

defence hypothesis”; McLean, 1983). However, such socio-spatial responses to the 

presence of offspring can be in competition. By staying close to females with offspring, 

males reduce their patrols throughout their territory, and, conversely, increasing their 

patrols reduces the time available to spend close to females to protect offspring. 

Therefore, although the two hypotheses are not mutually exclusive, it is necessary to 

investigate how social-territorial animals simultaneously adjust their social and spatial 

behaviours to the presence of offspring to distinguish their associated predictions. 

Temporal variations in interactions between groupmates, driven by reproductive 

status and presence of offspring, have been described quantitatively mainly through 

detailed and continuous field observations of focal groups (Clutton-Brock, 2016). 

Knowledge of the associated changes in habitat selection has accumulated because of 

these studies, but generally only at a relatively small spatial scale or at a coarse grain 

(individuals seen/not seen with others, ignoring the locations of the unseen 

individuals). Rigorous quantification of how habitat selection is modified with changing 

social circumstances, such as in the presence of offspring, has lagged (Webber et al., 

2023; Westley et al., 2018). In particular, little is known about how conspecifics influence 

habitat selection among mammals (Buxton et al., 2020). Here, we address this gap by 

investigating how social, territorial, and infanticidal animals adjust their spatial and 

social behaviours in response to the presence of offspring, when they face a trade-off 

between protecting offspring and patrolling territory.

African lions (Panthera leo ; lions hereafter) are territorial animals that live in 

social groups (prides) composed of related females and a coalition of males (“pride 
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males” hereafter) that compete with other coalitions for exclusive access to females 

(Bygott et al., 1979; Schaller, 1972). The arrival of a new coalition of males in a pride 

leads to infanticide of the existing cubs (Schaller, 1972) or to the rapid eviction of 

subadults, which are unlikely to survive dispersal if they are younger than 3 years 

(‘delayed infanticide’ sensu (Elliot et al., 2014)). Since cubs suffer high mortality from 

infanticidal males until about 1 year (Packer, 2000), we expect major adjustments of the 

spatial and social behaviour of females to their presence, but also of pride males to 

secure pride tenure long enough for cubs to reach independence and disperse (Packer 

& Pusey, 1983). Even in the absence of male takeovers, lion cubs suffer from 

opportunistic infanticide by females from neighbouring prides or transient males 

traveling within the territory, or suffer from intraguild predation, particularly from 

spotted hyaenas Crocuta crocuta (Curveira-Santos et al., 2022; Mosser & Packer, 2009; 

Schaller, 1972). Although pride females form nursery groups to protect cubs (Packer et 

al., 1990; Packer & Pusey, 1983), paternal care and male strategies to avoid infanticide 

have been overlooked. Here, we used the intensive long-term monitoring of a lion 

population in Hwange National Park, (Zimbabwe), and combined demographic and 

GPS-tracking data to investigate the spatial and social responses of lions to the 

presence of cubs. To test the infant-defence and territorial-defence hypotheses, we 

specifically addressed three questions: 

Question 1: How do lions respond spatially to the presence of cubs? We tested whether 

the presence of cubs influences the selection of habitat by female and male lions. 

Following the infant-defence hypothesis, we predicted that when there are cubs in a 

pride, both females and males should select habitats that minimize the risk of 
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encountering a rival male (i.e., areas more central to their home range, and far from 

water sources known to attract lions (Davidson et al., 2012)) and cub detection by rival 

males (i.e., selection of denser vegetation).

Question 2: How does the presence of cubs influence the association between pride 

females and males? According to the infant-defence hypothesis, we predicted that pride 

males should be observed more frequently and for longer periods with their pride 

females when there are cubs in the pride. We further predicted that males should stay 

near females even more when the habitat within the pride territory is open, since a 

greater visibility may mean that males need to patrol less (Funston et al., 1998).

Question 3: How does the presence of cubs influence the interactions between rival 

males? The territorial-defence hypothesis states that pride males patrol their territory 

more, and attempt more stringently to keep out rival males, in the presence of cubs. 

This more assiduous defensive behaviour would be interpreted as an adaptation to 

reduce the risk of intrusion by potentially infanticidal males into the pride territory. 

Accordingly, we predicted that male-male interactions should be more frequent, further 

from the territory core, and more intense, with the consequence that rival males 

relocate further from the encounter site with a pride male, at time when there are cubs 

in the pride.

2. MATERIALS AND METHODS

2.1. Study area and environmental data

The study was carried out in the north-eastern region of Hwange National Park, 

Zimbabwe. The park covers 14,600 km2 of semi-arid savanna. Natural rain-fed pans dry 
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during the dry season from May to October, and water remains available only in some 

waterholes in which underground water is pumped (Chamaillé-Jammes et al., 2007). 

Vegetation is dominated by bushlands and woodlands interspersed with patches of 

grasslands, particularly near waterholes. For the study conducted here, we built a map 

of vegetation openness: we used the 30-m resolution vegetation map produced by 

(Arraut et al., 2018) to calculate, for each pixel, the proportion of open vegetation 

(category 'grassland' and 'open bushlands' in the original map) in a radius of 250 m.

2.2. Lion Population Monitoring

The demographic characteristics of lion prides (mating partners, births, deaths) were 

recorded about five times per month (with at least one observation of each pride per 

month) since the beginning of the monitoring of this population in 1999. Prides are on 

average made up of 4.8 (± 2.5 s.d.) adult males and females in the study area (Mbizah et 

al., 2019). Lion individuals are recognized by whisker patterns, natural markings, such 

as scars, muzzle spots, and tooth irregularities (Pennycuick & Rudnai, 1970). In this 

analysis, we focus on two cub classes: cubs younger than 1 year old, whose survival 

depends heavily on adult protection (Packer, 2000) and cubs younger than 6-month-old, 

which corresponds to the duration of the lactation period and to the period when cubs 

are less mobile (Schaller, 1972; Smuts et al., 1978). All subsequent analyses were 

performed with respect to these two categories; as the results were similar, we present 

here only those with cubs younger than 1 year old (results with 6-month-old cubs are 

available in Appendix S1).

2.3. GPS data collection
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Animal handling and ethical care statement 

The lions were immobilized and equipped with a GPS collar by project staff trained and 

certified by the Zimbabwe Veterinary Association, Wildlife Group, and Medicines 

Control Authority, Zimbabwe. Lion handling and collaring was carried out with the 

permission of the Zimbabwe Parks and Wildlife Management Authority. Animal 

handling and care protocols were consistent with the guidelines provided in the ‘Code 

of Practice for Biologists using Animals’, Department of Zoology, University of Oxford, 

and approved by the University of Oxford, Biomedical Sciences, Animal Welfare and 

Ethics Review Body.

Identification of proximity events between tracked lions

We used proximity between individuals, estimated using GPS data, as a proxy for social 

interactions (see the following section for details on the distribution of collars within 

and among prides). However, since GPS fixes were not acquired at the same time 

intervals for each lion (1 hour or 2 hours) and to avoid the use of a wide temporal 

window to define simultaneous fixes, we initially interpolated lion trajectories to hourly 

locations using a continuous-time correlated random walk model, as implemented in 

the R package crawl. All proximity estimations were performed using the interpolated 

dataset and between simultaneous fixes. We defined a proximity event between two 

individuals as successive pairs of simultaneous locations of the two individuals closer 

than 1km. Within this 1 km distance threshold, we considered that individuals were in 

sufficiently close proximity to facilitate encounters and associated social interactions. 

We considered that a location beyond that distance threshold could occur before 

terminating a given proximity event (these decisions are discussed in Appendix S2).
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Data sets used for Questions 1, 2 and 3

Due to the spatial and temporal variations in the collar deployments, the raw dataset 

(i.e., GPS data from 81 lions) needed to be subsampled differently to address each 

question of the study. First, to explore the spatial response of female lions to the 

presence of cubs, we used GPS data collected on 19 females that had at least 500 GPS 

locations in each situation of interest, i.e., with and without cubs in the pride (question 

1). Second, we explored the spatial (question 1) social (question 2) responses of male 

lions to the presence of cubs on 17 dyads of one male and one female tracked 

simultaneously in the same pride. For each male-female dyad, the collared male (1) has 

been seen in a mating event with a female from the pride, (2) did not reproduce with 

females from other prides during the tracking period, and (3) the collared female was 

not dispersing from its pride during the tracking period. The average tracking period 

per male-female dyad was longer than 8 months [quartile 1 = 5 months; median = 6 

months; quartile 3 = 13 months]. Among the 17 pride males, 15 encountered (i.e., 

simultaneous locations <1km) at least once another GPS tracked male that could be a 

competitor, i.e., a male outside of their coalition, resulting in 30 dyads of rival males 

(question 3). We provide an illustration of the GPS tracking data recorded for (1) pride 

male – pride female dyads, and (2) pride male – competitor male dyads in Figure S3.1 

(Appendix S3) and Figure S4.1 (Appendix S4), respectively.

2.4. Spatial response of lions to the presence of cubs (Question 1)

We used a resource selection function (RSF) to estimate the habitat selection of lions 

within their home range in the presence and absence of cubs. For both female and 

male datasets, to reduce the non-independence among observations, we kept only 

10

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222



three locations per night (18h, 24h, 6h), which resulted in 2982 locations (± 1901 s.d.) 

per female and 716 locations (± 542 s.d.) per male. For each used location, we sampled 

10 random locations within the 90% utilization distribution of a kernel-based home 

range estimate, using the adehabitatHR and amt packages (Calenge, 2007; Signer et al., 

2019). We then associated to the used and random locations the following information: 

(1) whether at least one cub was present in the pride at the corresponding date, (2) the 

habitat characteristics known to affect the selection of lion habitat, i.e., the distance to 

water and habitat openness, (3) the distance to the centroid of the home range, to 

estimate the strength of selection for the home range core area, and (4) for males only, 

whether males were close (<1km) to females. We did not include a season variable since 

lion reproduction is not seasonal (Bertram, 1975), and preliminary analyses did not 

show a major influence of seasons on lion selection for areas close to waterholes (see 

also Valeix et al., 2010). For the female model, we added interaction terms between the 

cub presence/absence and (i) the distance to water, (ii) the habitat openness, and (iii) 

the distance to the home range centroid. For the male model, we combined the two 

categorical variables, i.e., proximity to females (<1km or >1km) and presence / absence 

of cubs, into one variable (with four categories) to test such multiplicative effects. The 

RSF models were fitted using generalized linear mixed models with a logit link and a 

binomial distribution of errors. To deal with the unequal number of locations among 

lions, we added a random intercept with individual identity as a random factor. The 

goodness-of-fit of our models were evaluated using the Spearman rank correlation 

based on k-fold cross-validation (Boyce et al., 2002) with 5 folds, 20 bins and 20 
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repetitions. Following Chamaillé-Jammes (2019), RSF scores were converted into 

selection ratios for interpretability.

2.5. Social response of lions to the presence of cubs (Question 2)

We used GPS data collected in the 17 dyads of pride males and females to assess the 

influence of the presence of cubs on the spatial association between pride females and 

males. In total, we obtained 1600 proximity events between pride males and females. 

In Figure S2.2 in Appendix S2, we present an investigation of how the duration and 

frequency of proximity events varies when using different distance thresholds to define 

proximity events. 

We tested whether pride males accompanied more pride females when they had 

cubs. We did this by calculating for each male-female dyad (1) the percentage of time 

pride males spent with pride females (i.e., the number of fixes in proximity divided by 

the total number of fixes), (2) the frequency, and (3) the duration of proximity events. 

Since the percentage of time that pride males spent with pride females, as well as the 

duration of proximity events, exhibited overdispersion in Poisson models, we used 

negative binomial mixed models for these response variables and a Poisson mixed 

model for the 'frequency' response variable. For each model, we added a random 

intercept with dyad identity.

Since vegetation structure may influence the propensity of males to stay close to 

their pride (Funston et al., 1998), we also measured, for each male-female dyad, the 

mean habitat openness within the core of the pride territory (50% utilization 

distribution of a kernel-based home range estimate). We added to each model an 
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interaction term between cub-presence and habitat-openness variables to test whether 

pride males would accompany pride females more when they had cubs, and especially 

among prides whose territories were composed of open areas (i.e., higher detectability 

of rivals, reduced need for males to patrol).

2.6. Influence of the social and spatial response of lions on interactions with 

competitors (Question 3)

We used GPS data collected on the 30 male-male dyads to test the influence of the 

presence of cubs on interactions between rival males. We recorded 450 close locations 

(<1km) between pride males and their competitors, corresponding to 141 proximity 

events.

Frequency of proximity events between rival males

For each pride male, we calculated the frequency of proximity events and tested the 

influence of the presence of cubs using a negative binomial mixed model adding a 

random intercept with dyad identity. Following (Wielgus et al., 2020), we also controlled 

for the impact of the spatial overlap between the two collared males on the frequency 

of male-male distinct proximity events. We used the Bhattacharyya affinity index to 

compare the utilization distributions of pride and rival males during the dyad tracking 

period, which ranges between 0 (no overlap) and 1 (identical utilization distribution) 

(Benhamou et al., 2014; Bhattacharyya, 1943). We further investigated how the 

frequency of male-male proximity events varied with the distance threshold used to 

define proximity (see Figure S2.2 in Appendix S2).

Habitat characteristics at the locations of proximity events between rival males
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We evaluated whether the presence of cubs influenced the locations of proximity 

events between pride and rival males. To do this, we compared whether close locations 

between pride males and rival males occurred more often outside or inside the male's 

home range core than at other locations, and whether it changed when cubs were 

present or not. We did this by fitting a mixed logistic regression, adding an interaction 

term between the cub and rival variables and a random intercept with dyad identity. We 

used the same approach to compare the likelihood of being close to waterholes (i.e., 

water sources < 1km) and within open areas (i.e., habitat openness > 0.5).

Outcome of proximity events between rival males

Finally, we kept the 103 proximity events interspaced by 24 hours to investigate the 

likelihood for pride males to initiate the event, and the displacement of rival males after 

the event. Following (Rafiq et al., 2020), we assumed that the male that was the farthest 

from the proximity event site (over the 24 hours preceding the event) was the one that 

initiated the event. We tested whether the presence of cubs influenced the likelihood 

that pride males initiated the proximity event with rival males by fitting a GLMM with a 

logit link and a binomial distribution for errors, adding a random intercept with dyad 

identity. Using a log-linear model, we then tested whether the presence of cubs 

influenced the competitor’s displacement over the 24h following the event, viewed here 

as an outcome of the proximity of the two males. Since a difference in age between 

pride males and their competitors may influence the propensity for pride males to 

initiate proximity events and the outcome of the proximity event, we also included an 

age difference variable in our models.

3. RESULTS
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3.1. Spatial response of lions to the presence of cubs (Question 1)

The RSF models had a high predictive power for both females (cross-validation: r s = 0.89 

± 0.02, mean ± SE) and males (cross-validation: r s = 0.84 ± 0.03, mean ± SE). Females 

consistently selected areas close to the territory core, near waterholes, and in open 

habitats (Fig. 1a, b, and c, respectively; Table S3.1 in Appendix S3). However, pride 

females responded spatially to the presence of cubs by increasing the strength of their 

selection for the territory core and weakening their selection for areas near waterholes, 

and for open habitats (Fig. 1a, b, and c, respectively; Table S3.1 in Appendix S3). 

Similarly, males moving close to females (i.e., < 1km) selected areas close to the 

territory core and near waterholes, with no detectable effect of the presence of cubs 

(Figs. 1d and e, respectively; Table S3.2 in Appendix S3). In general, pride males moving 

away from their pride (i.e., > 1km) exhibited a greater selection of the features avoided 

by females at the time they had cubs. In particular, when away from the pride, males 

were more likely to use areas closer to territory edges, and this tendency was more 

marked at times when cubs were present in the pride (Fig. 1d). Furthermore, when 

moving away from their pride, males weakened the strength of their selection for 

waterholes when there were no cubs in the pride, while they maintained the same 

strength of selection for waterholes during periods when cubs were present (Fig. 1e). 

We could not detect an influence of the presence of cubs on the male selection of open 

habitats when they were away from their pride (Fig. 1f).

3.2 Social response of lions to the presence of cubs (Question 2)

On average, male lions spent 33% of their time within 1 km of the collared female of 

their pride [quartile 1 = 18%; median = 29%; quartile 3 = 41%], resulting from 14 distinct 
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proximity events per month [q1 = 7; med = 13; q3 = 17] lasting 18 hours each [q1 = 3; 

med = 9; q3 = 23]. However, the percentage of time spent in proximity of females varied 

greatly between males, ranging from 10% (averaged over 14 months) to 68% (averaged 

over 5 months). Contrary to our predictions, we found no evidence that pride males 

would spend longer periods close to females to protect cubs (Fig. 2; Table S3.3 in 

Appendix S3). However, pride males were more likely to be in proximity of pride 

females when the mean habitat openness within the core of the pride’s territory was 

high (Fig. 2a), a result arising from more frequent (Fig. 2b) and similarly long (Fig. 2c) 

proximity events. 

3.3. Influence of the social and spatial response of lions on interactions with 

competitors (Question 3)

Pride males were in proximity to a collared rival on average 0.8 times a month [q1 = 0; 

med = 0.4; q3 = 0.9] for a mean duration of 3.2 hours [q1 = 1.0; med = 2.0; q3 = 3.0]. 

These results are for one male-male dyad and do not consider the fact that a male may 

have several potential rival males in surrounding territories. As expected, pride males 

were more frequently in the proximity of rival males whose home range overlapped 

more (Figure S4.2; Table S4.1 in Appendix S4). The presence of cubs in the pride did not 

influence the frequency of proximity events between pride and rival males but 

influenced where proximity events occurred (Fig. 3; Table S4.2 in Appendix S4). When 

pride males had no cubs, habitats in which pride males were observed close to 

competitors did not differ from habitats in which pride males were away from 

competitors, neither relatively to their location inside or outside the male home range 

core (Fig. 3a) nor to their openness (Fig. 3c), but they differed by being closer to 
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waterholes (Fig. 3b). However, this waterhole-proximity difference did not hold when 

the pride had cubs, and in these cases habitats in which pride males were observed 

close to competitors were more likely to be outside the male home range core. 

Furthermore, we did not find any influence of the presence of cubs on the probability 

that pride males would initiate a proximity event with rival males (Table S4.3 in 

Appendix S4). However, rival males moved farther away after a proximity event with 

pride males when the pride had cubs. For illustration, 12 hours after the proximity 

event, rival males were on average 2.4 km away from the proximity event site when the 

pride had cubs and 1.5 km away when the pride had no cubs. 

4. DISCUSSION

A growing number of authors are urging movement ecologists to consider more fully 

the social environment when seeking to explain habitat selection, a topic that has 

traditionally been interpreted in terms of the influence of resources or of top-down 

forces, such as predation risk or fear of people (He et al., 2019; Kanda et al., 2019; 

Rouse et al., 2021; Q. M. R. Webber & Vander Wal, 2017; Westley et al., 2018). Here, we 

illustrate the intricacies between the social and spatial behaviours of African lions.

4.1. Spatial response of lions to the presence of cubs (Question 1)

We showed intersexual differences in the spatial responses of lions to the presence of 

cubs. Females with cubs were less likely than those without cubs to select areas close to 

waterholes and territory peripheries, i.e., areas characterized by a high risk of 

encountering other carnivores in general (i.e., risk of predation) and other lions and 

rival males in particular (i.e., risk of infanticide). On the contrary, these features were 
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more frequently selected by pride males that moved away from females at times when 

there were cubs in the pride. 

The preference shown by females with cubs for safer habitats (i.e., territory core, 

far from waterhole) is consistent with the pressure to protect cubs from infanticidal 

rival males that are more likely to be near the territory edge and close to water sources 

(Mosser & Packer, 2009; Valeix et al., 2010) representing a threat for cub survival 

(Packer & Pusey, 1983). This selection of areas far from waterholes may also be 

explained by the need to minimize the risk of intraguild predation, particularly from 

spotted hyaenas, which pose a threat to the survival of lion cubs (Curveira-Santos et al., 

2022; Schaller, 1972). Reduced movement abilities of young cubs (i.e., < 2 months) (see 

(Laurenson, 1994) for cheetahs Acinonyx jubatus) may also explain the increased use of 

the cores of female home ranges. This reduction of female movements within their 

home range core in response to offspring presence is consistent with studies on other 

species, such as Louisiana black bears (Ursus americanus luteolus; (Benson & 

Chamberlain, 2007)), Amur tigers (Panthera tigris altaica; (Klevtcova et al., 2021)), 

spotted hyaenas (Crocuta crocuta; (Boydston et al., 2003)), or red foxes (Vulpes vulpes; 

(Henry et al., 2005)). 

Previous studies documented examples of paternal care, such as male brown 

hyaenas (Parahyaena brunnea) bringing food to cubs (Mills, 1990) or bushbuck 

(Tragelaphus scriptus) protecting calves (Wronski et al., 2006). However, studies 

investigating the strategies used by males to avoid infanticide by rivals or intraguild 

predation on offspring are rare. Although females with cubs avoided riskier locations, 

males showed stronger preferences for these places when they moved away from their 
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pride, possibly because they invested more in territorial defence directed toward 

potential intraspecific competitors. This result is in line with the territorial-defence 

hypothesis, when males indirectly prevent intrusion from rivals by patrolling, scent-

marking, and roaring throughout their territory (McLean, 1983). However, using only 

GPS-data, we cannot test whether male lions marked their territory more intensely or 

more frequently when patrolling (e.g. through more frequent vocalizations) when there 

are cubs in their pride. This question could be investigated in the future using acoustic 

loggers, as was recently done on the influence of spatial features on lions’ vocalization 

(Wijers et al., 2021).

4.2. Social response of lions to the presence of cubs (Questions 2-3)

We found considerable intraspecific variations in the dynamics of association (i.e., 

frequency, duration of proximity events) between males and females among lion 

prides. However, much of these intraspecific variations were explained by the 

vegetation structure within the pride territory core, rather than by the presence of cubs 

(see Section 4.3). 

We predicted that males would be with females more frequently and over longer 

periods to reduce the risk of infanticide when cubs are present (i.e., in accordance with 

the infant-defence hypothesis), such as observed among primate societies (Van Schaik 

& Kappeler, 1997), or to reduce the risk of intraguild predation on offspring. Our results 

provide little support for this prediction. Perhaps the need for pride males to maintain 

the integrity of their territory by patrolling can limit the time they have to be close to 

females. Habitat structure shapes social interactions by modifying patterns of animal 

space use (He et al., 2019), similarly, the need for territorial animals to patrol 
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throughout their territories can shape/constrain their social interactions with 

groupmates and rivals. Overall, the formation of nursery groups by females (Packer et 

al., 1990; Packer & Pusey, 1983) may be sufficient to protect pride cubs against 

neighbouring infanticidal males, especially when males prevent intrusion from rivals.

The greater selection of the edges of the territory by male lions during periods 

when the cubs are present in their pride (Section 4.1) did not translate into more 

frequent interactions with rivals. However, when they occurred, such encounters were 

more often in the territory peripheries at times when cubs were present in the pride 

and may have resulted in more vigorous repulsion of rivals (i.e., rival males relocated 

further away from the encounter site). The increased level of repulsion between rivals is 

consistent with previous studies showing how reproductive status can influence the 

aggressiveness of encounters between male competitors among song sparrows 

(Melospiza melodia; Moser-Purdy et al., 2017) and black howler monkeys (Alouatta pigra; 

Kitchen, 2004). Overall, our results suggest that males adjusted both their social and 

spatial responses to the presence of cubs by investing more heavily in preventing the 

intrusion of rivals within the territory core, which supports the territorial-defence 

hypothesis.

4.3. Influence of vegetation structures on the social behaviours of lions

The structure of vegetation in a lion's territory core largely explained the variability in 

male-female association rates. Similarly, Funston et al. (1998) investigated (in a cross-

site review) the ecological factors likely to impact the rate of male-female association 

among lions, finding more frequent male-female association in open ecosystems, 

which is consistent with our results observed at a finer scale. As discussed by Funston 
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et al. (1998), three hypotheses may explain the variability of male-female association 

according to the habitat structure: (1) a lower hunting success for males in open areas 

and hence a greater need to use kills from pride females and/or hunt with females, (2) a 

greater ease for pride males to detect competitors in open areas reducing the need to 

patrol, as well as a higher detectability of females and their cubs, resulting in a greater 

need to accompany them, and (3) a greater need for lions to defend kills from hyaenas 

in open areas, particularly important when cubs need to be fed. The influence of habitat 

structure on association between groups (i.e., fission / fusion dynamics) has been 

investigated, especially in herbivore species, such as plains bison (Bison bison; Fortin et 

al., 2009), roe deer (Capreolus capreolus; Pays et al., 2007), and blackbuck antelope 

(Antilope cervica; Isvaran, 2007) with fusion events facilitated by habitat openness. 

However, it has rarely been explored in carnivore species, whose fission-fusion 

dynamics and male-female associations have been mainly explored in light of prey 

availability and size (Chakrabarti et al., 2021; Mbizah et al., 2020).

CONCLUSION

In general, our findings illustrate how the social and spatial behaviours of lions are 

entwined, with animal movement in relation to the environment being influenced by 

social context, but also social interactions being shaped by habitat structure and 

potentially constrained by territoriality. The long-term demographic and spatial 

monitoring of a lion population allowed us to assess the counterstrategy of male lions 

to the risk of infanticide, with support to the territorial-defence hypothesis.
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Figure 1. Effects of the presence of cubs in the pride and, for males, of proximity to 

females, on female and male lion habitat selection. Figures show how the female (a-b-c) 

and male (d-e-f) selection ratio varies with (a-d) the distance to the home range 
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centroid, (b-e) the distance to the closest waterhole, and (c-f) the habitat openness, 

according to the absence (orange) or presence (blue) of cubs within the pride and, for 

males, to whether females were close by (<1km, solid symbols) or further away (dotted 

symbols). The dotted horizontal line corresponds to a selection ratio of one, i.e., habitat 

use proportional to habitat availability. Ribbon extremities show 95% confidence 

interval, whereas lines show the mean value of selection ratio. Vertical bars at the 

bottom of each panel show the distance to home range centroid (a-d), the distance to 

waterholes (b-e) and the habitat openness (c-f) of the available locations (subsampled 

to the same number of used locations).
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Figure 2. Effects of the presence of cubs in the pride, and of mean habitat openness in 

the female home range, on (a) the percentage of time pride male and female lions 

spend in proximity (distance <1km) to each other, (b) the frequency of these proximity 

events and (c) the duration of these proximity events. Ribbon extremities show 95% 

confidence interval, whereas solid lines show mean predicted values. Dots show the 

percentage of time, frequency or duration of proximity events averaged per male-

female dyad in periods with and without cubs in the pride.
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Figure 3. Spatial characteristics of proximity events (distance <1km) between pride 

males and rival males. Likelihood for pride males to be (a) outside of their home range 

core, (b) close from waterholes (<1km) and (c) in open areas according to the absence 

(orange) and presence (blue) of cubs within the pride, and to the proximity of rival 

males (pride male – no rival; pride male – rival < 1km). Dots show the statistical data 

fitted to the logistic regression; i.e., one proximity event or one event with rival > 1km). 
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COUNTER-STRATEGIES TO INFANTICIDE: THE IMPORTANCE OF CUBS IN DETERMINING 

LION HABITAT SELECTION AND SOCIAL INTERACTIONS

Table S1.1.  Coefficients (β) and standard errors (SE) for selection ratio model of lioness 

habitat selection for distance to water (WATER), open habitats (OPEN), and distance to the 

home range centroid (HR) accounting for the presence/absence of cubs within the pride 

(CUB ; without cub = 0, with cub = 1). Main effects estimate selection strength by females 

without cubs, and interaction terms estimate the additional effect on selection strength 

from  having  cubs  in  a  pride.  All  continuous  variables  were  scaled  to  compare  their 

strength of selection. 

Model – cubs < 6 months β SE z-value p-value

Intercept -2,40 0,08 -29,33 <0.001

WATER -0,21 0,01 -31,06 <0.001

OPEN 0,41 0,01 70,01 <0.001

HR -0,29 0,01 -43,95 <0.001

CUB -0,08 0,01 -7,97 <0.001

WATER x CUB 0,07 0,01 7,04 <0.001

OPEN x CUB -0,01 0,01 -1,41 0.16

HR x CUB -0,31 0,01 -31,19 <0.001



Table S1.2 Coefficients (β) and standard errors (SE) for selection ratio models of pride male 

habitat selection for distance to water (WATER), open habitats (OPEN), and distance to the 

home range centroid (HR) accounting for the presence/absence of cubs within the pride 

(CUB ; without cub = 0, with cub = 1) and for the presence/absence of females in proximity 

(FEM ; without female = 0, with female = 1).  Main effects estimate selection strength by 

pride males without cubs but with females in proximity, and interaction terms estimate the 

additional effect on selection strength from having cubs in a pride. All continuous variables 

were scaled to compare their strength of selection.

Model – cubs < 6 months β SE z-value p-value

(Intercept) -2,73 0,17 -15,58 <0.001

WATER -0,51 0,04 -13,17 <0.001

OPEN 0,52 0,03 18,26 <0.001

HR -0,69 0,04 -16,87 <0.001

(FEM & CUB) -0,58 0,06 -9,30 <0.001

(no FEM & no CUB) 0,11 0,04 2,85 <0.01

(no FEM & CUB) 0,10 0,04 2,42 <0.05

WATER x (FEM & CUB) -0,27 0,06 -4,43 <0.001

WATER x (no FEM & no CUB) 0,28 0,04 6,51 <0.001

WATER x (no FEM & CUB) -0,05 0,04 -1,01 0.31

OPEN x (FEM & CUB) -0,12 0,04 -2,86 <0.01

OPEN x (no FEM & no CUB) 0,16 0,03 4,78 <0.001

OPEN x (no FEM & CUB) 0,00 0,03 0,12 0.90

HR x (FEM & CUB) -0,62 0,07 -9,33 <0.001

HR x (no FEM & no CUB) 0,24 0,05 5,33 <0.001



HR x (no FEM & CUB) 0,34 0,05 7,45 <0.001



Table S1.3. Coefficients (β) and standard errors (SE) for the GLMMs testing the influence of 

the mean habitat openness (OPEN) and the presence of cubs (CUB) on (a) the percentage 

of time pride males spent in proximity with pride females, (b) the frequencies and (c) the 

duration of male-female proximity events. 

Model – cubs < 6 months β SE z-value p-value

(a) Percentage of time spent in proximity – logistic regression

(Intercept) -0,71 0,16 -4,48 <0.001

CUB -0,06 0,02 -3,07 <0.01

OPEN 0,57 0,15 3,86 <0.001

CUB x OPEN -0,03 0,02 -1,51 0.13

(b) Frequency of proximity events – Poisson regression

(Intercept) 2,51 0,10 25,46 <0.001

CUB 0,19 0,10 1,91 0.056

OPEN 0,21 0,10 2,18 <0.05

CUB x OPEN -0,05 0,10 -0,52 0.60

(c) Duration of proximity events – negative binomial regression

(Intercept) 2,94 0,06 50,07 <0.001

CUB -0,12 0,05 -2,32 <0.05

OPEN 0,10 0,05 1,91 0,056

CUB x OPEN -0,03 0,05 -0,62 0.54



Table S1.4.  Frequency of pride male-competitor male proximity events according to the 

presence of cubs within the pride (CUB) and the overlap of the utilization distributions of 

pride and competitor males (UD overlap). We run a log-linear regression adding a random 

intercept with dyad identity.

Model – cubs < 6 months β SE z-value p-value

Intercept -3,65 0,56 -6,56 <0.001

CUB 0,11 0,70 0,15 0.88

UD overlap 8,89 1,83 4,86 <0.001

CUB x UD overlap 0,19 2,45 0,08 0.94



Table S1.5. Spatial characteristics of proximity events between pride males and competitor 

males. Likelihood for pride males to use locations (a) outside of their core home range, (b) 

close  to  waterholes  (<1km),  and  (c)  within  open  areas,  estimated  using  three  logistic 

regressions adding a  random intercept with dyad identity, according to the presence of 

cubs within the pride (CUB) and the presence of competitor males close (i.e. <1km) to the 

pride males (COMPETITOR).

Model – cubs < 6 months β SE z-value p-value

a) Likelihood for pride males to use locations outside of their core home range

Intercept 0,05 0,06 0,73 0.47

CUB -0,54 0,01 -41,10 <0.001

COMPETITOR 0,17 0,14 1,24 0.22

CUB x COMPETITOR 1,30 0,20 6,35 <0.001

b) Likelihood for pride males to use locations close to waterholes (<1km)

Intercept -1,50 0,10 -14,59 <0.001

CUB 0,45 0,02 30.0 <0.001

COMPETITOR 0.68 0,16 4.26 <0.001

CUB x COMPETITOR -1.11 0,22 -5.0 <0.001

c) Likelihood for pride males to use open habitats

Intercept -0,51 0,28 -1,86 0.06

CUB 0,35 0,02 23,05 <0.001



COMPETITOR 0,03 0,18 0,14 0.89

CUB x COMPETITOR -0,41 0,23 -1,74 0.08

Table  S1.6.  Outcome  characteristics  of  proximity  events  between  pride  males  and 

competitor  males.  (a)  Likelihood  for  pride  males  to  initiate  the  proximity  events  with 

competitor males, estimated using a logistic regression to the binary response variable 

(“initiated”  or  “  did  not  initiate”),  (b)  Logarithm of  the  competitor  displacement  to  the 

proximity-event  site  with  pride  males,  estimated  using  a  log-linear  regression  model, 

according to the presence of cubs in the pride (CUB), the difference of age between the 

pride  males  and  their  competitors  (AGE)  and  the  time  following  the  proximity  event 

(HOUR).

Model  –  cubs  <  6 

months β SE z-value
p-value

a) Likelihood  for  pride  males  to  initiate  the  proximity  event  with 

competitor males

Intercept 0,36 0,28 1,29 0.20

CUB 0,50 0,31 1,59 0.11

AGE 0,01 0,21 0,03 0.98

b) Logarithm of the competitor displacement to the proximity event site 

with pride males

Intercept 6,92 0,15 45,43 <0.001



Log(HOUR) 0,19 0,03 6,49 <0.001

CUB 0,26 0,09 2,84 <0.01

AGE -0,39 0,15 -2,64 <0.01



COUNTER-STRATEGIES TO INFANTICIDE: THE IMPORTANCE OF CUBS IN 

DETERMINING LION HABITAT SELECTION AND SOCIAL INTERACTIONS

Appendix 2.  Distance-based definition of  proximity  events,  used as  proxies  for 

social interactions

Previous studies of carnivore dynamic interactions used lower distance thresholds 

(than 1km), such as 200m (Benhamou et al., 2014; Rafiq et al., 2020), 500m (Broekhuis 

et al., 2019), and 800m (Jordan et al., 2017), but using these did not lead to different 

patterns from when using 100m and 1km distance thresholds (Benhamou et al., 2014; 

Rafiq et al., 2020). Still, we preliminarily compared, for male-female dyads, the 

likelihood of simultaneous locations to be considered as being part of a proximity event 

using several distance thresholds, from 100m to 5km, with the classification of the 

distances obtained from a 2-state (‘close’ vs. ‘far’) univariate hidden-Markov model of 

the distances (see Figure S2.1 in Appendix S2). On average, 96% (respectively 83%) of 

dyad locations < 1km (respectively >1km) were classified by the hidden-Markov model 

as belonging to the ‘close’ state (respectively ‘far’ state).



Figure S2.1 Methods to identify male-female interactions: comparison of male-female 

proximity events estimated by an univariate hidden-markov model based on the dyad 

distance, and estimated by a distance threshold from 100m to 5km. (a) Illustration of 

the temporal-dynamic of male-female distances  (left) used to identify ‘close’ state (blue) 

and ‘far’ state (orange) based on the distribution of male-female distances (right). (b) 

Assessment of potential distance thresholds to identify male-female proximity events. 

The true negative ratio (resp. the true positive ratio) is the proportion of no-interaction 

cases (resp. interaction cases) identified by the HMM for which the pairwise distance 

was further (resp. closer) than the distance threshold. Ribbon extremities represent the 

first and third quartiles, whereas the black line represents the median value of the true 

negative and true positive ratios calculated on the 17 male-female dyads. The dotted 



lines (a-b) show the 1km-distance threshold used in this paper. The HMM model was 

run by using the R package depmixS4 (Visser and Speekenbrink 2010)

Figure  S2.2 Distance-threshold  sensitivity  of  the  duration  and  frequency  measures 

describing the temporal dynamics of male-female (a-b) and male-male proximity events 

(c-d).  For  male-female  dyads  (n=17),  lower  distance  threshold  induced  higher 

segmentation  risk  of  the  proximity  bouts  and  so  lower  durations  and  higher 

frequencies. For male-male dyads (n=30),  higher distance threshold allows to detect 

more events of proximity between competing males. Ribbon extremities represent the 

first and third quartiles,  whereas the black line represents the median value of the 

durations and frequencies.



Reference

Visser,  I.,  &  Speekenbrink,  M.  (2010).  depmixS4:  An  R  Package  for  Hidden  Markov 

Models. Journal of Statistical Software, 36, 1–21. https://doi.org/10.18637/jss.v036.i07



COUNTER-STRATEGIES TO INFANTICIDE: THE IMPORTANCE OF CUBS IN 

DETERMINING LION HABITAT SELECTION AND SOCIAL INTERACTIONS

Appendix S3. Pride male-female association

Figure S3.1. Locations and core home ranges of pride males (blue) and females (red), 

delineated from the 50% utilization distribution of a kernel-based home range estimate, 

using the  adehabitatHR  package  (Calenge 2007). Similar overlaps between pride male 



and female  home ranges  were  observed from the  90% utilization  distribution  of  a 

kernel-based home range estimate.

Figure S3.2 Temporal dynamic of pride male and female proximity events as a function 

to the size of the female core home range and to the proportion of habitats close to 

waterholes (i.e. <1km) within it, according to the presence (blue) and absence (orange) 

of  cubs  within  the  pride.  We  found  high  negative  correlations  between  the  mean 



habitat openness in the female home range with its size (Pearson correlation = -0.74; p 

< 0.001) and with the proportion of habitats close to waterholes (Pearson correlation = 

0.85; p < 0.001).

Table S3.1. Coefficients (β) and standard errors (SE) for selection ratio model of lioness 

habitat selection for distance to water (WATER), open habitats (OPEN), and distance to 

the home range centroid (HR) accounting for the presence/absence of cubs within the 

pride (CUB ; without cub = 0, with cub = 1). Main effects estimate selection strength by 

females without cubs, and interaction terms estimate the additional effect on selection 

strength from having cubs in a pride. All continuous variables were scaled to compare 

their strength of selection. 

Model – cubs < 12 months β SE z-value p-value

Intercept -2,41 0,09 -27,75 <0.001

WATER -0,20 0,01 -26,22 <0.001

OPEN 0,44 0,01 65,32 <0.001

HR -0,27 0,01 -36,68 <0.001

CUB -0,07 0,01 -6,63 <0.001

WATER x CUB 0,05 0,01 5,00 <0.001

OPEN x CUB -0,06 0,01 -6,47 <0.001

HR x CUB -0,34 0,01 -33,95 <0.001



Table S3.2 Coefficients (β) and standard errors (SE) for selection ratio models of pride 

male  habitat  selection  for  distance  to  water  (WATER),  open  habitats  (OPEN),  and 

distance to the home range centroid (HR) accounting for the presence/absence of cubs 

within the pride (CUB ; without cub = 0, with cub = 1) and for the presence/absence of 

females in proximity (FEM ; without female = 0, with female = 1). Main effects estimate 

selection  strength  by  pride  males  without  cubs  but  with  females  in  proximity,  and 

interaction terms estimate the additional effect on selection strength from having cubs 

in a pride. All continuous variables were scaled to compare their strength of selection.

Model – cubs < 12 months β SE z-value p-value

(Intercept) -2,98 0,18 -16,61 <0.001

WATER -0,66 0,05 -12,31 <0.001

OPEN 0,62 0,04 15,87 <0.001

HR -0,92 0,06 -15,77 <0.001

(FEM & CUB) 0,08 0,07 1,21 0.23

(no FEM & no CUB) 0,36 0,06 6,39 <0.001

(no FEM & CUB) 0,39 0,06 6,80 <0.001

WATER x (FEM & CUB) 0,04 0,06 0,64 0.52

WATER x (no FEM & no CUB) 0,46 0,06 7,84 <0.01

WATER x (no FEM & CUB) 0,18 0,06 3,12 <0.001

OPEN x (FEM & CUB) -0,22 0,05 -4,87 <0.001

OPEN x (no FEM & no CUB) 0,08 0,04 1,86 0.06

OPEN x (no FEM & CUB) -0,07 0,04 -1,60 0.11

HR x (FEM & CUB) -0,05 0,07 -0,69 0.49

HR x (no FEM & no CUB) 0,41 0,06 6,65 <0.001



HR x (no FEM & CUB) 0,59 0,06 9,69 <0.001

Table  S3.3. Coefficients  (β)  and  standard  errors  (SE)  for  the  GLMMs  testing  the 

influence of the mean habitat openness (OPEN) and the presence of cubs (CUB) on (a) 

the  percentage  of  time pride  males  spent  in  proximity  with  pride  females,  (b)  the 

frequencies and (c) the duration of male-female proximity events. 

Model – cubs < 12 months β SE z-value p-value

(a) Percentage of time spent in proximity – logistic regression

(Intercept) -0,80 0,16 -4,92 <0.001

CUB 0,11 0,02 4,61 <0.001

OPEN 0,62 0,15 4,04 <0.001

CUB x OPEN -0,14 0,02 -6,19 <0.001

(b) Frequency of proximity events – Poisson regression

(Intercept) 2,49 0,10 24,85 <0.001

CUB 0,20 0,11 1,87 0.06

OPEN 0,26 0,10 2,73 <0.01

CUB x OPEN -0,12 0,10 -1,18 0.24

(c) Duration of proximity events – negative binomial regression

(Intercept) 2,86 0,07 42,44 <0.001

CUB 0,02 0,06 0,24 0.81

OPEN 0,08 0,05 1,47 0.14

CUB x OPEN -0,02 0,06 -0,32 0.75



COUNTER-STRATEGIES TO INFANTICIDE: THE IMPORTANCE OF CUBS IN 

DETERMINING LION HABITAT SELECTION AND SOCIAL INTERACTIONS

Appendix 4. Pride male – competitor male association

Figure S4.1. GPS locations of female (green), male (blue) and competitor (red) lions, for 
each of the 30 studied triads. 



Figure S4.2. Relationship between the frequencies of proximity events between pride 

males  and  competitor  males  and  the  overlap  of  their  utilization  distribution  (i.e. 

Bhattacharyya's affinity index) according to the presence (blue) and absence (orange) of 

cubs in the pride. Ribbon extremities represent 95% confidence interval, whereas solid 

lines represent mean frequencies of pride male-competitor male proximity events.



Table S4.1. Frequency of pride male-competitor male proximity events according to the 

presence of cubs within the pride (CUB) and the overlap of the utilization distributions 

of pride and competitor males (UD overlap). We run a log-linear regression adding a 

random intercept with dyad identity.

Model – cubs < 12 months β SE z-value p-value

Intercept 0,77 0,47 1,65 0.10

CUB 0,39 0,57 0,69 0.49

UD overlap 5,07 1,05 4,85 <0.001

CUB x UD overlap -1,17 1,36 -086 0.39



Table  S4.2.  Spatial  characteristics  of  proximity  events  between  pride  males  and 

competitor males.  Likelihood for pride males to use locations (a) outside of their core 

home range, (b) close to waterholes (<1km), and (c) within open areas, estimated using 

three logistic regressions adding a  random intercept with dyad identity, according to 

the presence of cubs within the pride (CUB) and the presence of competitor males close 

(i.e. <1km) to the pride males (COMPETITOR).

Model – cubs < 12 

months
β SE z-value p-value

a) Likelihood for pride males to use locations outside of their core home 

range

Intercept -0,20 0,08 -2,58 <0.01

CUB -0,11 0,02 -6,72 <0.001

COMPETITOR 0,26 0,16 1,56 0.12

CUB x COMPETITOR 1,17 0,22 5,29 <0.001

b) Likelihood for pride males to use locations close to waterholes (<1km)

Intercept -1,42 0,10 -14,56 <0.001

CUB 0,26 0,02 12,98 <0.001

COMPETITOR 0,85 0,19 4,61 <0.001

CUB x COMPETITOR -1,22 0,24 -5,18 <0.001

c) Likelihood for pride males to use open habitats

Intercept -0,26 0,29 -0,90 0.37

CUB -0,12 0,02 -5,59 <0.001



COMPETITOR 0,07 0,22 0,31 0,76

CUB x COMPETITOR -0,31 0,26 -1,20 0,23

Table  S4.3.  Outcome  characteristics  of  proximity  events  between  pride  males  and 

competitor males. (a)  Likelihood for pride males to initiate the proximity events with 

competitor males, estimated using a logistic regression to the binary response variable 

(“initiated” or “ did not initiate”),  (b)  Logarithm of the competitor displacement to the 

proximity-event site with pride males, estimated using a log-linear regression model, 

according to the presence of cubs in the pride (CUB), the difference of age between the 

pride males and their competitors (AGE) and the time following the proximity event 

(HOUR).

Model – cubs < 12 

months
β SE z-value p-value

a) Likelihood  for  pride  males  to  initiate  the  proximity  event  with 

competitor males

Intercept 0,39 0,36 1,09 0.28

CUB 0,41 0,28 1,44 0.15

AGE -0,08 0,23 -0,36 0.72

b) Logarithm of the competitor displacement to the proximity event 

site with pride males

Intercept 6,85 0,16 43,98 <0.001

Log(HOUR) 0,18 0,03 6,27 <0.001

CUB 0,48 0,10 4,67 <0.001

AGE -0,27 0,16 -1,73 0.08


