
HAL Id: hal-04749325
https://hal.science/hal-04749325v1

Submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-varying habitat selection analysis: A model and
applications for studying diel, seasonal, and post-release

changes
Romain Dejeante, Marion Valeix, Simon Chamaillé-Jammes

To cite this version:
Romain Dejeante, Marion Valeix, Simon Chamaillé-Jammes. Time-varying habitat selection analysis:
A model and applications for studying diel, seasonal, and post-release changes. Ecology, 2024, 105
(2), pp.e4233. �10.1002/ecy.4233�. �hal-04749325�

https://hal.science/hal-04749325v1
https://hal.archives-ouvertes.fr


 

1 

 

Journal name: Ecology 1 

Manuscript type: Statistical report 2 

 3 

Time-varying habitat selection analysis: A model and applications for studying diel, 4 

seasonal, and post-release changes 5 

 6 

Romain Dejeante
1*

 ; Marion Valeix
1,2

 ; Simon Chamaillé-Jammes
1,3

 7 

1. CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France 8 

2. CNRS, Université de Lyon, Université Lyon1, Laboratoire de Biométrie et Biologie 9 

Evolutive UMR 5558, 69622 Villeurbanne, France 10 

3. Mammal Research Institute, Department of Zoology and Entomology, University of 11 

Pretoria, Pretoria, South Africa 12 

* Corresponding author: romain.dejeante@cefe.cnrs.fr 13 

 14 

Open Research: Data and code are archived on a figshare depository (Dejeante, Valeix, and 15 

Chamaillé-Jammes 2023) 16 

 17 

Keywords: habitat selection; migration; post-release; resource selection function; seasonality; 18 

space use; temporal variation; time-varying effects  19 



 

2 

 

Abstract 20 

Resource selection functions are commonly employed to evaluate animals’ habitat selection, 21 

e.g., the disproportionate use of habitats relative to their availability. While environmental 22 

conditions or animal motivations may vary over time, sometimes in an unknown manner, 23 

studying changes in habitat selection usually requires an a priori segmentation of time in 24 

distinct periods. This limits our ability to precisely answer the question ‘when is an animal’s 25 

habitat selection changing?’. Here, we present a straightforward and flexible alternative 26 

approach based on fitting dynamic logistic models to used/available data. First, using 27 

simulated datasets, we demonstrate that dynamic logistic models perform well to recover 28 

temporal variations in habitat selection. We then show real-world applications for studying 29 

diel, seasonal, and post-release changes in habitat selection of blue wildebeest (Connochaetes 30 

taurinus). Dynamic logistic models allow to study temporal changes in habitat selection in a 31 

framework consistent with resource selection functions, but without the need to segment time 32 

in distinct periods, which can be a difficult task when little is known about the process 33 

studied, or may obscure inter-individual variability in timing of change. These models should 34 

undoubtedly find their place in the movement ecology toolbox. We provide R scripts to 35 

facilitate their adoption. We also encourage future research to focus on how to account for 36 

temporal autocorrelation in location data, as this would allow statistical inference from 37 

locations data collected at a high frequency, an increasingly common situation.  38 

 39 

Introduction 40 

Changes in environmental conditions consistently challenge animals in their lives, leading 41 

them to regularly adjust their behavior. One of the important ways animals do so is by using 42 

the landscape they live in differently, i.e., by relocating themselves or selecting habitats 43 

differently. This is most clearly exemplified by migrations, which occur in response to 44 
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seasonal changes in weather and/or resource availability (Dingle 2014). Changes at smaller 45 

time-scales also occur, such as when animals shift habitats in response to forage depletion or 46 

day/night alternation in predation risk (Courbin et al. 2019). Naturally, discovering and 47 

understanding such changes in space use and habitat selection is a key goal of ecologists. 48 

  Over time, habitat selection analysis (HSA) conducted using the resource selection 49 

function (RSF) approach (Boyce et al. 2002) has become the standard framework to study 50 

changes in animals’ habitat selection. RSF analyses statistically compare the environmental 51 

characteristics of used locations collected over a period of time with the characteristics of 52 

locations available during that period. As such, a RSF estimates the average strength of 53 

selection for the various habitats considered over the period of interest. How this period is 54 

defined is up to the researcher, but strongly affects the results and the associated 55 

interpretations (Mayor et al. 2009). As the within-period variability in selection is averaged, 56 

finer-scale temporal dynamics (e.g., day/night changes when the period covers weeks or 57 

months) in selection are overlooked, and the mean selection strength estimated might 58 

represent an average that is not meaningful. This would be the case if, for instance, the study 59 

period encompasses two different phases in an animal’s habitat selection behavior without the 60 

researcher being aware of it. 61 

Segmenting time to define biologically relevant periods over which to conduct HSA 62 

may be difficult, and often involves somewhat arbitrary decisions with unknown 63 

consequences. This is true for even well studied periods like seasons (Basille et al. 2013) or 64 

day-night periods (Richter et al. 2020). Starts and ends of seasons vary between years, and 65 

can only be roughly defined without ancillary data. Some seasons like spring or fall are also 66 

clearly periods of environmental changes during which patterns of habitat selection are 67 

unlikely to be constant. Animal needs and motivations, and thus habitat selection (Roever et 68 

al. 2014) may also change at unpredictable (for the researcher) times, such as when they 69 
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disperse (Delgado et al. 2009). This again makes segmentation of time into distinct periods 70 

difficult, or even irrelevant if one is interested in the dynamics of the change itself. This issue 71 

has been recognized before and various suggestions have been offered, from using a 72 

combination of movement metrics and habitat use information to define periods (but without 73 

estimating habitat selection) (Basille et al. 2013), to integrating time as one of the predictors 74 

in habitat-selection models (but with a constraint on the shape of the time-dependence) 75 

(Picardi et al. 2021), or using continuous-time movement models (but with a complex 76 

implementation) (Hooten et al. 2014). There is currently no simple yet flexible approach to 77 

describe the temporal dynamics of habitat selection that underlie the long-term, averaged, 78 

pattern revealed by RSF analyses. 79 

Recent developments of multi-state step-selection functions (SSF) (Nicosia et al. 80 

2017; Prima et al. 2022) now allow one to segment a movement trajectory, without a priori, 81 

in periods differing by the way the animal moves and selects habitats. Each period represents 82 

times when the animal is in one of a generally limited number of possible behavioral states. 83 

Being SSF models, they do not estimate habitat selection at the same scale than RSF models: 84 

they focus on establishing whether habitats can explain that some ‘steps’ (generally over 85 

minutes or hours) are more likely than others. Thus, while useful (see examples in Prima et 86 

al. 2022), multi-state SSFs cannot answer the question as to whether the selection revealed by 87 

a RSF analysis represents a selection constant over time, an average measure of a fluctuating 88 

pattern of selection, or even whether contrasted selection patterns during a period of interest 89 

cancel out in the RSF estimation. 90 

Here, we present how dynamic logistic regression models allow one to easily estimate 91 

the temporal dynamics of habitat selection that underlie the long-term, averaged, pattern 92 

revealed by RSF analyses, without a priori segmentation of time into distinct periods. 93 

Dynamic logistic regression models are commonly used to analyze binary time series in 94 
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survival analysis (Martinussen and Scheike 2006), but can be applied to other data sources 95 

(Fahrmeir 1992). First, we use simulated movement data to demonstrate that dynamic logistic 96 

regression models can adequately recover time-varying habitat selection coefficients. We also 97 

highlight the influence of parameters, whose values are under the researcher’s control, on the 98 

estimation process. Second, we illustrate the usefulness of the approach by applying time-99 

varying HSA on blue wildebeest (Connochaetes taurinus) tracking data, showing how one 100 

can describe temporal variations of animal habitat selection such as diel, seasonal, and post-101 

release changes. The relevant R scripts are provided to facilitate the adoption of the method 102 

by ecologists. 103 

Methods  104 

Dynamic logistic models for time-varying HSA 105 

General principles of dynamic logistic models 106 

Here, we briefly describe the discrete-time state space model developed by Fahrmeir (1992) 107 

to estimate time-varying coefficients from generalized linear models, and especially logistic 108 

models. Generally, discrete-time state space models relate observations over time to hidden 109 

parameters, with hidden parameters following a Markovian transition model (Auger‐Méthé et 110 

al. 2021). Applied to dynamic logistic regressions in the context of time-varying HSA, such a 111 

model can be formulated using the following equations:  112 

(equation 1) 𝑙𝑜𝑔𝑖𝑡(𝑝𝑡) = 𝛽𝑡,0 + 𝛽𝑡,1𝑥𝑡,1+. . . +𝛽𝑡,𝑛𝑥𝑡,𝑛 113 

(equation 2) 𝛽𝑡 = 𝛽𝑡−1 + 𝑣𝑡, with 𝑣𝑡~ 𝑁(0,𝑸) 114 

with 𝑝𝑡 = 𝑃𝑟(𝑦𝑡 = 1) the probability of the binary response variable 𝑦𝑡 being one (i.e., used 115 

versus available), (𝛽𝑡,0, . . . , 𝛽𝑡,𝑛) the hidden parameter vectors (i.e., time-varying selection 116 

coefficients), (𝑥𝑡,1, . . . , 𝑥𝑡,𝑛) the covariates (i.e., environmental layers), 𝑣𝑡 the error process 117 

(i.e., sequence of independent random variables), 𝑸 the covariance matrix of the Markov 118 

chain that contains values that will affect the smoothness of the estimated time-series of 119 
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habitat selection coefficients. Here, following Fahrmeir (1992) and Christoffersen (2021; 120 

2022), we used a simple first order random walk model for the state equation (equation 2). 121 

See Christoffersen (2021) for details on second-order random walk model formulation. The 122 

covariance matrix Q is a symmetric matrix of n+1 dimension, with initial values chosen by 123 

the experimenter (see the “Implementation in the context of HSA" section to determine initial 124 

values) and then estimated during the fitting process (see below).  125 

The model coefficients and the values of the covariance matrix over time are 126 

estimated from the EM algorithm described by Fahrmeir (1992). First, the E-step procedure 127 

recursively iterates prediction, correction, and smoothing steps to approximate and maximize 128 

posterior mode estimations of model coefficients, using the generalized extended Kalman 129 

filter and smoother algorithm described by Fahrmeir and Kaufmann (1991). Second, the M-130 

step procedure automatically updates over time the covariance matrix. A more comprehensive 131 

description of the EM algorithm is provided by Christoffersen (2021). 132 

Implementation in the context of HSA 133 

To conduct time-varying HSA using dynamic logistic models, the following steps are 134 

required. First, as in RSF analyses, a sample of locations that could be considered ‘available’ 135 

is drawn. This can be, for instance, locations sampled randomly within the animal home 136 

range. Each used location (𝑦𝑡 = 1) obtained at time t is paired with N random locations 137 

(𝑦𝑡 = 0). Each used and available location is then characterized using environmental 138 

variables or any other variable of interest (𝑥𝑡,1, . . . , 𝑥𝑡,𝑛). Finally, the time-varying parameters 139 

(𝛽𝑡,1, . . . , 𝛽𝑡,𝑛) are estimated by fitting a dynamic logistic model, with type of location (used 140 

vs. available) as response variable 𝑦𝑡 and the time series 𝑥𝑡,𝑛 as predictors (cf. equation 1). 141 

Note that caution is required when estimating time-varying habitat selection 142 

coefficients from location data collected at relatively high frequency. Classical RSF and the 143 

model presented here do not account for temporal autocorrelation in location data. In 144 
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particular, it is assumed that, within the time interval between two locations, the animal could 145 

relocate anywhere in the area in which random locations are drawn. When this is not the case, 146 

estimates of habitat selection coefficients are unbiased but their standard errors are biased 147 

downward, i.e., are too small. In this situation, one may either subsample data to a lower 148 

frequency to obtain a valid statistical inference, or remain within the framework of a 149 

descriptive analysis aiming at exploring data, for instance for gaining insights on the possible 150 

existence of frequent habitat selection changes. 151 

Here we fit the dynamic logistic model using the “ddhazard” function from the 152 

dynamichazard R package by Christoffersen (2021), which implements the method described 153 

by Fahrmeir (1992). We provide in “online appendix” the script needed to run a time-varying 154 

HSA on a simulated trajectory (Dejeante, Valeix, and Chamaillé-Jammes 2023); the model 155 

fitting takes about 3s on this dataset, on PC with an Intel(R) Xeon(R) CPU E5-1650 0 @ 156 

3.20GHz. 157 

General guidelines to initialize the wiggliness parameter (Q) 158 

To fit a dynamic logistic model, one needs to first provide initial values to fill in the 159 

covariance matrix, diagonal at initialization, and initiate the estimation process. Here, we 160 

provided the same initial values for all diagonal elements (referred to as Q hereafter). As this 161 

initial value can greatly affect the wiggliness of the model (see Results), we also refer to Q as 162 

the wiggliness parameter. While using caution is thus required when choosing the initial 163 

value of Q, our results show that this value can be increased until (1) the estimates of Q after 164 

fitting converge towards a similar value (Appendix S1: Figure S1) and (2) the estimated 165 

coefficients of habitat selection converge to a similar value too (Appendix S1: Figure S2). 166 

Hence, we encourage users of the model to test several initial values for Q. One way to select 167 

among them is by looking at the correlations between the estimated values of Q after fitting 168 
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and/or the correlations between the time series of the estimated time-varying coefficients 169 

(Appendix S1). 170 

Evaluation of the accuracy of dynamic logistic models for time-varying HSA 171 

To assess the ability of our approach to detect shifts in habitat selection patterns, we (1) 172 

simulated animal trajectories emerging from time-varying selection for one environmental 173 

variable, and (2) fitted dynamic logistic models on the simulated data to compare the 174 

estimated coefficients with the theoretical values used in the simulations. 175 

Landscape and movement simulation 176 

For simplicity, animal trajectories were simulated on one habitat layer (500 × 500 cells), with 177 

values that did not vary over time. To mimic patchy landscapes, we used spatially correlated 178 

Gaussian random fields, which attribute a continuous value ranging from 0 to 1 to each cell, 179 

using the localGibbs R package (Michelot, Blackwell, and Matthiopoulos 2019). Following 180 

Michelot, Blackwell, and Matthiopoulos (2019), we then simulated animal trajectories over 181 

500 time steps using a local Gibbs movement model. For each time t, 1000 potential locations 182 

were uniformly generated within a 2×100-pixel radius around the current location, and the 183 

location at time t+1 was sampled among them with probabilities proportional to the strength 184 

of selection for potential locations. This strength of selection was determined by the value of 185 

the habitat layer at these locations, and by the model coefficient describing how the strength 186 

of selection changes with values of the habitat variable. An important benefit of using a local 187 

Gibbs model is that the coefficient of habitat selection used in the simulation model is 188 

theoretically equal to the one that should be estimated by a RSF fitted on the data (Michelot, 189 

Blackwell, and Matthiopoulos 2019). The local Gibbs model, however, does not allow one to 190 

directly simulate animal trajectories with time-varying habitat selection coefficients. Hence, 191 

at each time t, we changed the value of the coefficient of the local Gibbs model to generate 192 

the location at time t+1, based on the location and on the coefficient at time t. 193 
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Scenarios of temporally-changing habitat selection   194 

To be able to test whether changes in habitat selection strength could be robustly recovered 195 

by dynamic logistic models, we built scenarios that differed in terms of how often the 196 

model’s coefficient of habitat selection changed over time. We did so by randomly sampling, 197 

in the [-5, 5] range, and either changing every 20 steps (referred as “frequent change” 198 

scenario) or every 250 steps (referred as “rare change” scenario), the model’s habitat 199 

selection coefficient. To avoid having sudden, step-like, changes in habitat selection, we then 200 

used spline regressions to smooth the variations of habitat selection over time. For each 201 

scenario, we generated 100 trajectories per simulated landscape, and replicated this on 100 202 

different landscapes. We then tested our ability to recover the temporal changes in the 203 

model’s habitat selection coefficient by fitting a dynamic logistic regression model to each 204 

trajectory as presented above, drawing 100 available locations at each time-step within the 205 

99% utilization distribution location-based kernel of each simulated trajectory. We also 206 

assessed to what extent the model’s estimation was affected by the value of the wiggliness 207 

parameter Q. We did so by fitting, for each dataset of each scenario, a set of models with 208 

different values of Q, ranging from 0.01 (i.e., low wiggliness) to 2 (i.e., high wiggliness). For 209 

each value of Q, we then averaged the estimated coefficients over each set of 100 simulated 210 

trajectories per landscape, and fitted a linear regression with the mean estimated coefficient 211 

as response and theoretical coefficients, which were used in the simulations, as predictors, 212 

adding a random intercept with replication number. A slope near 1 would indicate that a 213 

dynamic logistic model is able to estimate the temporal changes in the habitat selection 214 

coefficient correctly, and an intercept near 0 would indicate that the estimations are not 215 

biased. 216 

In addition, to demonstrate that the time-varying HSA approach reveals the temporal 217 

dynamics of the selection process that is commonly studied using RSF analyses, we averaged 218 
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the time-varying coefficients estimated from 5000 trajectories (of 500 time-steps each) 219 

covering a broad range of selection patterns and landscape composition, and compare these 220 

values with the coefficients estimated by a conventional RSF analysis on the same 221 

trajectories. 222 

Time-varying HSA: applications 223 

To illustrate some applications of time-varying HSA, we analyzed wildebeest movement 224 

datasets collected in Hluhluwe-iMfolozi Park (South Africa). There, surface-water 225 

availability, which is high during the wet season (October-March) as temporary waterholes 226 

are filled up by the rains, becomes low in the dry season (April to September), with water 227 

remaining available only in a few rivers. Since wildebeests are water-dependent grazers that 228 

preferentially forage in open grasslands, we used the distance to the closest main river and the 229 

habitat openness as relevant habitat variables to demonstrate the use of dynamic logistic 230 

models. For each study below, we fitted the models with a relatively high value for Q (Q=2), 231 

as simulations showed that high wiggliness in the estimates lead to better results (see Results 232 

section). We used the amt R package to generate random points and extract the values of 233 

predictors at used and available locations (Signer, Fieberg, and Avgar 2019). 234 

Short-term temporal variations: diel changes in habitat selection 235 

We used tracking data collected on one wildebeest over one month in the dry season, at a fix 236 

rate of one location every 15 minutes. In the context of the model presented here, such data 237 

are highly autocorrelated and estimated standard errors and confidence intervals are likely 238 

biased downward. Interpretation of results should therefore be done with caution. Habitat 239 

selection coefficients remain however estimated without bias, and we included the analysis 240 

here to show how it allows exploring changes in habitat selection at short time scales. Other 241 

analyses, more statistically robust, are presented below.  242 
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Following the practical implementation of time-varying HSA described above, we 243 

estimated the habitat selection of this wildebeest by (1) generating, for each time t, 100 244 

random locations within its home range (99% utilization distribution location-based kernel), 245 

(2) extracting the environmental characteristics of used and random locations, and (3) fitting 246 

a dynamic logistic regression to compare the habitat openness and the distance to the closest 247 

main river between the used and available locations over time. A preliminary visual 248 

inspection of the GPS tracking data suggested day/night relocations of the wildebeest 249 

(Appendix S2: Figure S1). To check whether these changes were associated with changes in 250 

habitat selection, we estimated the temporal autocorrelation of the time-varying habitat 251 

selection coefficients. 252 

Long-term temporal variations: seasonal changes in habitat selection 253 

We used tracking data collected on one wildebeest over one year at a fix rate of one location 254 

every 15 minutes. To avoid issues related to the temporal autocorrelation in location data, and 255 

because the temporal scale of the analysis does not require locations to be collected at such a 256 

high frequency, we subsampled our dataset to one location per day and one location per night. 257 

A preliminary visual inspection of the spatial data showed that the individual moved mostly 258 

westward and then eastward during the period (Appendix S2: Figure S2). Hence, in addition 259 

to habitat openness and distance to the closest river, we added longitude to the model’s 260 

predictors. We generated 10 random locations per time t within its home range to fit the time-261 

varying HSA. To provide an example of how one can subsequently delineate temporal 262 

periods that are homogeneous in terms of habitat selection, we further segmented the time 263 

series of each model’s coefficients separately, using the segmentation method described, and 264 

implemented in the segclust2d R package, by Patin et al. (2020). 265 

Event-based variations: post-release changes in habitat selection 266 
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We used the tracking data of three wildebeest simultaneously introduced in the park in 267 

October 2020. Data were collected over the 100 days following the release date, at a fix rate 268 

of one location every hour. As in the previous analysis on the long-term temporal variations 269 

of wildebeest’s habitat selection, we subsampled the dataset to one location per night and one 270 

location per day to avoid issues with the temporal autocorrelation in location data. We then 271 

estimated wildebeest’s habitat selection drawing 100 random locations, for each time t, 272 

within their individual home ranges. To incorporate the dispersal of the released individuals 273 

into HSA, we added longitude and latitude to model’s predictors. Hence, we fitted a dynamic 274 

logistic model for each individual, using habitat openness, distance to the closest river, 275 

longitude, and latitude as predictors. 276 

Results 277 

Theoretical evaluation 278 

In general, we found that dynamic logistic models allowed us to adequately recover the 279 

temporal changes in the coefficients of habitat selection used in the simulations. When the 280 

true coefficients did not change often (‘rare change’ scenarios), the wiggliness parameter had 281 

little impact and estimations were always good (Figure 1a-b; Appendix S1: Figure S3). When 282 

the true coefficients did change often (‘frequent change’ scenarios), it became critical to use 283 

high values of the wiggliness parameter to obtain estimates matching the theoretical 284 

coefficients (Figure 1c-d; Appendix S1: Figure S3). Importantly, the effect of the wiggliness 285 

parameter tend to stabilize at large values of Q (Appendix S1: Figure S4), making it safe to 286 

use large values when investigating large and frequent changes in habitat selection.  287 

The average of the time-varying coefficients was nearly equal to the coefficient 288 

estimated by a conventional RSF (Figure 2a), demonstrating that the time-varying HSA 289 

approach addresses the same selection process as the one studied by conventional RSF 290 

analyses, while providing more information as it describes the temporal dynamics of 291 
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selection. Also, it can reveal whether the coefficients of a RSF are biologically relevant - 292 

when time-varying selection coefficients have uni-modal distributions (Figure 2b) - or not - 293 

when time-varying selection coefficients have multi-modal distributions (Figure 2c), and RSF 294 

coefficients represent a statistical average that never represents the true selection process. 295 

Short-term temporal variations: diel changes in habitat selection 296 

A time-varying HSA conducted with a dynamic logistic model suggested that the wildebeest’s 297 

selection for open habitats and rivers varied greatly over the month of the study (Figure 3). In 298 

particular, the wildebeest’s selection for open habitats apparently changed across the 299 

day/night cycle, as the auto-correlation period of the coefficient was approximately 24h 300 

(Appendix S2: Figure S3). Open habitats seemed to be strongly selected during night-time, 301 

but not selected, and sometimes even avoided, during daytime (Figure 3a). Such day/night 302 

shifts were not noticeable for the selection of areas close to rivers (Figure 3b), but there 303 

seemed to be variations over periods of 3 or 4 days. Contrary to the diel variations in the 304 

selection of open habitats, such variations would be hard to detect using the common HSA 305 

approach based on a segmentation of time into distinct periods. 306 

Long-term temporal variations: seasonal changes in habitat selection 307 

The time-varying HSA showed clear seasonal changes in the wildebeest’s habitat selection, 308 

which could then be separated in several periods according to the segmented time-series 309 

(Figure 4). The existence and timing of some these periods were unpredictable a priori. For 310 

example, this wildebeest maintained the same overall strength of selection for open habitats 311 

from November to August, whereas this period covers months from both the dry and wet 312 

seasons (Figure 4a). Also, we note that during the dry season (April to June) this wildebeest 313 

did not preferentially use areas close to rivers, but selected areas close to rivers consistently 314 

from July to mid-August (green segment) and likely did back-and-forth trips to and away 315 

from the rivers from mid-August to October (yellow segment) (Figure 4b). 316 
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Event-based variations: post-release changes in habitat selection 317 

After their release, the three wildebeest generally selected open habitats, but their level of 318 

selection differed between individuals (Appendix S2: Figure S4), particularly towards the end 319 

of the study period (Figure 5a). Differences in the selection for areas close to rivers (Figure 320 

5b) or in the longitude (Figure 5c) and latitude (Figure 5d) of the park also became apparent 321 

at the end of the first month after release. Then, although the three wildebeest established in 322 

different areas (see difference in selection for longitude and latitude), the selection of areas 323 

close to rivers remained and was similar for two wildebeests (colored in green and yellow), 324 

whereas the third one avoided the areas close to rivers (colored in purple). 325 

Discussion 326 

There is clear evidence that animals’ habitat selection changes regularly and at different time-327 

scales, from diel to seasonal shifts, or during key life-history events such as dispersal. 328 

Unfortunately, ecologists have had limited and often unsatisfactory options to study these 329 

changes. Most commonly, an a priori segmentation of time into distinct periods of apparent 330 

biological relevance is made, although this segmentation can sometimes be difficult to justify, 331 

let alone to validate. The alternative approach of simply integrating time as predictor in a 332 

RSF has limitations (see discussion in Picardi et al. 2021), and more statistically complex 333 

approaches (Hooten et al. 2014) are unlikely to be broadly used. In this work, we propose a 334 

novel approach based on dynamic logistic models (Fahrmeir 1992) to easily estimate 335 

temporal changes in habitat selection, in a framework consistent with RSF. We demonstrate, 336 

using simulations, its general validity, while highlighting a point of attention (parameter Q). 337 

We also showcase its use for the study of diel, seasonal, and post-release changes in habitat 338 

selection. 339 

 With this time-varying HSA approach, one can simultaneously estimate both the 340 

timing and the amplitude of habitat selection changes. Estimation of the timing of change 341 
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from the data is what makes this approach novel and attractive. Many times, a priori 342 

segmentation of time into distinct periods requires expert knowledge or is based on ancillary 343 

data (e.g., climate data) whose relevance for a particular dataset is not warranted. ‘Letting the 344 

data speak’ allows revealing the actual pattern of change. This may be of particular 345 

importance, for instance, in the study of inter-individual variability, as the timing of change 346 

can be one of the differencing variables, as evidenced in our post-release study case. As 347 

recognized by Picardi et al. (2021), time-varying HSA opens a new avenue to broaden the 348 

scope of the studies of inter-individual differences in space use, which has so far focused on 349 

movement characteristics or habitat selection strength. More generally, even when the 350 

relevance of an a priori segmentation of time into distinct periods is easier to ascertain, such 351 

as when comparing daytime to night-time habitat selection, time-varying HSA allows one to 352 

immediately identify unusual periods (e.g., night of the 27
th

 of August, when the wildebeest 353 

did not increase its selection for open habitat). These unusual periods may either be of 354 

interest (in such case, one would have to conduct one standard HSA per night to have 355 

discovered this), or be ‘noise’ that should not affect the estimation of habitat selection 356 

strength during more ‘usual’ periods (conversely to what occurs in a standard HSA). 357 

 Importantly, data-driven estimation of the timing of change in habitat selection makes 358 

it possible to derive ‘segments’ of homogeneous habitat selection, and opens the way to 359 

estimate specific habitat selection ‘modes’ of animals defined by the strength of habitat 360 

selection. Behavioral modes relevant to space use are commonly defined by movement 361 

characteristics such as speed and turning angles (Patin et al. 2020; McClintock and Michelot 362 

2018), but do not integrate information about habitat selection. The use of segmentation-363 

clustering algorithm such as segclust2d or hidden-Markov models on the time-series 364 

coefficients obtained by time-varying HSA will allow one to extract habitat selection modes, 365 

and to estimate the duration and frequencies of such modes. This could complement very 366 
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recent works developing behavioral-mode detection approaches based on SSF (Prima et al. 367 

2022; Nicosia et al. 2017; Klappstein, Thomas, and Michelot 2022), although by definition 368 

the temporal scale of selection considered is much different. 369 

Despite that, rigorously, conventional RSF models are not time-series models, our 370 

approach is closer to the RSF than to the SSF framework. Indeed, by generating random 371 

points within the whole animal’s home range, the estimated time-varying coefficients 372 

measure when an animal is spending time in a “rare” habitat relatively to its large-scale 373 

availability. The selection process measured here is the fact that animals move and stay in 374 

rare habitats over time, and not the ‘step’ selection resulting from animal’s choice within the 375 

steps allowed by the sampling rate. Hence, we make the biological and statistical assumption 376 

that animal’s habitat selection at time t depends on the history of animal’s habitat selection up 377 

to t (Fahrmeir 1994). An example of why such an assumption makes sense is animal 378 

migration: once established in a new range, coefficients from a SSF (i.e., fine scale) would 379 

not show a selection for this new range, while coefficient from a RSF (i.e., large scale) would 380 

show a selection for such areas when considering the whole study area as available. 381 

One common use of habitat selection modelling is to predict and map population 382 

distribution within landscapes (Morris, Proffitt, and Blackburn 2016). How to best map 383 

predicted space use from a time-varying habitat selection analysis is not obvious as 384 

coefficients are, by definition, time-varying. However, one can perform a time-varying 385 

habitat selection analysis to detect temporal periods of homogeneous habitat selection (as 386 

done in this work), and use the average of coefficients to predict the distribution of space use 387 

within the periods of interest, which for instance could be seasons. When habitat selection is 388 

continuously changing, it does not make sense to predict a static distribution, either from a 389 

conventional RSF or from a time-varying HSA. A time-varying analysis, however, allows one 390 

to actually verify whether habitat selection is changing or not over the period of interest.  391 
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Results from the time-varying approach proposed here are to some extent sensitive to 392 

the model’s wiggliness. In particular, but without surprise, model allowing for little 393 

wiggliness (small values of Q) can provide a poor fit to the data when habitat selection often 394 

changes. Models allowing for high wiggliness generally perform much better, especially if 395 

habitat selection often changes. There was no obvious evidence of an optimum value of Q to 396 

look for, as correlations between the estimates of habitat selection plateaued when increasing 397 

Q values. Therefore, running a time-varying HSA with a high value for Q appears a safe way 398 

to conduct robust analyses. Note however that dynamic logistic models do not account for the 399 

temporal autocorrelation that could characterize the used locations if these were collected at a 400 

high frequency, relatively to the movement of the animal. In such case, the estimated standard 401 

errors of the models’ coefficients would be biased downward (i.e., be too small), which could 402 

lead to overconfident interpretations. Some movement modelling frameworks such as 403 

integrated-SSF (Avgar et al. 2016), MCMC movement models (Michelot et al. 2020) or 404 

continuous-time models (Michelot et al. 2019) naturally account for autocorrelation. These 405 

models however estimate average habitat selection at the temporal scale of data collection 406 

(SSF and MCMC models) or at a near-instantaneous scale (continuous-time models), which 407 

may not be what ecologists are interested in when they focus on large-scale behavioral 408 

decisions. Continuous-time models could have time-varying formulations (Michelot et al. 409 

2021), but unfortunately fitting these models is computationally heavy and thus slow. The 410 

RSF framework and dynamic logistic models remain therefore attractive. How to best 411 

account for temporal autocorrelation in location data in RSF models is currently being 412 

studied (see Alston et al. 2023), and we encourage future research to focus on how to account 413 

for temporal autocorrelation in dynamic logistic models. As the estimation of the coefficients 414 

themselves is not biased in presence of autocorrelation, the analysis of high-frequency data 415 
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with dynamic logistic models could still be useful to obtain a visual description of the 416 

temporal trend in habitat selection, if interpreted with caution. 417 

 In conclusion, we think dynamic logistic models offer an easy yet powerful approach 418 

to conduct time-varying HSA, for both exploratory and inferential studies. Our work, in 419 

which we show real-world applications and provide R scripts, aims to facilitate the 420 

appropriation of the method by ecologists and enriches their statistical toolbox. Novel 421 

questions about how animals time their response to environmental changes can now be 422 

addressed. 423 
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Figure 535 

Figure 1. Estimated coefficient of habitat selection (purple) according to the frequency of 536 

change of the expected coefficient (yellow) and to the value of the model wiggliness 537 

parameter Q. The estimated coefficient is averaged on 100 simulations. Lighter ribbons show 538 

standard deviation, and darker ribbons show 95% confidence intervals.  539 

Figure 2. Comparison between time-varying HSA and conventional RSF. (a) Relationship 540 

between the coefficients of habitat selection estimated from time-varying HSA and averaged 541 

over the time-series, to the RSF coefficient. Each dot shows the coefficients estimated from 542 

the trajectory of one individual simulated over 500 time steps. (b-c) Examples of the 543 

distribution of the time-varying coefficients. The vertical line shows the average value of the 544 

time-varying coefficients, whereas the point and range above the distribution shows the RSF 545 

coefficient and its 95% confidence interval. 546 

Figure 3. Estimations of short-term temporal variations of wildebeest’s selection for open 547 

habitats (a) and areas close to rivers (b). Positive coefficients indicate selection for open 548 

habitats or areas far from rivers. Ribbons show 95% confidence interval. Note, however, that 549 

location data used in this analysis were collected every 15-minutes, likely leading to 550 

confidence intervals biased downward (i.e., too small) because of autocorrelation. The 551 

selection coefficients are however unbiased. The night phases are shown by dark colors in the 552 

background. 553 

Figure 4. Estimations of long-term temporal variations of wildebeest’s selection for open 554 

habitats (a) and areas close to rivers (b). Positive coefficients indicate selection for open 555 

habitats or areas far from rivers. Ribbons show 95% confidence interval. Data used in this 556 

analysis were subsampled to one location per night and one location per day to avoid issues 557 

with autocorrelation. Common definitions of wet (blue) and dry (red) seasons are shown in 558 

the background in panels (c-d). Lines and ribbons are colored on a purple-to-yellow gradient, 559 
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with colors corresponding to segments of homogeneous habitat selection, as obtained with 560 

the segclust2d approach. 561 

Figure 5. Estimations of post-release variation of wildebeest’s selection for open habitats, 562 

areas close to rivers, longitude, and latitude. Positive coefficients indicate selection for open 563 

habitats, areas far from rivers, or areas at greater longitude and latitude. Estimated 564 

coefficients (line) and 95% confidence intervals (ribbons) are colored per individuals. Data 565 

used in this analysis were subsampled to one location per night and one location per day to 566 

reduce the autocorrelation between the used locations. 567 
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Appendix S1: Insights into Q, the wiggliness, and its initialization from computer 574 

simulations 575 

S1.1. General guidelines to initialize the wiggliness parameter Q 576 

First, our results show that the value of Q can be increased until the estimated value of Q at 577 

the end of the fitting process converge towards a similar value (Appendix S1: Figure S1). 578 

Hence, we encourage users of the model to test several values of Q until the estimated value 579 

has converged.  580 

 581 

 582 

Figure S1. Influence of the initial value used to fill in the covariance matrix Q (initialization) 583 

on the estimated value of the value of Q relevant for the variance of beta (here referred to as 584 

Q(estimated)). Each point is the result of one time-varying HSA fitted to one trajectory 585 

simulated over 500 time steps.  586 

 587 

 588 

Second, our results show that the value of Q can be increased until the estimated coefficients 589 

of habitat selection converge towards a similar value (Appendix S1: Figure S2). Another way 590 
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to select among several initial values of Q is therefore to look at the correlations between the 591 

time series of the estimated time-varying coefficients. 592 

 593 

Figure S2. Relationship between the coefficients of habitat selection estimated from models 594 

“i" and “j” implemented with different initial values used to fill in the covariance matrix (Q). 595 

These initial values are shown in the grey panels (0.1; 1; 2; 3; 4; 5). In this example, one 596 

should choose initial values of the covariance matrix larger than 1, since below 1 the 597 

estimated coefficients varied greatly from one model to another. When the estimated 598 

coefficients are greatly correlated together, the choice of the initial value to fill in Q is ‘good 599 

enough’ as it shows that the models have converged towards the same estimated coefficients.  600 

 601 

S1.2. Evaluation of dynamic logistic models initialized with several values of Q 602 
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 603 

Figure S3. Comparison between the estimated and expected coefficients of habitat selection, 604 

according to the value of the wiggliness parameter Q used in the dynamic logistic model. 605 

High-wiggliness models performed better than low-wiggliness models to accurately estimate 606 

time-varying coefficients of habitat selection, both when habitat selection changes rarely and 607 

frequently over time. 608 
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 609 

Figure S4. Relationship between the value of the model wiggliness parameter Q and the 610 

correlation between the expected time-varying selection strength and the average time-611 

varying selection strength estimated on 100 replicates on 40 different landscapes, according 612 

to the frequency of change in habitat selection. Time-varying HSA was not sensitive to the 613 

choice of model wiggliness to estimate rare changes of habitat selection. On the contrary, 614 

high-wiggliness models performed better than low-wiggliness models to estimate frequent 615 

changes of habitat selection. 616 

 617 
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Appendix S2: Applications of time-varying HSA on wildebeest examples 624 

 625 

 626 

Figure S1. Illustration of the wildebeest’s locations recorded during one month in the dry 627 

season, at a fix rate of one location every 15 minutes. Background shows the distance to the 628 

closest river. Locations collected during the night are colored in purple, whereas those 629 

collected during the day are in yellow. 630 
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 631 

Figure S2. Illustration of the wildebeest’s locations recorded during one year, at a fix rate of 632 

one location every 15 minutes and subsampled to one location per hour. Locations are 633 

colored based on their collection time. 634 
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 636 

Figure S3. Temporal autocorrelation of the selection coefficient for open habitat 𝛽(𝑡)𝛽(𝑡 +637 

𝑙𝑎𝑔). Values close to 1 (resp. -1) indicate high auto-correlation, with similar selection 638 

strength (resp. opposite selection strengths), while values close to 0 indicate low auto-639 

correlation. 640 
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 642 

Figure S4. Distribution of the habitat selection coefficients for (a) habitat openness, (b) 643 

distance to the closest river, (c) longitude and (d) latitude. Each color shows the distribution 644 

of the selection coefficients for one individual. 645 
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