
HAL Id: hal-04749323
https://hal.science/hal-04749323v1

Submitted on 23 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empirical Model, Capacity Recovery-Identification
Correction and Machine Learning Co-Driven Li-ion

Battery Remaining Useful Life Prediction
Zhigang Lv, Zhiwen Chen, Peng Wang, Chu Wang, Ruohai Di, Xiaoyan Li,

Hui Gao

To cite this version:
Zhigang Lv, Zhiwen Chen, Peng Wang, Chu Wang, Ruohai Di, et al.. Empirical Model, Capacity
Recovery-Identification Correction and Machine Learning Co-Driven Li-ion Battery Remaining Useful
Life Prediction. Journal of Energy Storage, 2024, 103 (114274), �10.1016/j.est.2024.114274�. �hal-
04749323�

https://hal.science/hal-04749323v1
https://hal.archives-ouvertes.fr


Title: Empirical Model, Capacity Recovery-Identification Correction and Machine Learning Co-Driven 
Li-ion Battery Remaining Useful Life Prediction 

 
Zhigang Lva,b, Zhiwen Chenb,*, Peng Wangb, Chu Wangb, Ruohai Dib, Xiaoyan Lib, Hui Gaob 
a School of Mechatronic Engineering, Xi’an Technological University, China 
b School of Electronics and Information Engineering, Xi’an Technological University, China 
*Corresponding author: Zhiwen Chen (E-mail address: 1002129839@qq.com) 
 
Abstract: Li-ion battery is the most important energy storage and conversion device. RUL prediction, as 
an important part of the battery health management system, provides important information for specifying 
energy control strategies and preventing Li-ion battery failure. In this paper, Empirical Model, Capacity 
Recovery-Identification Correction and Machine Learning co-driven method was proposed to address the 
inaccurate and unreliable RUL predictions of Li-ion batteries caused by difference data and 
non-stationary trends. Firstly, on the basis of using only the historical data of the target Li-ion battery, the 
acknowledged bi-exponential degradation model was used to generate the guidance sequence, which 
guides the output of the machine learning model and avoids the unsatisfactory prediction effect caused by 
difference data. Secondly, the recoverable capacity present during the capacity degradation process was 
analyzed and identified, and overly aggressive or conservative predictions caused by non-stationary 
trends were avoided by correcting the historical recoverable capacity. Finally, experiment results on 
publicly available datasets show that the method proposed in this paper can effectively improve the 
accuracy of the prediction using historical data, with MAPE of the degradation trend prediction being 
only 3.79%, and the average RA of RUL prediction for different failure thresholds remaining at the level 
of 90%. 
Keywords: Li-ion Battery; RUL prediction; Empirical Model; Recovery-Identification Correction.  
 
1 Introduction 

Li-ion batteries, a new green renewable energy storage and conversion device, have broad 
applications. Li-ion batteries can not only effectively store clean energy such as wind and solar, but also 
provide power to new energy vehicles. This is an important way to achieve sustainable development and 
green low-carbon transformation [1]. As Li-ion batteries are being used in more and more devices, safety 
is being taken more and more seriously. Researchers have found that there is irreversible aging of Li-ion 
batteries [2]. If the aging Li-ion batteries are not repaired and replaced in time, leakage, combustion and 
explosion may occur, resulting in huge safety risks and economic losses. Therefore, the battery health 
management system was developed to ensure the safe and stable operation of Li-ion batteries by 
monitoring the charging and discharging process, estimating the health status, and predicting the aging 
failure [3]. 

In a battery health management system, the remaining useful life (RUL) of a Li-ion battery plays a 
crucial role in condition assessment and maintenance decisions for Li-ion batteries. RUL is the length of 
time that a battery can operate normally before it needs to be repaired or replaced. Some researchers 
analyze the degradation process of Li-ion batteries and extract health features [4], which are used as 
inputs to predict SOH [5]. Their work has made an important contribution to the analysis of the 
degradation mechanism of Li-ion batteries, but these methods can only obtain the SOH state at the current 
moment and cannot predict the future SOH trend, so it is difficult to predict the RUL of Li-ion batteries in 
use in practical application. More and more researchers obtain the RUL by first predicting the trend of 
capacity or SOH from the historical data of the battery, and then calculating the difference between the 
time in the future when the capacity or SOH drops to the failure threshold and the current time [6]. 

There have been a large number of researches on RUL prediction. The mainstream approaches are 
categorized into empirical model, data-driven model and hybrid model [7][8]. Empirical model is an 
approach based on empirical formulas and historical data. It establishes a mathematical formula to fit the 
degradation process by summarizing the degradation data of many full life cycles. For Li-ion batteries, 



polynomial or exponential functions are often used to establish the capacity or SOH degradation process 
[9]. Data-driven model is an approach based on big data analysis and pattern recognition. Data driven 
methods do not rely on physical mechanisms and a priori knowledge, so can be used for different types of 
objects. However, the models are less interpretable, which is a criticism of data driven methods. There are 
lots of data driven methods that have been developed, such as support vector machine (SVM) [10], 
relevance vector machine (RVM) [11], Probabilistic Neural Network (PNN) [12], Dynamic Bayesian 
Networks (DBN) [13], and Wiener Process (WP) [14], etc. Hybrid model is an approach based on two 
and more models. It combines multiple models to avoid the drawbacks of a single model. Zhiqiang Lyu et 
al [15]. constructed a hybrid model containing RVM, LSTM, and FNN, which combined the advantages 
of each network to achieve RUL prediction with higher accuracy. Hybrid models can combine the 
advantages of multiple models while circumventing the disadvantages [16]. However, in order to achieve 
this function, more research and optimization of model fusion and coordination are needed. 
1.1 Problems in RUL Prediction of Li-ion batteries 

With the continuous research on RUL prediction of Li-ion batteries, researchers have found that it is 
difficult to accurately predict the future state of Li-ion batteries. This is manifested in the following areas: 

(1) Li-ion battery is mainly composed of positive electrode, negative electrode, electrolyte and 
diaphragm. The current production process can’t guarantee that the composition of the two batteries’ 
materials is identical, resulting in a difference in the performance of the same type of batteries [17]. This 
difference in performance between individuals makes it difficult to construct a generic model of the same 
type of batteries from data on individual cells. Therefore, in order to construct an accurate model of the 
target Li-ion battery, it is often necessary to use the historical operating data of this Li-ion battery [18]. 

(2) The operating data of a single Li-ion battery increases with the duration of use. Only early 
operating data is available in the early stages of Li-ion battery commissioning. This is not enough data in 
relation to the full life cycle of a lithium-ion battery. The distribution characteristics of early operational 
data are different from those of full life cycle data. Models for predicting the full lifecycle state of a 
lithium-ion battery built from this data cannot accurately describe the future performance degradation 
process of this Li-ion battery, resulting in a low prediction reliability [19].  

(3) The capacity degradation process of Li-ion batteries is characterized by non-fixed-length periodic 
plunges and recoveries, forming a non-monotonically decreasing degradation trend. Such 
non-monotonically decreasing data makes it easy for models trained on historical data to focus on data 
with large fluctuations at the end of the historical data, and cannot learn the overall data trend well, which 
can easily lead to overly aggressive or conservative predictions [20]. 
1.2 Relevant Researches to Address These Problems 

A number of researchers have already been in touch with these issues and are at the beginning of 
their research in this direction. Chou JH et al. [21] obtained good RUL prediction based on transfer 
learning. Zhang Q et al. [22] used transfer learning to solve the modeling challenge with limited data. 
Large amounts of similar data are required for transfer learning. However, there is relatively little 
degradation data available for the same type of Li-ion battery, and the degradation trends of these data are 
different. This means that they can play little part in referencing. Therefore, more and more researchers 
expect to solve the challenge of RUL prediction by using the historical data of the Li-ion battery itself. 

In the prediction problem, the difference data mainly means that the distribution range of the 
historical data does not match the distribution range of the future data, e.g. the historical data is 
distributed in [0.8, 1] and the future data is distributed in [0.4, 0.8]. Prediction models trained on 
difference data are extremely accurate when trained and validated on historical data, but their accuracy 
drops dramatically when tested on future data. It is highly likely that the model output will not be able to 
span the historical data distribution or diverge significantly. There have been researchers who have 
constructed a model suitable for a specific purpose by informing the model of a priori/expert knowledge 
in a specific form and letting the model follow the guidance of the knowledge to complete the 
training/learning. For example, Wang C et al. [23] used a statistical method to first analyze the 
degradation trend of the fuel cell and input this degradation trend as a guidance sequence into the 
data-driven method to achieve the prediction, which to some extent overcame the drawbacks of the 
difference data. 

In the field of fault diagnosis/prediction, the phenomenon of experiencing a period of failure and 



then returning to normal and occurring periodically is generally referred to as recoverable/reversible 
failure. In Li-ion batteries, many researchers do not call this type of phenomenon by the same name, such 
as capacity recovery, capacity restoration, capacity mutation and so on [2]. In this paper, this phenomenon 
is referred to as capacity recovery, and the Li-ion battery capacity data segment exhibiting this 
phenomenon is referred to as recoverable capacity. For recoverable/reversible faults, academics are 
divided into two directions of solution: one is to filter out recoverable faults as anomalous data and not to 
be used for training the model, and the other is to include recoverable faults as one of the categories of 
faults that need to be diagnosed or as part of those that need to be predicted. For example, Hao L et al. [24] 
decomposed the capacity sequence of a battery into a degradation trend sequence and a capacity recovery 
fluctuation sequence by CEEMD and modelled them separately for prediction. Yue M et al. [25] designed 
a CNN-based recursive multistep performance prediction method that detects the seasonality of the data 
in order to correct the prediction results by considering intermittent performance recovery. 

In this paper, we address this problem of unsatisfactory data presented during the degradation of 
Li-ion batteries, expecting to predict the degradation trend and calculate the RUL under the condition of 
differential data formed by the inconsistency of the distribution characteristics of the historical data and 
the full life cycle data and under the condition of non-stationary trend caused by non-fixed-length 
periodic plunges and recoveries. The main contributions of this paper are as follows: 

(1) Predict the future SOH and calculate RUL on the basis of historical data. 
(2) Empirical formulae and data-driven are used to jointly complete the RUL predictions and address 

poor predictions caused by different data. 
(3) Identify the recoverable capacity present during degradation and improve the prediction 

reliability of the model by correcting this data. 
This study is intended to help predict the RUL for Li-ion battery in a more accurate way. To provide 

a reference methodology for battery health management systems, thereby helping to extend battery life, 
reduce maintenance costs and improve system reliability. 
2 Methodology 
2.1 Time Series Prediction Model 

Definition of time series: an ordered array composed of sequential times of occurrence. Any time 
series can be considered to consist of a trend series, a periodic series and a random noise series [26]. The 
formula is expressed as follows: 

 , 1, 2,3, ,t t t tX T S R t n= + + =   （1） 

where tX  denotes the time series, tT  denotes the trend term, tS  denotes the period term, tR  denotes 
the noise, and t  denotes the time. 

Temporal network is a model for predicting the future trend direction by studying and analyzing the 
time series data pattern and the deep feature information hidden in the time series data. In general, a 
single temporal network can only predict one outcome, and the predicted outcome is highly uncertain due 
to the stochastic nature of the model's initial parameters. The integrated temporal network can predict 
multiple results through multiple temporal networks, and then weighting multiple results can obtain the 
prediction results with a higher degree of confidence. This method can improve the stability and 
reliability of the model. The integrated temporal network structure used in this paper is shown in Fig.1. 
The integrated temporal network contains n temporal networks, and the data of historical stages are 
provided as training sets to n temporal networks for training respectively. The well-trained temporal 
network uses the last part of the historical data to predict the future data, and then treats the predicted 
future data as historical data and iteratively feeds it into the model to produce long term future 
predictions. 

 



 

Fig. 1. The integrated temporal network structure 
 

Long Short-Term Memory Network (LSTM) is an improved Recurrent Neural Network (RNN). In 
theory, RNN can handle arbitrarily long time series. However, there are problems with gradient vanishing 
and explosion during model training. When the weight matrix within the RNN model is updated by the 
backpropagation algorithm, the propagation of the gradient between the network weight matrices is also 
propagated along with the temporal dimension of the sequence. When the time series exceeds a certain 
length, there is a situation where the gradient becomes larger (or smaller) as the length of the series 
increases, and then there is a gradient explosion (disappearance of the gradient), which results in the 
model not being able to output the desired results. This makes it difficult to train RNN for long time 
sequences. LSTM incorporates three gate control units into its internal structure, which to some extent 
solves the problem of gradient vanishing and gradient explosion [27]. In this paper, LSTM is selected as 
the base network for the integrated temporal network. 
2.2 A Framework for Prediction of Li-ion Battery Incorporating Priori Knowledge 
2.2.1 Empirical Model of Li-ion Battery Degradation 

During charging, lithium ions move from the positive electrode (usually lithium metal oxide) 
through the electrolyte to the negative electrode (usually graphite). During discharge, lithium ions are 
then released from the negative electrode and returned through the electrolyte to the lithium metal oxide 
lattice at the positive electrode. This process is carried out by means of ionic conduction in the electrolyte 
[2]. 

Over time, the electrolyte in the battery will also deteriorate. The electrolyte may decompose, 
dissolve, or react with the electrodes to form a solid electrolyte interface layer (SEI) or other degradation 
products from processes within the battery. These degradation products increase the internal resistance of 
the electrolyte and limit the migration rate of lithium ions, resulting in degraded battery performance, 
including capacity loss, increased internal resistance and reduced safety. SEI usually consists of 
electrolyte degradation products, including organic compounds and inorganic salts. SEI inhibits the 
migration of lithium ions and increases the internal impedance of the battery, leading to capacity loss and 
reduced electrochemical stability of the electrode materials [28].  

Li-ion batteries accumulate dead lithium and thicken the SEI during charging. The external 
manifestation of SEI thickening is that the current across the SEI increases, while the interpolar current 
remains unchanged, the transmembrane current decreases, which brings about the degradation of the 
capacity and shortens the time to "full charge". Li-ion batteries activate the release of some of the dead 
lithium and thin the SEI during discharge. The external manifestation of SEI thinning is that the current 
across the SEI decreases, the current between the poles remains unchanged, the transmembrane current 
increases, which brings about the recovery of the capacity of the battery, and the "discharged" time 
becomes longer. 



 

 

Fig. 2. The state of SEI during charging and discharging of Li-ion battery [28] 
 

In summary, during the charge/discharge cycle of Li-ion batteries, the battery capacity shows the 
overall degradation of the "diffusion" process with time, and in the short cycle, it will show the "jump" 
process of capacity recovery, so the jump-diffusion model to characterize the degradation process of 
Li-ion batteries is Therefore, the jump-diffusion model is reasonable to characterize the decay process of 
Li-ion battery. However, during the modelling process, the authors found that time series data with 
random jumps had a negative effect on model predictions, much less so than the use of smooth curves 
incorporated into the model, so it was considered acceptable to reasonably ignore the jumping process 
during the modelling process. In this paper, the accepted bi-exponential model [8] was selected as the 
empirical model for the joint construction of the prediction model of Li-ion battery. 

 1 1 2 2
1 2

B t C B t C
tCapacity A e A e D+ += + +  （2） 

where tCapacity  represents the capacity corresponding to the number of charge/discharge cycles t  and 

1 1 1 2 2 2, , , , , ,A B C A B C D  represents the parameter. 
2.2.2 Prediction Methods based on Prior Knowledge Guidance Sequence 

Firstly, the bi-exponential model of the target Li-ion battery was estimated based on historical data, 
from which the capacity degradation rate was extracted and grafted to the real test point to generate the 
guidance sequence. Secondly, multiple LSTMs were trained using historical data and the prediction of the 
model was implemented using guidance sequences as input. Finally, the median of the predictions from 
multiple LSTMs was calculated to obtain the SOH degradation trend, thus estimating the RUL. The 
schematic of the prediction strategy based on the guidance sequence is shown in Fig. 3. 

 



 

Fig. 3. Prediction strategy based on guidance sequence 
 

(1) Generate Prior Knowledge Guidance Sequence 
The guidance sequence generation process is shown in the red dashed box in Fig. 3. Historical data 

from the target Li-ion battery was used to estimate the initial parameters of the bi-exponential model. It is 
worth noting that using the same type of Li-ion battery data can obtain the initial parameters faster and 
better. Of course, the parameters of the bi-exponential model must be rescaled to the historical data of the 
target Li-ion battery. The degradation rate for the real test set was extracted from this. Finally, it was 
grafted onto the last data of the training set to form the Prior Knowledge Guidance (PKG) sequence. 

(2) Train Long Short-Term Memory Networks 
In the training phase of the LSTM, a rolling loop was used in which capacity information of a fixed 

time length was selected as input and the capacity at the next time will be predicted in this way. Any 
well-trained LSTM can be considered to perform well on the training set, but there was often a significant 
difference in performance on the test set. Training multiple LSTMs generates multiple prediction models, 
such as LSTM 1, LSTM 2, ..., LSTM n as shown in the blue dashed box in Fig. 3. This behavior facilitates 
the provision of diverse prediction results, which will further characterize the uncertainty of the model 
and improve the stability of the final results [29]. 

(3) Predict Degradation Trends 
The multi-step prediction was achieved by iteratively using well-trained LSTMs for the single-step 

prediction. Specifically, in order to break the interval of historical values and reduce the accumulated 
single-step prediction error, the PKG was used as a model input rather than the previous step prediction. A 
series of LSTMs (PKG-LSTM 1, PKG -LSTM 2, ..., PKG -LSTM n) incorporating prior knowledge were 
formed by multiple well-trained LSTMs. These PKG -LSTM models will give n different predictions of 
Li-ion battery capacity degradation, and the trend consisting of the median of these predictions will be 
used as the final predicted battery capacity degradation trend. 



(4) Calculate RUL 
The RUL (

it
RUL ) at the time of it  was calculated according to the following formula: 

 

 

i it t iEOL tRUL = −  （3） 

Where, 
it

EOL  is the time when the estimated degradation trend first reaches the failure threshold ( FT ). 
2.3 A Framework for Prediction by State Recognition and Data-driven 
2.3.1 Recoverable Capacity Identification 

It is necessary to identify short term anomalies in the process of capacity degradation, which 
distinguish it from the inherent trend of capacity degradation. For example, decline and recovery phases 
of capacity degradation. In particular, it is necessary to focus on the degree of decline over a given period 
of capacity degradation to determine whether it is truly different from the inherent trend. The anomalous 
level of capacity degradation is then assessed as a key basis for subsequent tailored prediction strategies. 

Fig. 4 shows a type of capacity degradation process for which there is an inherent trend. The orange 
arrows in Fig. 4 point in directions similar to the intrinsic trend. The red box shows a decline that is 
clearly different from the intrinsic trend. The green box shows a recovery following a decrease. This 
"V/U" shaped data segment, going down and then up, is the recoverable capacity proposed in this paper. 
Recoverable capacity has a short-term nature and recoverability compared to the long-term inherent trend 
of capacity degradation [30]. It is worth noting that short term anomalies, represented by recoverable 
capacity, can lead to fluctuations in prediction results, which in turn shorten prognostic horizons and 
reduce relative accuracy, as found in the previous study. Therefore, in this paper, we hope to extract the 
above data features for use in accurately identifying recoverable capacity, and to explore more reliable 
and trustworthy tailored prediction strategies based on them. 

 

 

Fig. 4. Schematic diagram of recoverable capacity 
 

When analyzing the difference between recoverable capacity and internal trends from the 
perspective of data, the most obvious difference is that recoverable capacity is characterized by rapid 
short-term changes. The recoverable capacity rapidly decreased by a certain order of magnitude in a short 
period of time, and then quickly increased by a certain order of magnitude, so the difference result was 
considered as the first feature ( 1F ) to characterize this rapid change. For a known capacity series 

1 2
( [ , ,..., ])

kt t t t tCapacity Capacity Capacity Capacity Capacity= , 1F  is calculated according to the 
following formula. 

 
-1

1
k k kt t tF Capacity Capacity= −  （4） 



Where, kt  represents the time corresponding to the *( )k k Z∈  sampling point, and 
kt

Capacity  
represents the health index at moment kt . 

1
kt

F  describes the change in 
kt

Capacity  at moment kt  over 
-1kt

Capacity at moment 1kt − . 
According to 1F , it can be determined whether the discharge capacity is in the decreasing stage, the 
increasing stage or the constant stage. This feature can also be used to find very large and very small 
values of the discharge capacity to determine whether the discharge capacity increases monotonically or 
decreases monotonically in a given time interval. 

In addition, the two components of recoverable capacity, 'sag' and 'rise', are monotonic. This feature 
can be observed by calculating the change of continuous decrease or increase in a given monotonous 
interval. Therefore, the differential result in the monotone interval was considered as a second feature 
( 2F ) that characterizes the monotone feature. 

 2
k k mt t tF Capacity Capacity= −  （5） 

2
kt

F  describes the change in 
kt

Capacity  at moment kt  over 
mt

Capacity at moment mt , mt  is the 
previous extreme point at moment kt . 2F  can determine the amplitude of the discharge capacity 
change in the monotonous time interval. If the absolute value of 2F  is very large over a very short time 
interval, it is likely to be a single data at that moment. If the absolute value of 2F  increases over a long 
time interval, the discharge capacity is in the rising or falling stage at all time. 

The rate of change of discharge capacity within the monotonic interval can reflect the speed of 
"sagging" and "rising", and can further determine the changes at different moments, so the differentiation 
results within the monotonic interval are considered as the third feature ( 3F ) to characterize the 
amplitude change within this monotonic interval. 3F  is calculated according to the following formula. 

 3 k m

k

t t
t

k m

Capacity Capacity
F

t t
−

=
−

 （6） 

The rate of change of the amplitude of the discharge capacity in a monotonous interval can be judged. 
If the absolute value of the discharge capacity increases and then decreases over a long time interval, the 
discharge capacity is in a stage of increasing and then rapidly decreasing and then slowly decreasing in 
the same time period. 

All the above features are obtained through 
1 ~ kt tCapacity , so they can all be calculated in real time 

during the actual operation. 
In addition, during the degradation of Li-ion batteries, there are not only shorter periods of capacity 

degradation decline and recovery, as shown in Fig. 5. But there is also longer periods of inconsistent 
ability decline patterns, as shown in Fig. 6. Therefore, the change of actual production capacity alone may 
not meet the needs of determining the recoverable production capacity. Smoothing with different 
degradation capacity window lengths is necessary to obtain the total capacity degradation changes in the 
historical phase data. 

Sliding window average [31] is a data processing method, which moves data with a fixed window 
size and calculates the average value of the data within each window. This method effectively smooths 
the data, reduces the influence of data fluctuations, and highlights trends and patterns in the data. And the 
computational complexity is relatively low. This enables real-time data to be processed quickly. A 
schematic of the short window smoothing is shown in Fig. 5 and a schematic of the long window 
smoothing is shown in Fig. 6. 

 



 

Fig. 5. Smoothing results with a short window 
 

 

Fig. 6. Smoothing results with a long window 
 

Smoothing based on short and long windows can result in two derived sequences of the target Li-ion 
battery historical data: a short window smoothed derived sequence ( short

tCapacity ) and a long window 
smoothed derived sequence ( long

tCapacity ). For these two derived sequences, the capacity degradation 
state detection based on "KS" was used to get different state labels of Li-ion battery when their capacity 
degrades, which provides a basis for the subsequent real-time evaluation of the degradation state. 

Firstly, based on the constructed capacity degradation features 1F , 2F  and 3F , the K- center 
clustering algorithm [32] is used to generate adaptive state labels of the discharge capacity (Capacity ) 
degradation process. In order to better determine the number of categories of degraded states, the Gap 
Statistical Algorithm (GSA) [33] was used to find the best number of categories. It is roughly determined 
that the number of degradation status labels that may need to be generated is 2,3,...,K n= . According to 
different K  values, the sum of squares of intra-class errors of the K-center clustering algorithm is 
calculated, and the bestK  is determined by elbow criterion. Taking bestK  as the target cluster number, 
and taking the capacity degradation features 1F , 2F  and 3F  as input data, the corresponding Label  
is obtained by K- center clustering algorithm. 

Then, the Support Vector Machine (SVM) model [34] was trained, so as to obtain a state 
identification model of lithium-ion battery capacity deterioration that can be used for real-time state 
identification. Among them, the abnormal operation features 1F , 2F  and 3F  are taken as inputs, and 
Label  obtained by the K-center clustering algorithm is taken as an output. It is expected that the 
degradation status labels obtained in this paper should clearly distinguish the internal trend from the 
recoverable capacity, and provide a more detailed representation of the different stages of the recoverable 
capacity. If Label  obtained based on the optimal number of clusters bestK  is not able to distinguish 
clearly between recoverable capacity and inherent trend, a different value of K  will be retried in order to 
obtain Label  capable of characterizing a different degradation state and to retrain the degradation state 
identification model. 

 



 

Fig. 7. Schematic diagram of the identification of the state of capacity degradation based on "KS". 
 

2.3.2 A Prediction Strategy based on State Recognition and Adaptive Correction 
From the long-term trend, the capacity of Li-ion batteries shows two states: decreasing and 

increasing. From the short-term trend, the capacity of Li-ion batteries shows three states: decreasing, 
stable and increasing. The prediction is achieved by adopting a correction strategy for two different states 
( shortLabel  is the degradation state of the sequence derived from the short window and longLabel  is the 
degradation state of the sequence derived from the long window) that are at the same time. This 
prediction strategy is called State Recognition and Adaptive Correction (SRAC). The PKG estimated 
using this strategy is called SRAC-PKG. The LSTM trained using this strategy is called SRAC-LSTM. 
The PKG-LSTM obtained by this strategy is called SRAC-PKG-LSTM. As shown in Fig. 8. 
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Fig. 8. Schematic diagram of the prediction strategy 
 

3 Experiment 
3.1 Dataset 

Four Li-ion batteries, #35 #36 #37 #38 [35], of the CS2 model Li-ion battery from Center for 
Advanced Life Cycle Engineering (CALCE) Battery Research Group were used for the experiments. 
Where #35 #36 #38 were used as the reference Li-ion battery and #37 was used as the target Li-ion 
battery. Li-ion battery in the initial stage, its electrochemical performance is unstable, usually the actual 
charging and discharging capacity is higher than the rated capacity and capacity unstable degradation 
state. Therefore, data with a discharge capacity of 100% or more of the rated capacity was excluded and 
the RUL prediction was made from 100% capacity. It is necessary that estimating the parameters of the 
bi-exponential model and training the LSTM both require a certain amount of historical data. In this paper, 
at least 10% of the data from the previous period was used to estimate the model parameters and train the 
model. 



3.2 Evaluation Metrics 
(1) Evaluation Metrics for State Recognition 
Accuracy is used to assess the number of correct model predictions as a proportion of the total 

sample size, the formula is as follows: 

 
TAccuracy

T F
=

+
 （7） 

where T  is the number of correct classifications in the sample total and F  is the number of 
misclassifications in the sample total. 

Precision to predict the results of the judgement based on the prediction for a particular category in 
the proportion of correct predictions, the formula is as follows: 

 
TPPrecision

TP FP
=

+
 （8） 

Where TP  is the number of correct classifications in the prediction results and FP  is the number of 
incorrect classifications in the prediction results. 

Recall uses the actual sample as the basis for judgement and predicts as the proportion of predictions 
in a category, the formula is as follows: 

 
TPRecall

TP FN
=

+
 （9） 

where FN  is the number of cases of misclassification in the actual sample. 
(2) Evaluation Metrics for Degradation Trend Prediction 
In this paper, the assessment index of the degradation trend is MAPE [36], the formula is as follows: 

 
1

1 100%
n

i i

i i

y yMAPE
n y=

−
= ×∑   （10） 

(3) Evaluation Metrics for RUL Prediction 
The remaining life assessment indices used in this paper are Relative Error (RE), Relative Accuracy 

(RA), Prognostic Horizon (PH) [37]. 
RE describes the error between the predicted result and the true result. For the remaining useful life, 

if RE is less than 0, it implies a conservative prediction, and if RE is greater than 0, it implies an 
aggressive prediction. The closer this value is to 0, the better, and the formula is as follows: 

 

ii i
tt tRE RUL RUL= −  （11） 

A describes the percentage error of the prediction result at the current time, the higher the value the 
better, and is calculated as follows 

 


1 100%i i
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RUL
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= − ×   （12） 

where 
it

RUL  is the true remaining useful life at time it  and 
itRUL  is the RUL prediction of the model 

at time it . If 0
it

RA < , then note =0
it

RA . 
The formula for PH at moment it  is as follows: 

 i i

i i i

PH
t t

PH
t low t t up

PH EOL t

RUL EOL CR RUL EOLα α

 = −


− ≤ ≤ +
  （13） 

where EOL  is the endpoint of the actual life, lowα  and upα  are the lower and upper bounds of the 



correction factor, and 
i

PH
tCR  is the PH confidence interval for 

it
RUL . 

4 Description and Analysis of Experiment Results 
Starting from the 100th charge/discharge cycle, the experiment was conducted at a certain 

charge/discharge cycle interval. The sampling time points of the test are: 100, 134, 175, 215, 258, 301, 
345, 388, 425, and 465. 50 LSTMs, PKG-LSTMs, SRAC-LSTMs and SRAC-PKG-LSTMs were trained 
for each sampling time point. The median predicted by 50 model is calculated as the final predicted 
battery capacity degradation trend. LSTM consists of 68 neurons in total, with 24 steps of input and 1 step 
of output. 
4.1 Recoverable Capacity Identification 

As shown in Figs. 9, the short window smoothed derived sequences and long window smoothed 
derived sequences, along with the corresponding degradation features, are presented for the reference 
Li-ion batteries #35, #36 and #38, and the target Li-ion battery #37, respectively. The length of the short 
window is 16 and the length of the long window is 50. The smoothed derived sequences were used to 
characterize the capacity degradation. The smoothing method is moving window average, so it can be 
used for real-time smoothing without using test data. 

In Fig. 9, it can be observed that when 1 0F = , Capacity  is usually at a certain extreme value. 
When 1 0F < , Capacity  shows a decreasing trend. Conversely, when 1 0F > , Capacity  shows an 
increasing trend. 2F  is equally monotonic in the Capacity  monotonic interval. In contrast to 1F , 
which is relatively continuous and smooth overall, 2F  shows some mutation points, indicating that the 
state has changed. For example, there is a transition from the descending state to an ascending state. 3F  
and 2F  show similar characteristics, although 2F  and 3F  are different. 3F  represents the property 
that Capacity  contains time in monotonous interval. The three features of the data of these four Li-ion 
batteries show that all these Li-ion batteries show relatively obvious short-term fluctuations and can be 
recovered. 

 

 
Fig. 9. Degradation features of Li-ion battery #35 #36 #37 #38 

 
In order to determine the classification of degradation state of Li-ion batteries, 2,3,...,15K =  is 

preset. The smooth short/long window derived sequences and corresponding degradation features of 
reference Li-ion batteries # 35, # 36 and # 38 are tested by K- center clustering algorithm. Fig. 10 shows 
the Cluster Sum of Square (CSS) for short window smoothing derived sequence degradation features for 
different values of K, the clustering results of the short window smoothing derived sequences on the 
feature space, and the degradation states during the reference Li-ion battery #35 #36 #38 decay process. It 
is evident that 4K =  represents the most optimal clustering effect. In Fig. 10, it can be observed that of 



the four categories, two have a clear downward trend, one has a clear upward trend, the remaining one is 
relatively stable, and the magnitude and rate of change of the two categories with a downward trend are 
somewhat different. The first state feature of capacity degradation in the short window is characterized by 
a small magnitude and rate of degradation, with an overall form of slow decay that is close to the intrinsic 
trend, which is later referred to as the Steady Stage. The second state feature is characterized by a larger 
magnitude and rate of degradation, with an overall rapid form of degradation that is clearly distinct from 
the intrinsic trend, which is later referred to as Descent Stage2. The third state feature is an intermediate 
state between the smooth and anomalous degradation states, with the magnitude and rate of degradation 
in between, and is the key state for determining recoverable capacity, which is later referred to as Descent 
Stage1. The fourth state feature is characterized by the Li-ion battery capacity being in an ascending state 
rather than a degradation state, which is later referred to as the Ascend Stage. It can be observed that 
Descent Stage1 and Descent Stage2 do not necessarily occur consecutively. Once Descent Stage2 has 
occurred, however, Ascend Stage is bound to follow. In light of the aforementioned findings, it is possible 
to make further refinements to the prediction strategy when it is being customized. 

 

 

Fig. 10. Clustering results for #35 #36 #38 short window smoothing derived sequences 
 

Fig. 11 illustrates the Cluster Sum of Square (CSS) for long window smoothing derived sequence 
decay features for different values of K, the clustering results of the short window smoothing derived 
sequences on the feature space, and the degradation states during the reference Li-ion battery #35 #36 #38 
decay process. It is evident that 3 4K or=  represents the most optimal clustering effect. In both cases 

3K =  and 4K = , tests were conducted. A further category of clustering results was identified when 
4K = , in comparison to the clustering results when 3K = . This additional category was found to be a 

stage subdivided from the second degradation period, as illustrated in Fig. 11. Although it is possible to 



provide a more detailed representation of the degree of degradation, the additional class of degradation 
states is highly similar to the descending two-stage of the short window smoothed derived sequence and 
did not significantly contribute to the prediction strategy. The principle of streamlining and efficiency was 
upheld, resulting in the final selection of A=3. In Fig. 11, it can be observed that among these three 
categories, one is relatively stable, one has a clear downward trend, one has a clear upward trend. They 
are later referred to as the Descent Phase1, Descent Phase2 and Ascend Phase. The state clustering results 
from the reference Li-ion battery data were in accordance with the initial premise of this paper, which 
focuses on recoverable capacity. The data provided a detailed portrayal of the different phases of 
recoverable capacity, with the retention of a single phase to identify non-recoverable capacity. 

 

 

Fig. 11. Clustering results for #35 #36 #38 long window smoothing derived sequences 
 

In order to obtain a solidified degradation battery state identification model for Li-ion batteries, the 
SVM model is chosen in this paper. The degradation state features corresponding to the short\long 
window smoothing derived sequences were used as inputs and the degradation state was used as outputs. 
Li-ion batteries #35 #36 #38 were used as training set and # 37 was used as test set. Fig. 12 illustrates the 
confusion matrix for the test results of the degradation state recognition model on the target Li-ion battery 
#37 short\long window smoothed derived sequence. The rows represent the true categories, and the 
corresponding prediction accuracy for the true aliases. The columns represent the predicted categories, 
and the corresponding prediction accuracy for the predicted categories. The accuracy of both was 95.18% 
and 97.41% respectively. 

 



 

Fig. 12. Results of SVM model trained with reference to Li-ion battery #35 #36 #38 data 
 

These two SVM models were subsequently used to identify the degradation state of the target Li-ion 
battery # 37 and both models were not re-trained during the subsequent ongoing expansion of the field of 
view. Fig. 13 illustrates two SVM models identifying the degradation state at each moment in the target 
Li-ion battery # 37. In Fig. 13, it can be observed that the degradation state of the long window smoothed 
derived sequence shows repeated fluctuations of "slight degradation-recovery" before reaching the first 
failure threshold of TF=880 (80% capacity), and then it shows a large degradation. The short window 
smoothed derived sequence degradation state shows frequent fluctuations of "degradation-recovery" until 
the third failure threshold TF=770 (70% capacity) is reached, after which a large degradation and a slight 
recovery are observed. 

 

 

Fig. 13. Identification results of degradation state of Li-ion battery #37 
 

4.2 Degradation Trend Prediction 
Fig. 14 and Fig. 15 present some of the experiment results observed during the initial stages of 

Li-ion battery operation. Both figures display historical (train) data, future (test) data, a bi-exponential 
model with re-estimated parameters based on the target Li-ion battery, and the prediction trends of PKG, 
LSTM, and PKG-LSTM. 

 



 

Fig. 14. PKG-LSTM predictions at the start of the 100th charge/discharge cycle 
 

 

Fig. 15. PKG-LSTM predictions at the start of the 256th charge/discharge cycle 
 

A total of five results out of ten sampling time points were modified with the implementation of the 
customized prediction strategy. These were the 134th, 215th, 345th, 425th, and 465th charge/discharge 
cycles. Fig. 16, Fig. 17, Fig. 18, Fig. 19 and Fig. 20 show the prediction results at the 134th, 215th, 345th, 
425th, and 465th charge/discharge cycles of PKG-LSTM and SRAC-PKG-LSTM. Table 1 illustrates the 
evaluation metrics MAPE for the degradation trends of PKG-LSTM and SRAC-PKG-LSTM. The smaller 
these metrics, the smaller the overall prediction error, which implies a superior model. 

In the experiments predicted at the 134th charge/discharge cycle, the degradation state at the 133rd 
and 134th charge/discharge cycles of the short window smoothing derived sequence was Ascend Stage, 
and the degradation state at the 134th charge/discharge cycle of the long window smoothing sequence 
was Descent Phase1, so the data of the 133rd and 134th charge/discharge cycles of the original capacity 
degradation sequence were corrected to be the data of the long window smoothing sequence of the 133rd 
and 134th charge/discharge cycle data of the long window smoothing sequence. In Fig. 16, it can be 
observed that the capacity degradation trend predicted by SRAC-PKG-LSTM is more in line with the 
inherent degradation trend of Li-ion batteries than that predicted by PKG-LSTM. From Table 1, it is 
found that the MAPE of SRAC-PKG-LSTM is 3.59% lower than that of PKG-LSTM. 

 



 

Fig. 16. PKG-LSTM vs SRAC-PKG-LSTM predictions at the 134th charge/discharge cycle 
 

In the experiments predicted at the 215th charge/discharge cycle, the degradation state at the 200th to 
215th charge/discharge cycles of the short window smoothing derived sequence was Ascend Stage, and 
the degradation state at the 215th charge/discharge cycle of the long window smoothing sequence was 
Descent Phase1. Therefore, the data of the 200th to 215th charge/discharge cycles of the original capacity 
decay sequence were corrected to the data of the 200th to 215th charge/discharge cycles of the long 
window smoothing sequence. In Fig. 17, it can be observed that the capacity degradation trend predicted 
by SRAC-PKG-LSTM is more in line with the inherent degradation trend of Li-ion batteries than the 
capacity degradation trend predicted by PKG-LSTM. From Table 1, it is found that the MAPE of 
SRAC-PKG-LSTM is 1.03% lower than that of PKG-LSTM. 

 

 

Fig. 17. PKG-LSTM vs SRAC-PKG-LSTM predictions at the 215th charge/discharge cycle 
 

In the experiments predicted at the 345th charge/discharge cycle, the degradation state at the 341st to 
345th charge/discharge cycles of the short window smoothing derived sequence was Descent Stage1, and 
the degradation state at the 345th charge/discharge cycle of the long window smoothing sequence was 
Descent Phase2. Therefore, the data of the 341st to 345th charge/discharge cycles of the original capacity 
decay sequence were corrected to the data of the 341st to 345th charge/discharge cycles of the long 
window smoothing sequence. In Fig. 18, it can be observed that the capacity degradation trend predicted 
by SRAC-PKG-LSTM has a small slowdown compared to the capacity degradation trend predicted by 
PKG-LSTM, and the overall trend is similar. From Table 1, it is found that the MAPE of 
SRAC-PKG-LSTM is 0.11% lower than that of PKG-LSTM. 

 



 

Fig. 18. PKG-LSTM vs SRAC-PKG-LSTM predictions at the 345th charge/discharge cycle 
 

In the experiments predicted at the beginning of the 425th charge/discharge cycle, the degradation 
state at the 421st to 425th charge/discharge cycles of the short window smoothing derived sequence was 
Ascend Stage, and the degradation state at the 425th charge/discharge cycle of the long window 
smoothing sequence was Descent Phase1. Therefore, the data from the 421st to 425th charge/discharge 
cycles of the original capacity decay sequence were corrected to the data from the 421st to 425th 
charge/discharge cycles of the long window smoothing sequence. In Fig. 19, it can be observed that the 
capacity degradation trend predicted by SRAC-PKG-LSTM is more in line with the inherent degradation 
trend of Li-ion batteries than that predicted by PKG-LSTM. From Table 1, it is found that the MAPE of 
SRAC-PKG-LSTM is 0.36% lower than that of PKG-LSTM. 

 

 

Fig. 19. PKG-LSTM vs SRAC-PKG-LSTM predictions at the 425th charge/discharge cycle 
 

In the experiments predicted at the beginning of the 465th charge/discharge cycle, the degradation 
state at the 455th to 465th charge/discharge cycles of the short window smoothing derived sequence was 
Ascend Stage, and the degradation state at the 465th charge/discharge cycle of the long window 
smoothing sequence was Descent Phase1. Therefore, the data of the 455th to 465th charge/discharge 
cycles of the original capacity decay sequence were corrected to the data of the 455th to 465th 
charge/discharge cycles of the long window smoothing sequence. In Fig. 20, it can be observed that the 
capacity degradation trend predicted by SRAC-PKG-LSTM is more in line with the inherent degradation 
trend of Li-ion batteries than that predicted by PKG-LSTM. From Table 1, it is found that the MAPE of 
SRAC-PKG-LSTM is 1.12% lower than that of PKG-LSTM. 

 



 

Fig. 20. PKG-LSTM vs SRAC-PKG-LSTM predictions at the 465th charge/discharge cycle 
 

Table 1 MAPE for predicting degradation trends at different time points 

Model 
Time point 

PKG SRAC-PKG LSTM SRAC-LSTM PKG-LSTM SRAC-PKG-LSTM 

100 11.28% 11.28% 16.73% 16.73% 5.05% 5.05%↓ 
134 9.63% 9.36% 17.01% 17.20% 7.20% 3.61%↓ 
175 2.62%↓ 2.62%↓ 18.11% 18.11% 4.76% 4.76% 
215 6.21% 6.72% 19.15% 19.19% 2.98% 1.95%↓ 
258 5.32% 5.32% 19.46% 19.46% 2.52%↓ 2.52%↓ 
301 5.18% 5.18% 10.44% 10.44% 4.16%↓ 4.16%↓ 
345 5.52% 5.93% 18.17% 6.39% 4.99% 4.88%↓ 
388 8.33% 8.33% 19.95% 19.95% 4.73%↓ 4.73%↓ 
425 4.83% 4.74% 11.70% 10.10% 4.62% 4.26%↓ 
465 4.68% 4.57% 22.74% 21.81% 3.07% 1.95%↓ 

 
Table 2 Time cost(s) for predicting degradation trends at different time points 

Time point 100 134 175 215 258 301 345 388 425 465 497 

Model 
PKG 6.4 7.9 6.59 6.63 6.68 5.15 6.19 7.57 6.49 9.9 7 

LSTM 60.46 68.51 75.41 80.44 92.13 95.95 107.51 122.58 130.79 147.25 137.92 
 

As shown in Table 2 is time cost for predicting degradation trends at different time points, measured 
in seconds. The table shows the time it takes to generate PKG and the time it takes for a single LSTM. It 
is worth mentioning that the LSTM in the table represents the time spent by a single LSTM, not the 
integrated temporal network LSTMs. And the time shown includes the time of training using historical 
data and the time of predicting the future. The final model time consumption will be different according 
to the calculation method of the integrated temporal network. For example, in this paper, 50 LSTM of the 
integrated temporal network are divided into 10 groups, with 5 LSTM in each group. These 10 groups are 
calculated in series, and 5 LSTM in each group are calculated in parallel. It takes 10 times as long as the 
time in the table to the integrated temporal network LSTMs at a certain point in time. 

At these test time points, SRAC-PKG-LSTM reduces MAPE by a maximum of 3.59% and an 
average of 1.24% compared to PKG-LSTM. As shown in Table 3 is the average MAPE of PKG-LSTM 
and RAC-PKG-LSTM on 10 test nodes. It can be found that SRAC-PKG-LSTM has a significant 
performance improvement with the customized strategy, and the MAPE has decreased from 4.41% to 
3.79%. It is demonstrated that a prediction strategy based on adaptive correction of degradation states can 
effectively improve the ability of data-driven models to predict degradation trends. 

 
Table 3 Comparison of MAPE metrics for degradation trend prediction 



Model LSTM SRAC-LSTM PKG-LSTM CNN-LSTM [6] CEEMD-LSTM [38] SRAC-PKG-LSTM 
MAPE 17.34% 15.94% 4.41% 5.28% 4.28% 3.79%↓ 

 
4.3 RUL Prediction 

Fig. 21 and Table 4 show the RUL prediction results and evaluation indexes when the Li-ion battery 
failure threshold was set to eighty per cent of the rated capacity, i.e., TF = 880, when the true end-of-life 
was the 581st charge/discharge cycle. The upper and lower PH limits in Fig. 21 were set to 10 per cent, 
respectively. In the experiments, it was found that the prediction results in LSTM were often flat and 
tended to be constant, and even in most cases the RUL could not be estimated after predicting 5,000 
charge/discharge cycling cycles, and therefore the prediction metrics of SRAC-LSTM could not be 
counted in Table 4. In order to have a significant comparison effect, in Fig. 21 the optimal prediction 
result of SRAC-LSTM was selected to plot it out, SRAC-PKG and SRAC-PKG-LSTM are plotted based 
on the actual output of the integrated model. In the RUL error plot, it can be observed that the results of 
SRAC-PKG are relatively conservative overall, and the estimated RULs are all earlier than the actual 
RULs, and most of them are below the PH. Most of the predicted results of SRAC-PKG-LSTM fall 
within the PH. Compared to PKG-LSTM, SRAC-PKG-LSTM has a smaller overall error. In Table 3, in 
the experiment results at the three nodes of 215th, 345th, and 425th charge/discharge cycles, the RA of 
SRAC-PKG is slightly lower than that of SRAC-PKG-LSTM, and in the rest of the nodes the RA of 
SRAC-PKG-LSTM is significantly higher than that of PKG. 

 

 

Fig. 21. TF=880 (80% Capacity), EOL=581, RUL error 
 

Table 4 TF=880 (80% Capacity), EOL=581, RUL evaluation metrics 

Node RUL 
PKG LSTM PKG-LSTM SRAC-PKG-LSTM 

RUL  RE RA RUL  RE RA RUL  RE RA RUL  RE RA 
100 481 363 -118 75.47% - - 0 484 3 99.38%↑ 484 3 99.38%↑ 
134 447 340 -107 76.06% - - 0 410 -37 91.72%↑ 443 -4 99.11%↑ 
175 406 388 -18 95.57%↑ - - 0 479 73 82.02% 479 73 82.02% 
215 366 312 -54 85.25% - - 0 346 -20 94.54%↑ 401 35 90.44% 
258 323 269 -54 83.28% - - 0 290 -33 89.78%↑ 290 -33 89.78%↑ 
301 280 229 -51 81.79% - - 0 243 -37 86.79%↑ 243 -37 86.79%↑ 
345 236 192 -44 81.36% - - 0 194 -42 82.20%↑ 186 -50 78.81% 
388 193 162 -31 83.94% - - 0 164 -29 84.97%↑ 164 -29 84.97%↑ 
425 156 128 -28 82.05% - - 0 126 -30 80.77% 155 -1 99.36%↑ 
465 116 104 -12 89.66% - - 0 111 -5 95.69%↑ 127 11 90.52% 

 
Therefore, when eighty per cent of the rated capacity is the failure threshold, we conclude that the 

prediction result of SRAC-LSTM tends to be constant and cannot make a valid RUL prediction; the 
prediction result of SRAC-PKG is conservative and always gives premature RUL; and the prediction 



result of SRAC-PKG-LSTM is basically in line with PH and slightly better than PKG-LSTM. 
Fig. 22 and Table 5 demonstrate the RUL prediction results and evaluation metrics when the Li-ion 

battery failure threshold was set to seventy-five per cent of the rated capacity, i.e., TF = 825, when the 
true end-of-life time was the 659st charge/discharge cycle. The upper and lower limits of PH in Fig. 22 
were set to 10 per cent, respectively. In the experiments, it was found that the prediction results in LSTM 
were often flat and tended to be constant, and even in most cases the RUL could not be estimated after 
predicting 5,000 charge/discharge cycling cycles, and therefore the prediction metrics of SRAC-LSTM 
could not be counted. In order to have a significant comparison effect, in Fig. 22 the optimal prediction 
result of SRAC-LSTM was selected to plot it out, SRAC-PKG and SRAC-PKG-LSTM are plotted based 
on the actual output of the integrated model. It can be observed in the RUL error plots that the 
SRAC-PKG results are overall more conservative, with the estimated RULs all earlier than the actual 
RULs, and most of them below the PH. The predictions of SRAC-PKG-LSTM all fall within the PH. 
Compared to PKG-LSTM, SRAC-PKG-LSTM has a smaller overall error and more results falling within 
the PH. In Table 5, in the experiment results at this node of the 345th charge/discharge cycle, the RA of 
SRAC-PKG is slightly lower than that of SRAC-PKG-LSTM, and the RA of SRAC-PKG-LSTM is 
significantly higher than that of PKG in the rest of the nodes. 

 

 

Fig. 22. TF=825 (75% Capacity), EOL=659, RUL error 
 

Table 5 TF=825 (75% Capacity), EOL=659, RUL evaluation metrics 

Node RUL 
PKG LSTM PKG-LSTM SRAC-PKG-LSTM 

RUL  RE RA RUL  RE RA RUL  RE RA RUL  RE RA 
100 481 427 -132 76.39% - - 0 554 -5 99.11%↑ 554 -5 99.11%↑ 
134 447 411 -114 78.29% - - 0 476 -49 90.67% 510 -15 97.14%↑ 
175 406 455 -29 94.01%↑ - - 0 549 65 86.57% 549 65 86.57% 
215 366 376 -68 84.68% - - 0 412 -32 92.79%↑ 464 20 95.50%↑ 
258 323 340 -61 84.79% - - 0 365 -36 91.02%↑ 365 -36 91.02%↑ 
301 280 301 -57 84.08% - - 0 316 -42 88.27%↑ 316 -42 88.27%↑ 
345 236 260 -54 82.80%↑ - - 0 257 -57 81.85% 255 -59 81.21% 
388 193 219 -52 80.81% - - 0 221 -50 81.55%↑ 221 -50 81.55%↑ 
425 156 194 -40 82.91% - - 0 188 -46 80.34% 219 -15 93.59%↑ 
465 116 163 -31 84.02% - - 0 174 -20 89.69%↑ 196 2 98.97%↑ 

 
Therefore, when seventy-five per cent of the rated capacity is the failure threshold, we conclude that: 

the prediction result of SRAC-LSTM tends to be constant and cannot make effective RUL prediction; the 
prediction result of SRAC-PKG is too conservative and always gives premature RUL; the prediction 
result of SRAC-PKG-LSTM is basically in line with PH, and it is better than that of PKG-LSTM. 

Fig. 23 and Table 6 show the RUL prediction results and evaluation indexes when the failure 
threshold of Li-ion battery was set to seventy per cent of the rated capacity, i.e., TF=770, at which time 



the true end-of-life time was the 741st charge/discharge cycle. The upper and lower limits of the PH and 
performance intervals in Fig. 23 were set to 10 per cent, respectively. In the experiments, it was found 
that the prediction results in LSTM were often flat and tended to be constant, and even in most cases the 
RUL could not be estimated after predicting 5,000 charge/discharge cycling cycles, and therefore the 
prediction metrics of SRAC-LSTM could not be counted. In order to have a significant comparison effect, 
in Fig. 23 the optimal prediction result of SRAC-LSTM was selected to plot it out, SRAC-PKG and 
SRAC-PKG-LSTM are plotted based on the actual output of the integrated model. It can be observed in 
the RUL error plots that the SRAC-PKG results are overall too conservative, with the estimated RULs all 
earlier than the actual RULs, and only very few results below the PH. The predictions of 
SRAC-PKG-LSTM all fall within the PH. Compared to PKG-LSTM, SRAC-PKG-LSTM has a smaller 
overall error. In Table 6, in the experiment results at this node of the 345th charge/discharge cycle, the 
RAs of SRAC-PKG and SRAC-PKG-LSTM are flat, and in the rest of the nodes the RAs of 
SRAC-PKG-LSTM are significantly higher than that of PKG. 

 

 

Fig. 23. TF=770 (70% Capacity), EOL=741, RUL error 
 

Table 6 TF=770 (70% Capacity), EOL=741, RUL evaluation metrics 

Node RUL 
PKG LSTM PKG-LSTM SRAC-PKG-LSTM 

RUL  RE RA RUL  RE RA RUL  RE RA RUL  RE RA 
100 481 482 -159 75.20% - - 0 592 -49 92.36%↑ 592 -49 92.36%↑ 
134 447 469 -138 77.27% - - 0 524 -83 86.33% 557 -50 91.76%↑ 
175 406 512 -54 90.46% - - 0 603 37 93.46%↑ 603 37 93.46%↑ 
215 366 430 -96 81.75% - - 0 469 -57 89.16% 511 -15 97.15%↑ 
258 323 399 -84 82.61% - - 0 432 -51 89.44%↑ 432 -51 89.44%↑ 
301 280 361 -79 82.05% - - 0 384 -56 87.27%↑ 384 -56 87.27%↑ 
345 236 317 -79 80.05%↑ - - 0 312 -84 80.05%↑ 317 -79 80.05%↑ 
388 193 283 -70 80.17% - - 0 284 -69 80.45%↑ 284 -69 80.45%↑ 
425 156 249 -67 78.80% - - 0 243 -73 78.48% 268 -48 84.81%↑ 
465 116 214 -62 77.54% - - 0 228 -48 82.61% 263 -13 95.29%↑ 

 
Therefore, when seventy per cent of the rated capacity is the failure threshold, we conclude that: the 

prediction result of SRAC-LSTM tends to be constant and cannot make effective RUL prediction; the 
prediction result of SRAC-PKG is too conservative and always gives premature RUL; the prediction 
result of SRAC-PKG-LSTM is basically in line with PH, and it is better than PKG-LSTM. 

Table 7 demonstrates the comparison of the remaining life prediction metrics for LSTM without 
customized prediction strategy, PKG-LSTM and SRAC-PKG-LSTM with customized prediction strategy 
at different failure thresholds. The metric used is the average value of RA on the 10 test nodes, which 
describes the overall prediction accuracy during the complete operation of the Li-ion battery. Since the 
LSTM does not estimate the RUL in most cases, it is not possible to calculate the average RA of the 



LSTM. In Table 7, it can be found that with the addition of the customized prediction strategy, 
SRAC-PKG-LSTM has a significant improvement in the average RA over PKG-LSTM, with a maximum 
improvement of more than 3% and an average improvement of 2.56%. The experiments verify that the 
customized prediction strategy can effectively improve the prediction accuracy of PKG-LSTM, proving 
that the method proposed in this paper can effectively solve the unsatisfactory prediction accuracy caused 
by non-smooth trends. 

 
Table 7 Average RA predicted by RUL for different failure thresholds 
 TF=80% Capacity TF=75% Capacity TF=70% Capacity 

LSTM 0 0 0 
SRAC-LSTM 0 0 0 
PKG-LSTM 88.79% 88.19% 85.94% 

CNN-LSTM [6] 88.50% 89.12% 87.67% 
CEEMD-LSTM [38] 83.46% 88.28% 79.98% 
SRAC-PKG-LSTM 90.12%↑ 91.29%↑ 89.18%↑ 

 
Combining the above experiment results, LSTM and SRAC-LSTM are able to learn the 

characteristics of historical data, but the historical data are too small and inconsistent with the distribution 
characteristics of future data, and the degradation trend shows non-smoothness, which leads to the fact 
that LSTM and SRAC-LSTM are unable to fulfil the task of predicting the future change of Li-ion 
batteries' capacity, and therefore it is difficult to predict the RUL. PKG and SRAC-PKG are able to better 
portray the trend of Li-ion battery capacity degradation because of their own fixed mathematical form. 
PKG and SRAC-PKG show an overall trend of slower and then faster degradation. The slower 
degradation trend is more likely to be closer to the real degradation curve, but in the faster degradation 
part, PKG can't be adjusted according to the actual situation, which results in an overly conservative 
result. Thanks to the PKG that can provide the overall degradation trend of Li-ion batteries, the 
PKG-LSTM is able to express the capacity degradation features learnt in the historical data stage, and 
overall shows a better prediction capability. Thanks to the customized prediction strategy that is able to 
circumvent the historical end oscillation data, SRAC-PKG-LSTM improves the prediction capability by 
correcting part of the data of recoverable capacity, and obtains the prediction results that are more closely 
related to the actual degradation trend, as well as estimating RUL with smaller error, which is more stable 
and reliable overall. 
5 Conclusion 

In this paper, Empirical Model, Capacity Recovery-Identification Correction and Machine Learning 
co-driven method was proposed to solve the problem of RUL prediction for Li-ion batteries during 
real-world operation. Empirical formulae and data-driven are used to jointly complete the RUL 
predictions and address poor predictions caused by different data. Identify the recoverable capacity 
present during degradation and improve the prediction reliability of the model by correcting this data. The 
following conclusions can be summarized from the experiment results: 

(1) The empirical model can better describe the overall trend of Li-ion battery degradation, although 
it can’t describe the details of the degradation, but it can provide a good reference for the machine 
learning model to help the model to better predict. 

(2) Capacity recovery of Li-ion batteries can be identified. 
(3) The overall prediction performance and reliability of the model can be improved by identifying 

recoverable capacity and correcting the data. 
In future work, we will endeavor to explore the integration of additional physical degradation 

mechanisms into the identification and prediction of recoverable capacity. We will continue to advance 
the development of diagnostic-driven prediction models. 
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