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The escape dynamics of sticky particles from textured surfaces is poorly understood despite im-
portance to various scientific and technological domains. In this work, we address this challenge by
investigating the escape time of adsorbates from prevalent surface topographies, including holes/pits,
pillars, and grooves. Analytical expressions for the probability density function and the mean of
the escape time are derived. A particularly interesting scenario is that of very deep and narrow
confining spaces within the surface. In this case, the joint effect of the entrapment and stickiness
prolongs the escape time, resulting in an effective desorption rate that is dramatically lower than
that of the untextured surface. This rate is shown to abide a universal scaling law, which couples
the equilibrium constants of adsorption with the relevant confining length scales. While our results
are analytical and exact, we also present an approximation for deep and narrow cavities based on an
effective description of one-dimensional diffusion that is punctuated by motionless adsorption events.
This simple and physically motivated approximation provides high-accuracy predictions within its
range of validity and works relatively well even for cavities of intermediate depth. All theoretical
results are corroborated with extensive Monte-Carlo simulations.

I. INTRODUCTION

Fabrication of nanoscale surface topographies have
seen rapid developments in the last two decades [1–3].
In particular, controlled fabrication of nano-arrays can be
achieved, where common structured surface topographies
include nano-arrays of pillars [4–8], arrays of holes/pits
[9, 10], and grooves [11–13]. Alternatively, the surface
can be rugged and possess random roughness [14].

The effect of surface topography has proved to be a key
aspect when considering heterogeneous catalysis [14, 15]
and the passivisation of catalytic surfaces [16, 17]. It
also plays a cardinal role when considering living cell be-
havior, as protein adsorption to a textured surface me-
diates the cell attachment to the surface [1, 2, 18]. To-
pographical features can affect the adsorption properties
of a protein by inducing conformational changes, or by
other forms of surface-protein interactions [19]. When
the length scale of the topographical features is larger
than the protein size, additional effects come into play.
Often, adsorption is increased as a larger number of ac-
tive sites for protein adsorption are available. Another
crucial effect is the entrapment of the proteins inside con-
fined spaces [20, 21].

The entrapment effect was vividly illustrated in a se-
ries of on-chip devices made by the Patolsky group [22–
24]. These devices utilized entrapment in sticky confined
spaces of textured surfaces for the purpose of selective
separation of required protein analytes from raw biosam-
ples. The selective stickiness was achieved by attach-
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ing specific antibodies to the surface. The surface was
textured by a vertical array of nanopillars, albeit other
topographies, like grooves, are expected to exhibit simi-
lar behavior. The Patolsky group demonstrated that the
target proteins are entraped in the surface for extremely
long times (weeks and even months). This came as a
surprise, since the same antibody, if used on a flat sur-
face, would bind the biomolecules for a few milliseconds
only. Similarly, using the nanopillar vertical array with-
out antibodies leads to fast diffusive escape. The dra-
matic effect of prolonged escape times is hence due to a
combination of topography and adsorption/stickiness. A
semi-quantitative explanation of the experimental results
was given in Ref. [22].

Qualitatively, when the confining space is deep and
narrow, the escaping particle is forced to collide with the
confining walls a large number of times before it can es-
cape. Each collision can result in an adsorption event,
and these add up and eventually culminate in extremely
prolonged escape. Thus, despite the relatively short dis-
sociation time from the antibody, and due to the multi-
tude of adsorption events, the textured surface appears as
if it has a very high affinity to the protein. This observa-
tion is an important first step, but a more detailed quan-
titative understanding is currently missing. The chal-
lenge is thus to determine how exactly does surface to-
pography and texture affect the escape from a surface.
Specifically, how does the mean escape time scale with
the depth and width of confining spaces within the sur-
face? and how does sticky entrapment affect the statis-
tics of the escape time, as characterized by its probability
density function (PDF)?

Recently, we have developed an analytical approach
that allows one to provide an exact solution to the afore-
mentioned problems [25]. We considered the escape of

ar
X

iv
:2

40
1.

05
22

7v
2 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

8 
M

ar
 2

02
4

mailto:yuvalscher@mail.tau.ac.il
mailto:shlomire@tauex.tau.ac.il
mailto:denis.grebenkov@polytechnique.edu


2

a diffusing particle from a domain of arbitrary shape,
size, and surface reactivity. The escape time from the
adsorbing confining spaces of a textured surface can be
computed using this formalism. Here, we perform this
calculation for three different topographies of adsorbing
surfaces: (i) a surface perforated with pits/holes is con-
sidered in Sec. II; (ii) a surface textured by an array of
pillars is considered in Sec. III; (iii) a surface textured
by grooves is considered in Sec. IV.

For each of the above-mentioned cases, we aim to find
the escape time of a particle initially entrapped in the
confining spaces of the textured surface. We assume that
the surface is homogeneously textured, i.e., all of the con-
fining spaces are of the same size and repeated periodi-
cally. Thus, the escape time out of the periodic cell in
fact equals to the escape time from the textured surface.
Note that in some cases, e.g., a surface perforated with
holes, the assumption of periodicity can be easily relaxed
– it is the homogeneity which is important. Lastly, while
in this work we consider homogeneously textured sur-
faces, the same formalism can be used when dealing with
heterogeneous textured surfaces with a known size dis-
tribution of the confining spaces: The escape time from
the textured surface will be the appropriately weighted
sum of the escape times from cells of different sizes.

Alongside exact results, we also present an insightful
approximation. In Sec. II C we introduce a two-state
switching diffusion approximation for the diffusive escape
from sticky nanocavities. This approximation is appro-
priate for deep and narrow cavities, where diffusion is
effectively one-dimensional. The adsorption to the sur-
face is then effectively accounted for by the introduction
of an immobile state for which the diffusion coefficient
vanishes. We illustrate that this approximation is very
accurate, and works well even for cavities of intermediate
depth. We utilize this approximation yet again in Sec.
IVE, where we calculate the asymptotic decay rate of the
escape time PDF. Indeed, the approximation is expected
to work in the limit of very deep cavities regardless of the
lateral geometry. Thus, a central benefit of the two-state
switching diffusion approximation is that it captures the
essential physics of the problem at hand and simplifies
the analysis without losing much in accuracy.

The three problems solved here abide similar laws and
show similar characteristic behavior. In Sec. V we dis-
cuss a general form of the equation for the mean escape
time and for its inverse, which is the effective desorption
rate from the textured surface. This suggests that the
results presented here are universal in nature and can be
applied, even if approximately, when considering more
complicated scenarios.

II. ADSORBING PERFORATED SURFACE

We consider a perforated surface with cylindrical holes,
illustrated in Fig. 1. We aim to find the escape time of
a particle initially entrapped inside one hole of the sur-
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FIG. 1. A perforated surface with cylindrical holes. One
of the holes is enlarged: A cylinder of radius L capped by
parallel planes at z = 0 and z = H. The top disk at z = H
is absorbing (escape region in red), whereas the bottom disk
at z = 0 and the cylindrical wall are adsorbing (green), with
reversible binding kinetics. Here, ka and kd are the adsorption
and desorption constants for the bottom disk, and k′

a and k′
d

are the adsorption and desorption constants for the cylindrical
surface.

face. Our task is thus calculating the escape time from
the periodic cell. For the example under consideration
here, the periodic cell is a cylindrical hole. A represen-
tative hole is enlarged in Fig. 1. Escaping from the
textured surface is thus equivalent to the escape problem
in three dimensions when the particle diffuses inside a
cylinder of radius L capped by parallel planes at z = 0
and z = H. The top disk is absorbing whereas the re-
maining boundary of the domain is adsorbing. We as-
sume the adsorption kinetics is linear and homogeneous
on each surface, but we allow for heterogeneity in the
sense that the adsorption and desorption rates on the
bottom disk and on the curved cylindrical surface can
differ. We are interested in finding the PDF of the first-
passage time to the top disk, which can also be thought
of as the escape time from the cylindrical compartment.
We denote this PDF as Jab(t|r, z), where (r, z) ∈ Ω is
the initial location of the particle inside the cylindrical
domain Ω. In Ref. [25] we have derived, for the gen-
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eral case, the partial differential equation and boundary
conditions governing the Laplace transform of this PDF,
J̃ab(s|r, z) =

∫∞
0

dt e−tsJab(t|r, z). For the specific geom-
etry considered here, these equations simplify to

(s−D∆)J̃ab(s|r, z) = 0 (r, z ∈ Ω), (1a)

J̃ab(s|r, z) = 1 (z = H), (1b)

(−∂z + qs)J̃ab(s|r, z) = 0 (z = 0), (1c)

(∂r + q′s)J̃ab(s|r, z) = 0 (r = L), (1d)

where ∆ = ∂2
r + (1/r)∂r + ∂2

z is the Laplace operator in
cylindrical coordinates (without the angular part), andD
is the diffusion coefficient. The surfaces are characterized
by the parameters qs and q′s:

qs =
ka

D(1 + kd/s)
, q′s =

k′a
D(1 + k′d/s)

, (2)

where ka and kd are the adsorption and desorption con-
stants for the bottom disk, and k′a and k′d are the adsorp-
tion and desorption constants for the cylindrical surface.

A. Solution in Laplace domain

We search the solution of Eq. (1a) under the boundary
conditions (1b)-(1d) as

J̃ab(s|r, z) = 2

∞∑
n=0

c(s)n J0(α
(s)
n r̄)

g
(s)
n (z)

g
(s)
n (H)

, (3)

where r̄ = r/L, Jν(·) is the Bessel function of the first
kind of order ν and

g(s)n (z) = α̂(s)
n cosh(α̂(s)

n z̄) + qsL sinh(α̂(s)
n z̄) (4)

to respect the boundary condition (1c), with z̄ = z/L
and

α̂(s)
n =

√
[α

(s)
n ]2 + L2s/D . (5)

From the boundary condition (1d) we find that α
(s)
n sat-

isfy the transcendental equation

α(s)
n

J1(α
(s)
n )

J0(α
(s)
n )

= q′sL. (6)

For any s ≥ 0, there are infinitely many solutions of
this equation that we enumerate by n = 0, 1, 2, . . . in

an increasing order. The unknown coefficients c
(s)
n are

found by multiplying the boundary condition (1b) by

rJ0(α
(s)
k r/L) and integrating over r from 0 to L. This

gives

2c
(s)
k L2 J

2
0 (α

(s)
k ) + J2

1 (α
(s)
k )

2
=

L∫
0

dr r J0(α
(s)
k r̄)

︸ ︷︷ ︸
=L2J1(α

(s)
k )/α

(s)
k

, (7)

h = H/L

ρ = l/L

z̄ = z/L

r̄ = r/L

κa = kaL/D

κd = kdL
2/D

κ′
a = k′

aL/D

κ′
d = k′

dL
2/D

α̂
(s)
n =

√
[α

(s)
n ]2 + L2s/D

TABLE I. Summary of dimensionless quantities.

from which we get

c(s)n =
J1(α

(s)
n )/α

(s)
n

J2
0 (α

(s)
n ) + J2

1 (α
(s)
n )

. (8)

To obtain these relations we used the orthogonality of
the Bessel functions together with

1∫
0

dr r J2
0 (αr) =

J2
0 (α) + J2

1 (α)

2
(9)

and

1∫
0

dr r J0(αr) =
J1(α)

α
. (10)

It is worth noting that the numerical inversion of the
Laplace transform is challenging here; in fact, one needs
to evaluate the solution at complex s, which in turn re-

quires an improved algorithm for finding the roots α
(s)
n ,

given that qs and q′s become complex as well.
To facilitate further analysis, we introduce the follow-

ing dimensionless quantities:

κa =
kaL

D
, κd =

kdL
2

D
, κ′

a =
k′aL

D
, κ′

d =
k′dL

2

D
. (11)

For convenience, in Table I we collect the definitions of
all dimensionless quantities defined so far, and also define
h = H/L and ρ = l/L that will be used later.

B. Mean Escape Time

In this section, we compute the mean escape time by
studying the asymptotic behavior of J̃ab(s|r, z) as s → 0.
In the spectral expansion (3), we first analyze the term
n = 0 and then discuss the other terms with n > 0.
As s → 0, one has q′s → 0 so that α

(s)
0 → 0. Using the

Taylor series expansion of Bessel functions in Eq. (6),
one gets in the leading order

α
(s)
0 ≈

√
2q′sL ≈

√
s
√
2κ′

a/k
′
d (s → 0). (12)
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As a consequence, one has

c
(s)
0 =

1

2

(
1 +

[α
(s)
0 ]2

8
+ . . .

)
=

1

2
+

κ′
a

8k′d
s+O(s2). (13)

and

J0(α
(s)
0 r/L) = 1− r2κ′

a

2L2k′d
s+O(s2). (14)

We also get α̂
(s)
0 ≈ L

√
s/D

√
1 + 2κ′

a/κ
′
d in the leading

order, from which

g
(s)
0 (z)

g
(s)
0 (H)

= (15)

1−
(
κa

kd

H − z

L
+

[
L2

2D
+

κ′
a

k′d

]
H2 − z2

L2

)
s+O(s2).

Let us now consider the terms with n > 0. Denoting
the left-hand side of Eq. (6) as F1(z) = zJ1(z)/J0(z), we

apply the Taylor expansion near α
(0)
n > 0:

F1(α
(s)
n ) ≈ F1(α

(0)
n ) + F ′

1(α
(0)
n )(α(s)

n − α(0)
n ). (16)

According to Eq. (6), F1(α
(s)
n ) = q′sL → 0 as s → 0 and

thus α
(0)
n = j1,n, where j1,n denote the zeros of the Bessel

function J1(z). Plugging in z = j1,n into the relation
F ′
1(z) = z(1+J2

1 (z)/J
2
0 (z)), we find that F ′

1(j1,n) = j1,n.
All that remains is to compare the right-hand side of Eqs.
(16) and (6) in the limit s → 0, which gives

α(s)
n = j1,n +

κ′
a

k′dj1,n
s+O(s2). (17)

Similarly, setting F2(z) = (J1(z)/z) /
(
J2
0 (z) + J2

1 (z)
)

such that according to Eq. (8) we have c
(s)
n = F2(α

(s)
n ),

and using Eq. (17), we obtain

c(s)n = F2(α
(0)
n ) + F ′

2(α
(0)
n )(α(s)

n − α(0)
n ) +O(s2)

=
1

j1,nJ0(j1,n)

κ′
a

k′dj1,n
s+O(s2), (18)

and

α̂(s)
n = j1,n +

1 + 2κ′
a/κ

′
d

2j1,n

L2

D
s+O(s2). (19)

Since c
(s)
n ∝ s for n > 0, the other factors in Eq. (3) can

be found to the lowest order in s. This gives

g
(s)
n (z)

g
(s)
n (H)

≈ cosh(j1,nz̄)

cosh(j1,nh)
, (20)

where h = H/L, and

J0(α
(s)
n r̄) ≈ J0(j1,nr̄). (21)

Substituting these expressions into Eq. (3), we get

J̃ab(s|r, z) = 1− s⟨T (r, z)⟩+O(s2), (22)

where

⟨T (r, z)⟩ = H2 − z2

2D
+

ka(H − z)

kdD

+
k′aL

k′dD

(
H2 − z2

L2
+

2r2 − L2

4L2

− 2

∞∑
n=1

J0(j1,nr̄)

j21,nJ0(j1,n)

cosh(j1,nz̄)

cosh(j1,nh)

)
(23)

is the mean escape time.
In the limit k′a → 0 or k′d → ∞, namely when the

cylindrical surface is not sticky but reflecting, we retrieve
the mean escape time for a one-dimensional box with a
sticky surface [25]

⟨T (r, z)⟩ = 1

2D
(H2 − z2) +

ka
kdD

(H − z). (24)

The average of Eq. (23) over the cross-section at a
fixed height z yields

⟨T (z)⟩ = 2π

πL2

L∫
0

dr r ⟨T (r, z)⟩

=
ka
kd

H − z

D
+

(
1 +

2k′a
k′dL

)
H2 − z2

2D
, (25)

where we used
∫ L

0
drJ0(j1,nr/L) = 0. This remark-

ably simple expression quantifies the effect of adsorp-
tion/desorption mechanisms onto the mean escape time.
Further averaging over z, we obtain

⟨Tu⟩ =
H2

3D

(
1 +

ka
kd

3

2H
+

k′a
k′d

2

L

)
, (26)

where the subscript ‘u’ denotes a uniform distribution of
the initial position within the cylinder, which is a com-
mon experimental condition. Indeed, zooming out and
assuming that the particle’s initial position is distributed
uniformly inside the holes of the textured surface, it is
equally likely to find the particle in any of the holes.
Since the surface is homogeneous and the holes are all
the same, the mean escape time from the textured sur-
face is thus given by Eq. (26).

C. Two-state switching diffusion approximation

In Sec. IID we will analytically invert Eq. (3) to get
the PDF of the escape time. As this inversion is quite in-
volved, it is worthwhile to first consider a simple approx-
imation for the problem at hand: a model of two-state
switching diffusion. This model is expected to approx-
imate the escape from a perforated surface in the limit
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FIG. 2. PDF Jab(t|r, z) of the escape time from a cylindrical hole (see Fig. 1) with L = 1, ka = 0, D = 1, k′
a = 1, k′

d = 1,
r = 0, z = H/2, and with H = 10 (left), H = 2 (center), and H = 0.5 (right). Solid lines represent the exact solution from
Eq. (40) truncated to 30 × 30 = 900 terms. Dashed lines give the two-state switching diffusion approximation Jsd(t|z) from
Eq. (30) truncated to 200 terms. Circles give estimates based on 106 particles whose motion was simulated according to the
the protocol in Appendix D of Ref. [25], with simulation time step ∆t = 10−6.

L ≪ H, i.e., when the holes are very narrow and deep.
In this limit, assuming that the reactivities of all surfaces
are comparable, the area of the lower disk becomes negli-
gible compared to the area of the cylindrical surface. The
bottom disk is thus expected to have little effect on the
escape time and so we can treat it as an inert reflecting
surface (ka = 0).
When L ≪ H, one can expect that diffusion in the ra-

dial direction is not relevant and try to reduce the origi-
nal model to a two-state switching diffusion model when
the particle diffuses in the bulk with a diffusion coeffi-
cient D in the state 1, or remains immobile in the state 2
(mimicking its adsorbed state). The transition between
two states is a random first-order kinetics with rates k12
from the free state to the adsorbed state and k21 = k′d
in the reverse direction (see below). A model of two-
state switching free diffusion was introduced by Kärger
[26] and more general models were studied in [27, 28] (see
references therein). In particular, the subordination con-
cept was used in [28] to show that the PDF of the escape
time admits a general spectral expansion

Jsd(t|x) = −
∞∑

n=0

∂tΥ(t; Λn)un(x)

∫
Ω

dx′ un(x
′), (27)

where Λn and un(x) are the eigenvalues and L2(Ω)-
normalized eigenfunctions of the Laplace operator with
appropriate boundary conditions, and the function
Υ(t; Λ) accounts for switching dynamics. An explicit
form of this function for the two-state model [26, 28]
reads in our setting as

Υ(t; Λ) =
e−γ+t(DΛ− γ−)− e−γ−t(DΛ− γ+)

γ+ − γ−
, (28)

where

γ± = (29)

1

2

(
DΛ + k12 + k21 ±

√
(DΛ + k21 + k12)2 − 4DΛk21

)
.

Here we consider diffusion on the interval (0, H) with
an absorbing endpoint z = H and a reflecting endpoint
z = 0, for which Λn = π2(n + 1/2)2/H2 and un(z) =√
2/H cos(π(n+ 1/2)z/H), such that

Jsd(t|z) = (30)
∞∑

n=0

∂tΥ(t; Λn)
2(−1)n+1

π(n+ 1/2)
cos(π(n+ 1/2)z/H).

From this PDF, we calculate the mean escape time:

Tsd(z) =

∞∫
0

dt t J(t|z) =
∞∑

n=0

2(−1)n

π(n+ 1/2)

× cos(π(n+ 1/2)z/H)

∞∫
0

dtΥ(t; Λn)

=
(k12 + k21)H

2

Dk12

∞∑
n=0

2(−1)n cos(π(n+ 1/2)z/H)

π3(n+ 1/2)3

=
(
1 + k12/k21)

H2 − z2

2D
, (31)

where we note that the sum in the third line is the
Fourier series of (1−(z/H)2)/2. Comparison of Eqs. (25)
and (31) suggests a way to assign the transition rates as
k12 = 2k′a/L and k21 = k′d so that the MFPTs are iden-
tical in both cases (for ka = 0). Note that for ka > 0,
the approximation identifies with the exact result to the
leading order in H/L which was hereby considered large.
In Fig. 2 we assume ka = 0 and demonstrate how the

two-state diffusion approximation Jsd(t|z) captures the
PDF Jab(t|r, z) in the limit L ≪ H. We plot the density
and its approximation for three heights H of the cylinder
with unit radius L = 1. We see that even when H ≈ L,
the two-state approximation turns out to be remarkably
accurate at long times. Surprisingly, it accurately cap-
tures even the short-time behavior.
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D. Solution in time domain

The desorption kinetics implies the s-dependence of
the parameters qs and q′s in the Robin boundary condi-
tion and thus leads to a convolution-type boundary con-
dition in time domain, rendering the problem much more
difficult than that with the ordinary Robin boundary
condition for irreversible binding. Nevertheless, as dif-
fusion is restricted in a bounded domain, the PDF of the
escape time is still expected to admit a spectral expan-
sion. Moreover, the presence of an absorbing boundary
at z = H ensures that the survival probability vanishes
exponentially in the long-time limit.

In mathematical terms, the inversion of the Laplace
transform J̃ab(s|r, z) can be performed by evaluating its
Bromwich integral representation via the residue theorem

Jab(t|r, z) =
1

2πi

∫
γ

ds est J̃ab(s|r, z)

=
∑
j

esjt Ressj{J̃ab(s|r, z)}, (32)

where {sj} are the poles of J̃ab(s|r, z), Ressj{J̃(s|r, z)} is
its residue at sj , and γ is a contour in the complex plane
of s chosen such that all the poles are to the left of it. As

the poles are determined by zeros of the function g
(s)
n (H)

in Eq. (3), it is more convenient to employ a double index
(n,m) instead of a single index j. In fact, the first index

n = 0, 1, 2, . . . refers to the function g
(s)
n (H), whereas the

second index m = 0, 1, 2, . . . enumerates all positive zeros
sn,m of this function:

g(sn,m)
n (H) = 0. (33)

The numerical computation of the poles sn,m will be dis-
cussed in Sec. II E.

To compute the residues, we need to find

dg
(s)
n (H)

ds
=

dα̂
(s)
n

ds

(
cosh(α̂(s)

n h) + hα̂(s)
n sinh(α̂(s)

n h)

)
+ L

(
dqs
ds

sinh(α̂(s)
n h) + qs

dα̂
(s)
n

ds
h cosh(α̂(s)

n h)

)
, (34)

where

dqs
ds

=
kakd

D(kd + s)2
, (35)

and

dα̂
(s)
n

ds
=

1

2α̂
(s)
n

(
L2

D
+ 2α(s)

n

dα
(s)
n

ds

)
. (36)

If there are higher-order poles one would need to evalu-
ate higher-order derivatives with respect to s. However,
we did not observe numerically higher-order poles for all

examples considered in the work. The derivative of α
(s)
n

can be obtained by differentiating Eq. (6):

dα
(s)
n

ds
α(s)
n

(
1 +

J2
1 (α

(s)
n )

J2
0 (α

(s)
n )

)
=

k′ak
′
dL

D(k′d + s)2
. (37)

Substituting sn,m = −Dλn,m/L2, we get

dg
(s)
n (H)

ds

∣∣∣∣∣
s=sn,m

(38)

= i

(
hβn,m sin(βn,mh)− cos(βn,mh)

(
1− hκaλn,m

κd − λn,m

))

×
L2/D + 2αn,m

dα
(sn,m)
n

ds

2βn,m
+ i sin(βn,mh)

κaκdL
2/D

(κd − λn,m)2
,

where αn,m = α
(sn,m)
n , βn,m = −iα̂

(sn,m)
n , and

αn,m
dα

(s)
n

ds

∣∣∣∣∣
s=sn,m

=
κ′
aκ

′
dL

2

D(κ′
d − λn,m)2

(
1 +

J2
1 (αn,m)

J2
0 (αn,m)

) ,
(39)

which is obtained by use of Eq. (37). We therefore get

Jab(t|r, z) =
∞∑

n,m=0

e−Dtλn,m/L2

cn,mJ0(αn,mr/L) (40)

×
(
βn,m cos(βn,mz/L) +

κa

1− κd/λn,m
sin(βn,mz/L)

)
,

where

cn,m =
2ic

(sn,m)
n

dg
(s)
n (H)
ds

∣∣
s=sn,m

(41)

=
2i

dg
(s)
n (H)
ds

∣∣
s=sn,m

J1(αn,m)/αn,m

J2
0 (αn,m) + J2

1 (αn,m)
.

E. Poles

The poles of J̃ab(s|r, z) are determined by zeros of the

function g
(s)
n (H) in Eq. (3). Let us fix n and introduce

the shortcut notations α
(s)
n = α and α̂

(s)
n = iβ, so that

α2 + β2 = λ = −sL2/D > 0. (42)

Here α is the solution of Eq. (6) that we rewrite explicitly
as

α
J1(α)

J0(α)
=

κ′
a

1− κ′
d/λ

. (43)

Equation (33) then reads

0 = i

(
β cos(βh) +

κa

1− κd/λ
sin(βh)

)
, (44)
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which can also be written as

tan(βh)

β
= −1− κd/λ

κa
. (45)

We thus get a system of three nonlinear equations (42,
43, 45) for the unknown parameters α, β and λ. For
each n, these equations have infinitely many solutions,
and the main practical difficulty in their search is to en-
sure that they are all found. Doing so analytically is not
possible. Thus, while the representation of Eq. (40) is
applicable for the general case, in what follows we focus
on two limiting cases where numerical solution is feasible
via standard methods.

No adsorption on the cylinder wall

We first discuss the simple limit when there is no ad-
sorption on the cylinder wall, k′a = 0, such that Eq. (43)
is reduced to J1(α) = 0, which has infinitely many solu-
tions αn = j1,n, where j1,n are the zeros of J1(z), includ-
ing α0 = j1,0 = 0. When n = 0, one has λ = β2 and Eq.
(45) can be written as

β tan(βh) =
κd − β2

κa
. (46)

This equation has infinitely many solutions that we de-
note β0,m. For each n > 0, Eq. (45) also has in-
finitely many solutions (denoted as βn,m) but they do
not contribute because the coefficient cn,m is propor-
tional to J1(αn) according to Eq. (41) and thus van-
ishes. In other words, when there is no lateral adsorp-
tion, the solution J̃ab(s|r, z) and thus Jab(t|r, z) do not
depend on the radial coordinate, and one retrieves the
one-dimensional problem that was solved in ref. [25] (see
the paragraph below Eq. (9) therein). In this particular
case, αn,m = αn is independent of the second index m
and is actually decoupled from βn,m.

No adsorption on the bottom disk

Now we discuss another, much more interesting limit
when there is no adsorption on the bottom disk. If ka =
0, Eq. (45) has infinitely many solutions βnh = π/2+πn,
with n = 0, 1, 2, . . .. We can rewrite Eq. (43) as

J0(α)

αJ1(α)
=

1− κ′
d/(β

2
n + α2)

κ′
a

. (47)

The left-hand side decreases piecewise monotonously on
the intervals (j1,l, j1,l+1), while the right-hand side in-
creases monotonously from (1 − κ′

d/β
2
n)/κ

′
a at α = 0 to

1/κ′
a as α → ∞. As a consequence, for each n, there

are infinitely many solutions that we denote by αn,l+1

for each l = 0, 1, 2, . . ..

In conventional diffusion problems without desorption,
transcendental equations obtained from boundary condi-
tion usually admit only real solutions. In contrast, the
desorption mechanism and the consequent s-dependence
in the Robin boundary condition allow for a purely imag-
inary solution of Eq. (47). In fact, setting α = −iᾱ, one
gets

I0(ᾱ)

ᾱI1(ᾱ)
=

κ′
d/(β

2 − ᾱ2)− 1

κ′
a

, (48)

where Iν(·) is the modified Bessel function of the first
kind of order ν. The left-hand side monotonously de-
creases from +∞ to 0 as ᾱ goes from 0 to +∞. In
turn, the right-hand side monotonously increases from
(κ′

d/β
2
n − 1)/κ′

a at ᾱ = 0 to +∞ as ᾱ → βn, and then
from −∞ to −1/κ′

a. As a consequence, there exists a sin-
gle solution of this equation on the interval (0, βn), for
each βn, that we denote ᾱn. This solution determines
αn,0 = −iᾱn that contributes to the list of poles. Note
also that this solution results in small λn,0 = β2

n − ᾱ2
n;

in particular, λ0,0 determines the pole with the smallest
absolute value, which in turn determines the asymptotic
decay rate of the survival probability [29]

S(t|r, z) = 1−
∫ t

0

dtJab(t|r, z). (49)

Since βnh = π/2 + πn, some earlier expressions for the
residues are simplified,

dg
(s)
n (H)

ds

∣∣∣∣∣
s=sn,m

= (50)

i(−1)nhL2

2D

(
1 +

2κ′
aκ

′
d

(κ′
d − λn,m)2

(
1 +

J2
1 (αn,m)

J2
0 (αn,m)

)),
such that

cn,m = (51)

4D(−1)nJ1(αn,m)

hL2αn,m

(
J2
0 (αn,m) + J2

1 (αn,m) +
2κ′

aκ
′
dJ

2
0 (αn,m)

(κ′
d−λn,m)2

) ,

and the PDF of the escape time becomes

Jab(t|r, z) = (52)
∞∑

n,m=0

e−Dtλn,m/L2

cn,mJ0(αn,mr/L)βn,m cos(βn,mz/L).

F. Decay time

The decay time is determined by the smallest eigen-
value and is hence given by

T =
L2

Dλ0,0
. (53)
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The value of λ0,0 can be determined numerically, as de-
scribed in Sec. II E. In turn, the decay time determines
the long-time exponential decay of the survival probabil-
ity and of the PDF [29]:

S(t|r, z) ∝ e−t/T , Jab(t|r, z) ∝ e−t/T (t → ∞). (54)

While one can always find T numerically, in certain
cases we can approximate it analytically. For example,
let us assume that L ≫ H such that h = H/L ≪ 1.
This case corresponds to a very wide and shallow com-
partment. We recall that for the case of ka = 0 one
has β0 = π/(2h). A solution of Eq. (48) can be
searched (and then validated with simulations) by set-
ting ᾱ0 = π/(2h) − ϵ with ϵ ≪ 1. Substituting this
expression and expanding to the leading order in ϵ, we
get

ϵ ≈ κ′
d

π/h+ 2κ′
a
I0(π/(2h))
I1(π/(2h))

, (55)

where we note that ϵ is indeed small when h ≪ 1, thus
the approximation is self-consistent. We then compute
λ0,0 = β2

0 − ᾱ2
0 ≈ πϵ/h and thus

T ≈ L2

D

1 + 2
πκ

′
ah

I0(π/(2h))
I1(π/(2h))

κ′
d

(56)

=
1

k′d
+

2

π

k′aH

k′dD

I0(πL/(2H))

I1(πL/(2H))

≈ 1

k′d

(
1 +

2

π

k′aH

D

)
,

where we have used I0(πL/(2H))/I1(πL/(2H)) ≈ 1 for
h ≪ 1. Note that in this limit the decay time does not
depend on L.

III. PERIODIC ARRAY OF ADSORBING
NANOPILLARS

In this section, we study a different textured surface,
which is covered by a periodic array of nanopillars of ra-
dius l and height H, separated by distance d (Fig. 3).
The survival of a diffusing particle in the presence of ab-
sorbing nanopillars was recently studied in [30, 31]. Here,
we take a step forward and consider a more challenging
situation when the cylindrical walls and the bottom base
are adsorbing. Following the rationales presented in [30],
we approximate a periodic cell of the structure, a rect-
angular cuboid, by a cylindrical shell of inner radius l
and outer radius L, capped by parallel planes at z = 0
and z = H. In this way, the periodic conditions on the
cuboid are replaced by a reflecting boundary condition
on the outer cylinder, whose radius L is chosen to be
L = d/

√
π to get the same cross-sectional area of the

true rectangular cuboid cell, i.e., to preserve the volume
of the periodic cell.

In summary, we consider the escape problem from the
above cylindrical shell, in which the top annulus is ab-
sorbing, the outer cylinder is reflecting, whereas the inner
cylinder and the bottom annulus are adsorbing. The ad-
sorption and desorption rates of the bottom annulus and
the inner cylinder can differ. We are interested in find-
ing the PDF of the first-passage time to the top annulus,
which can also be thought of as the escape time from
the textured surface. We denote this PDF as Jab(t|r, z),
where (r, z) ∈ Ω is the initial location of the particle
inside the cylindrical shell.
Repeating the same considerations as in Eq. (1a)-(1d)

we obtain the boundary value problem

(s−D∆)J̃ab(s|r, z) = 0 (r, z ∈ Ω), (57a)

J̃ab(s|r, z) = 1 (z = H), (57b)

(−∂z + qs)J̃ab(s|r, z) = 0 (z = 0), (57c)

(−∂r + q′s)J̃ab(s|r, z) = 0 (r = l), (57d)

∂rJ̃ab(s|r, z) = 0 (r = L), (57e)

where ∆ = ∂2
r + (1/r)∂r + ∂2

z is the Laplace operator in
cylindrical coordinates (without the angular part). The
surfaces are characterized by the parameters qs and q′s
that were defined in Eq. (2), where ka and kd are the
adsorption and desorption constants for the bottom an-
nulus, and k′a and k′d are the adsorption and desoprtion
constants for the inner cylindrical surface.

A. Solution in Laplace domain

In analogy to Sec. II, we search the solution for Eq.
(57a) under the boundary conditions (57b)-(57e) as

J̃ab(s|r, z) =
∞∑

n=0

c(s)n ω0(α
(s)
n , r̄)

g
(s)
n (z)

g
(s)
n (H)

, (58)

where r̄ = r/L, with g
(s)
n (z) and α̂

(s)
n being defined in

Eqs. (4, 5). The prefactors in g
(s)
n (z) were determined to

ensure the boundary conditions (57b)-(57c). We further
introduce

ων(α
(s)
n , r̄) ≡ J1(α

(s)
n )Yν(α

(s)
n r̄)− Y1(α

(s)
n )Jν(α

(s)
n r̄),

(59)
where Yν(·) is the Bessel function of the second kind of
order ν, such that the condition (57e) is satisfied. In-

deed, the relation ∂rω0(α
(s)
n , r̄) = −α

(s)
n ω1(α

(s)
n , r̄)/L im-

plies ∂rω0(α
(s)
n , r̄)|r̄=1 = 0. From the boundary condition

(57d) we find that α
(s)
n satisfy the transcendental equa-

tion

α(s)
n

ω1(α
(s)
n , ρ)

ω0(α
(s)
n , ρ)

= −q′sL, (60)

where ρ = l/L. For any s ≥ 0, there are infinitely
many solutions that we enumerate by n = 0, 1, 2, . . . in



9

L

z
H

Initial
Position  

Ω 
Diffusion

Adsorption

Ad
so

rp
tio

n

Escape

ka kd

k’a

k’d

rl

d

FIG. 3. A surface with a periodic array of nanopillars. The
periodic cell, drawn in dashed lines, is a rectangular cuboid
that we approximate by a cylindrical cell. Such a cylindrical
cell is drawn around one of the pillars and enlarged. The ra-
dius of the cell is L = d/

√
π, where d is the distance between

adjacent pillars. The pillar is a cylinder of radius l capped
by parallel planes at z = 0 and z = H. The top annulus
at z = H is absorbing (escape region in red), whereas the
bottom annulus at z = 0 and the inner cylindrical wall are
adsorbing (green). Here, ka and kd are the adsorption and
desorption constants for the bottom annulus, and k′

a and k′
d

are the adsorption and desorption constants for the pillar sur-
face.

an increasing order. The unknown coefficients c
(s)
n are

found by multiplying the boundary condition (57b) by

rω0(α
(s)
n , r) and integrating over r from l to L. This

gives

c
(s)
k

2
× (61){[
ω0(α

(s)
n , 1)

]2
−
[
ρω0(α

(s)
n , ρ)

]2
−
[
ρω1(α

(s)
n , ρ)

]2}
= − ρ

α
(s)
k

ω1(α
(s)
n , ρ),

from which we get

c(s)n = (62)

2ρω1(α
(s)
n , ρ)/α

(s)
n[

ρω1(α
(s)
n , ρ)

]2
+
[
ρω0(α

(s)
n , ρ)

]2
−
[
ω0(α

(s)
n , 1)

]2 .

To obtain the left-hand side of Eq. (61) we used the
orthogonality of the Bessel functions together with

c
(s)
k

∫ 1

ρ

dr̄ r̄
[
ω0(α

(s)
n , r̄)

]2
= (63)

c
(s)
k

2

{[
r̄ω0(α

(s)
n , r̄)

]2
+
[
rω1(α

(s)
n , r̄)

]2}1

ρ

,

and noted that ω1(α
(s)
n , 1) = 0. To obtain the right-hand

side of Eq. (61), we used

1∫
ρ

dr̄ r̄ ω0(α
(s)
n , r̄) = − ρ

α
(s)
k

ω1(α
(s)
n , ρ). (64)

To facilitate further analysis, we use the dimensionless
quantities in Table I.

B. Mean Escape Time

In this section, we compute the mean escape time by
analyzing the asymptotic behavior of J̃ab(s|r, z) as s → 0.
We employ the same procedure that was described in Sec.
II B.
In the spectral expansion (58), we first analyze the

term n = 0 and then discuss the other terms with n > 0.
As s → 0, one has q′s → 0 (with an asymptotic form
κ′
a

κ′
d

L
D s) and so, according to Eq. (60), α

(s)
0 → 0. Using

the Taylor expansion of the Bessel functions in Eq. (59),
one gets

ω0(α
(s)
n , r̄) = (65)

2

πα
(s)
n

+ α(s)
n

1− r̄2 + 2 ln(r̄)

2π
+O((α(s)

n )2) ,

and

ω1(α
(s)
n , r̄) ≈ −1− r̄2

πr̄
+O((α(s)

n )2). (66)

Therefore, for s → 0 we obtain

α
(s)
0 ≈

√
s
√
2κ′

a/k
′
d

√
ρ

1− ρ2
(s → 0) . (67)

As a consequence, we have

c
(s)
0 ≈ (68)

π

2
α
(s)
0

(
1 +

ρ

1− ρ2
κ′
a

k′d

1− ρ4 + 4ρ2 ln(ρ)

4(1− ρ2)
s

)
+O(s5/2).

We also get α̂
(s)
0 ≈

√
s
√

L2/D
√
1 + 2(ρ/(1− ρ2))κ′

a/κ
′
d

in the leading order, from which we obtain

g
(s)
0 (z)

g
(s)
0 (H)

= 1− (69)(
κa

kd

H − z

L
+

[
L2

2D
+

ρ

1− ρ2
κ′
a

k′d

]
H2 − z2

L2

)
s+O(s2).
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Let us now consider the terms with n > 0. Denoting
the left-hand side of Eq. (60) as

F1(x) = x
ω1(x, ρ)

ω0(x, ρ)
, (70)

we Taylor expand

F1(α
(s)
n ) ≈ F1(α

(0)
n ) + F ′

1(α
(0)
n )(α(s)

n − α(0)
n ). (71)

According to Eq. (60), F1(α
(s)
n ) = −q′sL → 0 as s →

0 and thus α
(0)
n are the zeros of the function ω1(x, ρ)

defined in Eq. (59). Taking the derivative of Eq. (70)

and plugging in x = α
(0)
n we find

F ′
1(α

(0)
n ) = α(0)

n ρ− 4

π2α
(0)
n ρ

[
ω0(α

(0)
n , ρ)

]2 . (72)

Comparing the right-hand side of Eqs. (71) and (60) in
the limit s → 0, we obtain

α(s)
n = α(0)

n − κ′
a

k′d

1

F ′
1(α

(0)
n )

s+O(s2). (73)

Similarly, setting

F2(x) =
2ρω1 (x, ρ) /x

[ρω1 (x, ρ)]
2
+ [ρω0 (x, ρ)]

2 − [ω0(x, 1)]
2 , (74)

we have c
(s)
n = F2(α

(s)
n ) according to Eq. (62). Taking

the derivative of Eq. (74) and plugging in x = α
(0)
n we

find

F ′
2(α

(0)
n ) =

J0(α
(0)
n )Y1(α

(0)
n ρ) + Y2(α

(0)
n )J1(α

(0)
n ρ)− ρ

[
Y1(α

(0)
n )J0(α

(0)
n ρ) + J1(α

(0)
n )Y2(α

(0)
n ρ)

]
− 2

π2α
(0)
n ρ

+ α
(0)
n ρ
2

[
ω0(α

(0)
n , ρ)

]2 (75)

and using Eq. (73) we get

c(s)n = F2(α
(0)
n ) + F ′

2(α
(0)
n )(α(s)

n − α(0)
n ) +O(s2) (76)

= −F ′
2(α

(0)
n )

F ′
1(α

(0)
n )

κ′
a

k′d
s+O(s2),

and

α̂(s)
n = α(0)

n +

(
1

2α
(0)
n

− κ′
a

κ′
dF

′
1(α

(0)
n )

)
L2

D
s+O(s2). (77)

As a consequence, we find that to the leading order in s

g
(s)
n (z)

g
(s)
n (H)

≈ cosh(α
(0)
n z̄)

cosh(α
(0)
n h)

, (78)

and

ω0(α
(s)
n , r̄) ≈ ω0(α

(0)
n , r̄), (79)

with z̄ = z/L. Substituting these expressions into Eq.
(58), we get

J̃ab(s|r, z) = 1− s⟨T (r, z)⟩+O(s2), (80)

where

⟨T (r, z)⟩ = H2 − z2

2D
+

ka(H − z)

kdD
(81)

+
k′a
k′d

L

D

[
ρ

1− ρ2

(
h2 − z̄2 − 1− r̄2 + 2 ln(r̄)

2
− 1− ρ4 + 4ρ2 ln(ρ)

4(1− ρ2)

)
+

∞∑
n=1

ω0(α
(0)
n , r̄)

cosh(α
(0)
n z̄)

cosh(α
(0)
n h)

F ′
2(α

(0)
n )

F ′
1(α

(0)
n )

]

is the mean escape time, where h = H/L is the dimen- sionless cylinder’s height. In Fig. 4, we plot the mean
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escape time from a surface textured by an array of pil-
lars as given by Eq. (81), with varying pillar height and
varying inter-pillar distance.

As in Sec. II B, in the limit k′a → 0 or k′d → ∞,
when the pillars are not sticky but inert, we retrieve the
mean escape time for a one-dimensional box with a sticky
surface [25]

⟨T (r, z)⟩ = 1

2D
(H2 − z2) +

ka
kdD

(H − z), (82)

which is identical to Eq. (24).
The average of Eq. (81) over the cross-section at height

z yields

⟨T (z)⟩ = 2π

π(L2 − l2)

L∫
l

dr r ⟨T (r, z)⟩ (83)

=
ka
kd

H − z

D
+

(
1 +

2k′a
k′dL

ρ

1− ρ2

)
H2 − z2

2D
,

where we used
∫ L

l
dr ω0(α

(0)
n , r̄) = 0. Further averaging

over z, we obtain

⟨Tu⟩ =
H2

3D

(
1 +

ka
kd

3

2H
+

k′a
k′d

ρ

1− ρ2
2

L

)
, (84)

where the subscript ‘u’ denotes a uniform distribution of
the initial position.

C. Solution in time domain

The solution in time domain can be found via the
residue theorem. The computation is very similar to the
case of the capped cylinder in Sec. IID; here, we differ-
entiate Eq. (60) to get

α(s)
n

dα
(s)
n

ds
= − κ′

ak
′
d

(k′d + s)2
×

(
ω1(α

(s)
n , ρ)

α
(s)
n ω0(α

(s)
n , ρ)

(85)

+
ω0(α

(s)
n , ρ)

dω1(α
(s)
n ,ρ)

dα
(s)
n

− ω1(α
(s)
n , ρ)

dω0(α
(s)
n ,ρ)

dα
(s)
n[

ω0(α
(s)
n , ρ)

]2
)−1

.

Overall, we obtain

Jab(t|x, z) =
∞∑

n,m=0

cn,me−Dtλn,m/L2

ω0(αn,mr/L) (86)

×
(
βn,m cos(βn,mz/L)− κaλn,m

κd − λn,m
sin(βn,mz/L)

)
,

where αn,m = α
(sn,m)
n , λn,m = α2

n,m + β2
n,m =

−sn,mL2/D,

cn,m =
ic

(sn,m)
n

dg
(s)
n (H)
ds

∣∣
s=sn,m

=
i

dg
(s)
n (H)
ds

∣∣
s=sn,m

× (87)

2ρω1 (αn,m, ρ) /αn,m

[ρω1 (αn,m, ρ)]
2
+ [ρω0 (αn,m, ρ)]

2 − [ω0(αn,m, 1)]
2 ,

100 101

102

103

b
10-1 100 101

100

102

a

FIG. 4. Mean escape time from a surface textured by an
array of pillars (Fig. 3). Solid lines are drawn using the
exact solution of Eq. (81). Each line represents a different
adsorption equilibrium constant for the pillar, K′ = k′

a/k
′
d,

where we set k′
d = 1 and vary k′

a accordingly. Marker symbols
represent the mean escape time of 104 particles simulated
according to the protocol in Appendix D of Ref. [25], with
simulation time step ∆t = 10−4. We set D = 0.7, l = 0.9,
ka = 0.7, kd = 6.1, z = 0.1 and r = 1. The mean escape time
is plotted as function of (a) the height of the pillars H, where
we set L = 5; (b) the radius of the unit cell L (divided by the
radius of the pillars l), where we set H = 10.

and dgn(H)
ds |s=sn,m

is given by Eq. (34), in which α
(s)
n

dα(s)
n

ds
is substituted from Eq. (85).

D. Poles

The poles of J̃ab(s|x, z) are determined by zeros of

g
(s)
n (H), as previously (see Sec. II E). We use the for-

mer notations: α
(s)
n = α, α̂

(s)
n = iβ, and α2 + β2 = λ =

−sL2/D. In this case, Eq. (60) reads

ω0(α, ρ)

αω1(α, ρ)
= −1− κ′

d/(α
2 + β2)

κ′
a

. (88)

We focus on the case ka = 0, for which βnh = π/2 + πn.
For any fixed βn, the left-hand side of Eq. (88) increases
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piecewise monotonously from −∞ to +∞ on the intervals

(α
(0)
n , α

(0)
n+1), while the right-hand side is a monotonously

decreasing function of α. As a consequence, there is a

single solution on each interval (α
(0)
n , α

(0)
n+1) that we de-

note as αn,m+1, for m = 0, 1, 2, . . .. In addition, there
is a purely imaginary solution, which can be found by
setting α = −iᾱ, with ᾱ satisfying

1

ᾱ

I1(ᾱ)K0(ᾱρ) +K1(ᾱ)I0(ᾱρ)

K1(ᾱ)I1(ᾱρ)− I1(ᾱ)K1(ᾱρ)

=
1− κ′

d/(β
2 − ᾱ2)

κ′
a

, (89)

where Iν(·) andKν(·) are the modified Bessel functions of
the first and second kind of order ν. The left-hand side
monotonously increases from −∞ to 0 as ᾱ goes from
0 to +∞, whereas the right-hand side for any fixed βn

decreases monotonously on (0, βn) from (κ′
d/β

2
n − 1)/κ′

a

to −∞, and on (βn,+∞) from ∞ to 1/κ′
a. As a con-

sequence, there exists only one solution on the inter-
val (0, βn) that we denote ᾱn. This solution determines
αn,0 = −iᾱn that contributes to the list of poles.

E. Decay time

The general discussion in Sec. II F is valid here. Let us
find the approximation for the decay time T in the the
limit ka = 0 and h = H/L ≪ 1 such that β0 = π/(2h) ≫
1. A solution of Eq. (89) can be searched (and then
validated with simulations) by setting ᾱ0 = π/(2h) − ϵ
with ϵ ≪ 1. Substituting this expression and expanding
to the leading order in ϵ, we get

ϵ ≈
[

π

hκ′
d

+
2κ′

a

κ′
d

I1(
π
2h )K0(

πρ
2h ) +K1(

π
2h )I0(

πρ
2h )

I1(
π
2h )K1(

πρ
2h )−K1(

π
2h )I1(

πρ
2h )

]−1

,

(90)
where we note that ϵ is indeed small when h ≪ 1, thus
the approximation is self-consistent. We then compute
λ0,0 = β2

0 − ᾱ2
0 ≈ πϵ/h and find

T =
L2

Dλ0,0

≈ 1

k′d
+

2hκ′
a

πk′d

I1(
π
2h )K0(

πρ
2h ) +K1(

π
2h )I0(

πρ
2h )

I1(
π
2h )K1(

πρ
2h )−K1(

π
2h )I1(

πρ
2h )

. (91)

To proceed, we note that when h ≪ 1, one has Iν(
π
2h ) ≈√

heπ/(2h)/π whereas Kν(
π
2h ) ≈

√
he−π/(2h) and is thus

negligible. We then get

T ≈ 1

k′d
+

2Hk′a
πDk′d

K0(πl/(2H))

K1(πl/(2H))
(92)

≈ 1

k′d

(
1 +

2

π

k′aH

D

)
,

where we noted that πρ/(2h) = πl/(2H) and used
K0(πl/(2H))/K1(πl/(2H)) ≈ 1 for h ≪ 1. We thus see
that in this limit the decay time identifies with the decay
time in Eq. (56), and that it does not depend on L.

xL-L

z

Ω 

H

Adsorption

Ad
so

rp
tio

n

Initial 
position

k’a

k’d

ka kd

FIG. 5. Adsorbing grooved surface. The walls separating
the grooves are of height H and the distance between any two
walls is 2L. One of the grooves is enlarged, and the problem
is effectively the escape from a two-dimensional rectangular
compartment. The top side at z = H is absorbing (an escape
region in red), whereas the other three sides are adsorbing
(green). Here, ka and kd are the adsorption and desorption
constants for the bottom edge, and k′

a and k′
d are the adsorp-

tion and desorption constants for the left and right edges.

IV. ADSORBING GROOVED SURFACE

We consider a grooved surface, as illustrated in Fig.
5. This problem is equivalent to diffusion with a diffu-
sion coefficient D in a rectangular domain Ω = (−L,L)×
(0, H). The top edge of the domain is absorbing (with
Dirichlet boundary condition), and the three other edges
are adsorbing, with reversible binding. As in the previ-
ous examples, we allow for different adsorption kinetics
on the bottom edge. We search the probability density
function Jab(t|x, z) of the escape time through the top
edge. Note that the problem of escape from the domain
Ω is equivalent to an escape from a twice smaller domain
Ω′ = (0, L)×(0, H) where the left edge is reflecting (with
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Ω Ω’

L-L L

H H

x x

z z(a) (b)

ka , kd ka , kd

ka , kd  ’ ’ka/kd  ’ ’ka , kd ’ ’

0 0

N

EscapeEscape

FIG. 6. (a) A schematic illustration of a rectangular domain
Ω = (−L,L)×(0, H) ⊂ R2 with one absorbing edge (an escape
region on the top), and three adsorbing edges with reversible
binding kinetics characterized by ka and kd (bottom) and k′

a

and k′
d (left and right). (b) An equivalent twice smaller do-

main Ω′ = (0, L)× (0, H) with a reflecting edge replacing the
adsorbing edge on the left (a Neumann boundary condition is
denoted by N).

Neumann boundary condition), see Fig. 6. We thus focus
on the latter setting.

Repeating the same considerations as in Eq. (1a)-(1d)
we obtain the boundary value problem

(s−D∆)J̃ab(s|x, z) = 0 (x, z ∈ Ω′), (93a)

J̃ab(s|x, z) = 1 (z = H), (93b)

(−∂z + qs)J̃ab(s|x, z) = 0 (z = 0), (93c)

−∂xJ̃ab(s|x, z) = 0 (x = 0), (93d)

(∂x + q′s)J̃ab(s|x, z) = 0 (x = L), (93e)

where ∆ = ∂2
x + ∂2

z is the Laplace operator in Cartesian
coordinates. The surfaces are characterized by the pa-
rameters qs and q′s that were defined in Eq. (2), where
ka and kd are the adsorption and desorption constants
for the bottom edge, and k′a and k′d are the adsorption
and desoprtion constants for the right edge.

A. Solution in Laplace domain

The solution of Eq. (93a) under the boundary condi-
tions (93b)-(93e) is

J̃ab(s|x, z) =
∞∑

n=0

c(s)n cos(α(s)
n x/L)

g
(s)
n (z)

g
(s)
n (H)

, (94)

where g
(s)
n (z) and α̂

(s)
n were defined in Eqs. (4, 5). The

prefactors in g
(s)
n (z) were determined by the boundary

conditions (93b)-(93c).
We have used the reflecting boundary condition (93d)

to determine the form of the x-dependent part in Eq.

(94). From the boundary condition (93e) we find that

α
(s)
n satisfy the transcendental equation

α(s)
n tan(α(s)

n ) = q′sL. (95)

For any s ≥ 0, there are infinitely many solutions that
we enumerate by n = 0, 1, 2, . . . in an increasing order.

The unknown coefficients c
(s)
n are found by multiplying

the boundary condition (93b) by cos(α
(s)
k x/L) and inte-

grating over x from 0 to L. This gives

c(s)n =
2 sin(α

(s)
n )

α
(s)
n

(
1 + sin(2α

(s)
n )

2α
(s)
n

) . (96)

To facilitate further analysis, we use the dimensionless
quantities in Table I. In the solution process, we will em-
ploy the same procedure that was described in Sec. II.
We will thus skip some of the details of the calculation.

B. Mean Escape Time

In this section, we compute the mean escape time by
analyzing the asymptotic behavior of J̃ab(s|r, z) as s → 0.
In the limit s → 0, one has

α(s)
n ≈

{√
sκ′

a/k
′
d (n = 0),

πn+ κ′
as/(k

′
dπn) (n > 0),

(97)

where we used α
(0)
n = πn. We deduce then

c(s)n ≈

{
1 +

κ′
a

6k′
d
s (n = 0),

2s(−1)nκ′
a/(k

′
d[πn]

2) (n > 0).
(98)

Similarly, we deduce

g
(s)
0 (z)

g
(s)
0 (H)

≈ 1−
(
κa

kd

H − z

L
+

[
L2

D
+
κ′
a

k′d

]
H2 − z2

2L2

)
s, (99)

and

g
(s)
n (z)

g
(s)
n (H)

≈ cosh(πnz/L)

cosh(πnH/L)
. (100)

Substituting these expressions in Eq. (94), we get

J̃ab(s|x, z) = 1 − s⟨T (x, z)⟩ + O(s2), where the mean
escape time is found to be

⟨T (x, z)⟩ = H2 − z2

2D
+

ka
kd

H − z

D
(101)

+
k′aL

k′dD

(
x2

2L2
− 1

6
+

H2 − z2

2L2

− 2

∞∑
n=1

(−1)n

π2n2
cos(πnx/L)

cosh(πnz/L)

cosh(πnH/L)

)
.
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FIG. 7. PDF Jab(t|x, z) of the escape time from a groove with D = 1, L = 1, H = 10, ka = 0, for three different values of
κ′
d (see the legend), and κ′

a = 0.1 (panel a), κ′
a = 1 (panel b), and κ′

a = 10 (panel c). Solid lines give the exact solution from
Eq. (105), while dashed lines represent the two-state switching diffusion approximation. Marker symbols give estimates based
on 106 particles whose motion was simulated according to the protocol in Appendix D of Ref. [25], with simulation time step
∆t = 10−6.

The average over the cross-section at height z yields

⟨T (z)⟩ = 1

L

L∫
0

dxT (x, z)

=
ka(H − z)

kdD
+

(
1 +

k′a
k′dL

)
H2 − z2

2D
. (102)

Further averaging over z we obtain

⟨Tu⟩ =
1

H

H∫
0

dz⟨T (z)⟩ (103)

=
H2

3D

(
1 +

ka
kd

3

2H
+

k′a
k′d

1

L

)
,

where the subscript ‘u’ denotes a uniform distribution of
the initial position.

If one uses the two-state switching diffusion approx-
imation instead of the exact solution (see Sec. II C),
a comparison with Eq. (31) for ka = 0 suggests that
k12 = k′a/L.

C. Solution in time domain

The solution in time domain can be found via the
residue theorem. The computation is similar to the case
of the capped cylinder in Sec. IID; here, we differentiate
Eq. (95) to get

α(s)
n

dα
(s)
n

ds
= (104)

κ′
ak

′
d

(k′d + s)2

(
tan(α

(s)
n )

α
(s)
n

+ 1 + tan2(α(s)
n )

)−1

.

Therefore, we obtain

Jab(t|x, z) =
∞∑

n,m=0

cn,me−Dtλn,m/L2

cos(αn,mx/L)×(
βn,m cos(βn,mz/L)− κaλn,m

κd − λn,m
sin(βn,mz/L)

)
,

(105)

where αn,m = α
(sn,m)
n , λn,m = α2

n,m + β2
n,m =

−sn,mL2/D,

cn,m =
ic

(sn,m)
n

dg
(s)
n (H)
ds

∣∣
s=sn,m

(106)

=
i

dg
(s)
n (H)
ds

∣∣
s=sn,m

2 sin(αn,m)/αn,m

1 +
sin(2αn,m)

2αn,m

,

and dgn(H)
ds |s=sn,m

is given by Eq. (34), in which α
(s)
n

dα(s)
n

ds
is substituted from Eq. (104).
Figure 7 illustrates the behavior of the PDF Jab(t|x, z)

for H = 10. For small adsorption rates κ′
a (panels a

and b), the two-state switching diffusion model yields
an excellent approximation. In contrast, when κ′

a = 10
(panel c), the two-state model accurately describes the
long-time behavior but fails at short times. Similarly,
when H = 1, an approximation by the two-state model
is less accurate (figure not shown).

D. Poles

The poles of J̃ab(s|x, z) are determined by zeros of

g
(s)
n (H), as previously (see Sec. II E). We use the for-

mer notations: α
(s)
n = α, α̂

(s)
n = iβ, and α2 + β2 = λ =

−sL2/D. In this case, Eq. (95) reads

cos(α)

α sin(α)
=

1− κ′
d/(α

2 + β2)

κ′
a

. (107)



15

10-2 100 102
10-2

100

102

0

20

40

60

80

100

10-2 100 102
10-2

100

102

100

101

102

103

10-2 100 102
10-2

100

102

10-1

100

101

102

10-2 100 102
10-2

100

102

102

103

104

105

Decay Time

h=0.1

h=1

h=10

10-2 100 102
10-2

100

102

0

20

40

60

80

100

10-2 100 102
10-2

100

102

0

20

40

60

80

100

10-2 100 102
10-2

100

102

0

20

40

60

80

100

Approx - Relative Error
Equation (110)

Approx - Relative Error 
Two State Switching Di�usion

h=0.1

h=1

h=10 h=10

10-2 100 102
10-2

100

102

0

20

40

60

80

100h=0.1

10-2 100 102
10-2

100

102

0

20

40

60

80

100h=1

FIG. 8. Left Column. The decay time T for the escape from a groove with h = H/L = 0.1 (top), h = 1 (middle), and h = 10
(bottom), for ka = 0, L = 1 and D = 1. Since ka = 0 we have β0 = π/(2h). We attain ᾱ0 by numerically finding the roots
of Eq. (108). We then use λ0,0 = β2

0 − ᾱ2
0 and T = L2/(Dλ0,0). Center Column. The relative error (in per cents) of the

approximation for T given by Eq. (110). Right Column. The relative error (in per cents) of the two-state switching diffusion
approximation for T .

We focus on the case ka = 0, for which βnh =
π/2 + πn with h = H/L. For any fixed βn, the left-
hand side of Eq. (107) decreases piecewise monotonously
on the intervals (πm, π(m + 1)), while the right-hand
side is a monotonously increasing function of α. As
a consequence, there is a single solution on each in-
terval (πm, π(m + 1)) that we denote as αn,m+1, for
m = 0, 1, 2, . . .. In addition, there is a purely imaginary
solution, which can be found by setting α = −iᾱ, with ᾱ

satisfying

cosh(ᾱ)

ᾱ sinh(ᾱ)
=

κ′
d/(β

2
n − ᾱ2)− 1

κ′
a

. (108)

As ᾱ goes from 0 to +∞, the left-hand side monotonously
decreases from +∞ to 0, whereas the right-hand side
for any fixed βn increases monotonously on (0, βn) from
(κ′

d/β
2
n − 1)/κ′

a to +∞, and on (βn,+∞) from −∞ to
−1/κ′

a. As a consequence, there exists only one solution
on the interval (0, βn) that we denote ᾱn. This solution
determines αn,0 = −iᾱn that contributes to the list of
poles.
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E. Decay time

The general discussion in Sec. II F is valid here. Let us
find the approximation for the decay time T in the limit
ka = 0 and h = H/L ≪ 1 such that β0 = π/(2h) ≫ 1. A
solution of Eq. (108) can be searched (and then validated
with simulations) by setting ᾱ0 = π/(2h)− ϵ with ϵ ≪ 1.
Substituting this expression and expanding in the leading
order to ϵ, we get

ϵ ≈ κ′
d

π
h + 2κ′

actanh(π/(2h))
, (109)

from which λ0,0 = β2
0 − ᾱ2

0 ≈ πϵ/h and thus

T =
L2

Dλ0,0
≈ L2

D

1 + 2
πκ

′
ah ctanh(π/(2h))

κ′
d

(110)

=
1

k′d
+

2
πk

′
a(H/D)ctanh(πL/(2H))

k′d

≈ 1

k′d

(
1 +

2

π

k′aH

D

)
,

where we used ctanh(πL/(2H)) ≈ 1 when h ≪ 1. In this
limit the decay time does not depend on L. Note that
the decay time in this limit is the same as in the previous
two examples, see Eqs. (56) and (92).

For this example let us also consider the opposite limit
h ≫ 1. In fact, we have already derived in Sec. II C the
two-state switching diffusion approximation for this case.
The decay time of this approximation is determined by
γ− with the lowest eigenvalue Λ0 = (π/2H)2, according
to Eq. (29). At the end of Sec. IVB we have already
seen that for this example k12 = k′a/L and k21 = k′d.
Finally, we have Tsd = L2/(Dγ−).
The behavior of the decay time and the validity of the

approximation in Eq. (110) and the two-state switching
diffusion approximation Tsd are explored in Fig. 8, where
we plot the actual decay time as a function of κ′

a and κ′
d,

and the relative errors that are obtained by using the ap-
proximations. While it can be seen that both approxima-
tions work very well in their ranges of validity (h ≪ 1 for
Eq. (110) and h ≫ 1 for two-state diffusion), we observe
that the two-state diffusion approximation also provides
fair results for grooves of intermediate depth (h = 1).

V. DISCUSSION

Since the early works of Langmuir in the beginning
of the 20th century, and to this day, the vast majority of
theoretical works on adsorption dynamics have dealt with
flat surfaces immersed in an infinite bulk of adsorbates
[32–50] (which is effectively a one-dimensional setting),
or with smooth curved surfaces [51–59]. In this context,
two main models are usually considered: Linear kinet-
ics and Langmuir kinetics. While the latter accounts for

saturation of the surface under high adsorbate concen-
tration, it is not linear and does not admit an analytical
solution.
Given a flat surface located at L and a concentration

profile c(x, t), the surface concentration Γ(t) under linear
adsorption kinetics follows [59]

dΓ(t)

dt
= kac(L, t)− kdΓ(t). (111)

At equilibrium, i.e., when dΓ(t)
dt = 0, one gets the Henry

isotherm Γ(t) = Kc(L, t), with the equilibrium constant
K = ka/kd. Trivially, the desorption rate kd is inversely
proportional to the mean time spent being adsorbed to
the surface: kd = ⟨T ⟩−1. But what happens when the
surface is textured? On the microscopic scale, the des-
orption rate is still determined by kd. Yet, on a scale
comparable to that of the surface roughness, multiple
events of adsorption and desorption can give rise to a
completely different effective (or macroscopic) desorption
rate. In this work, we employed our theoretical approach
presented in Ref. [25] to determine this effective desorp-
tion rate.
For this purpose, we adopted a single-particle perspec-

tive and calculated the PDF and the mean of the escape
time from textured surfaces of three different common to-
pographies: holes, pillars and grooves. Such solutions are
valuable when studying the adsorption-desorption dy-
namics of surfaces. In particular, we obtained the mean
escape time for the three surface topographies in a com-
mon experimental setting where the initial position of the
particle is uniformly distributed inside the surface cavi-
ties. Let us rewrite these equations (26, 84, 103) here

⟨Tholes⟩ =
H2

3D

(
1 +K

3

2H
+K ′ 2

L

)
, (112a)

⟨Tpillars⟩ =
H2

3D

(
1 +K

3

2H
+K ′ ρ

1− ρ2
2

L

)
, (112b)

⟨Tgrooves⟩ =
H2

3D

(
1 +K

3

2H
+K ′ 1

L

)
, (112c)

where K = ka/kd and K ′ = k′a/k
′
d are the equilibrium

constants of the bottom and lateral surfaces respectively,
and ρ = l/L.
For all the considered examples, the first term in the

parenthesis corresponds to the mean escape time in the
absence of adsorption (reflecting surfaces): ⟨Tref ⟩ =
H2/(3D). The second and third terms correspond to
the mean time spent adsorbed to the bottom surface and
to the lateral surface, respectively. We can easily quan-
tify how the introduction of stickiness affects the mean
escape time. For example, dividing Eq. (112a) by ⟨Tref ⟩
we obtain

⟨Tholes⟩
⟨Tref ⟩

= 1 +K
3

2H
+K ′ 2

L
. (113)

It is apparent that there are two contributions to the
deviation of the mean escape time from its non-sticky
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benchmark. The contribution from the bottom surface
scales like K/H and the contribution from the lateral
surface scales like K ′/L, where L and H are the char-
acteristic lengths in the direction of the axes. As first
mentioned in Ref. [25] this scaling seems to be universal,
and the geometry of the domain determines the effective
length ξ. It can be easily verified to hold in Eqs. (112b)
and (112c).

In this work we considered surfaces with canonical to-
pographies. However, the approach we employed is gen-
eral and we expect that similar behavior will also be
found for other geometries with perpendicular sticky sur-
faces, up to the geometrical pre-factor ξ. For a general
(even rugged) sticky surface, the expected form of the
mean escape time is

⟨Tu⟩ = ⟨Tref ⟩

(
1 +

∑
n

Kn

ξn

)
, (114)

where ξn is the effective length scale of the n-th surface

element, and Kn = k
(n)
a /k

(n)
d is the equilibrium constant

with k
(n)
a and k

(n)
d standing for the adsorption and des-

orption rates.

Finally, the mean escape time is inversely proportional

to the effective desorption rate from the textured surface

keffd = ⟨Tu⟩−1 =

[
⟨Tref ⟩

(
1 +

∑
n

Kn

ξn

)]−1

. (115)

Note that Eq. (115) represents an effective macroscopic
description of the system, and that it does not imply
exponential escape times from the surface. Importantly,

keffd can be orders of magnitude smaller than the charac-
teristic (microscopic) desorption rates in the system, as
it vanishes with lateral confining length scales. Equation
(115) can guide those who wish to predict and control
desorption from textured adsorbing surfaces.
Overall, our study can also be considered as the fun-

damental step towards coarse-graining the microscopic
adsorption-desorption kinetics and thus building macro-
scopic models of diffusive dynamics near textured sur-
faces. In fact, former works on boundary homogeniza-
tion (see [30, 31] and references therein) provided efficient
tools for estimating the macroscopic adsorption constant
for textured surfaces. This work complements the for-
mer results by quantifying the desorption step and thus
opening a way to describe adsorption-desorption kinetics
of textured surfaces.
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