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PACS 47.15.G – Low-Reynolds-number (creeping) flows

Abstract – For a model of a 3D coating composed of a bi-periodic system of parallel riblets with
gaps we analytically derive an approximate formula for the effective slip length (an offset from the
flat surface at which the flow velocity would extrapolate to zero) as a function of the geometry
of the system (riblet period, riblet height, and relative gap size). This formula is valid for an
arbitrary fraction of gaps (i.e from narrow riblets to narrow gaps) and agrees with the known
analytical results for the 2D periodic coating of riblets without gaps. We validate our analytical
results with the numerical solution of the equations of the viscous (creeping) flow over the riblets
with gaps.

Introduction. – The viscous flow over surfaces cov-
ered by sharp elements (riblets, grooves, spikes, or pillars)
has been the key component in many problems of microflu-
idics (lab-on-a-chip [1, 2]), geophysics (canopy flows [3]),
and biomechanics (the so-called shark skin phenomenon
[4–7]). A spiky coating has a remarkable (and, perhaps,
counterintuitive) property of drag (shear stress) reduction
of the viscous flow compared to a flat surface, although
in the former case, the contact area between the fluid and
solid is much higher [8–10]. This property has made spiky
coatings an attractive candidate for many practical ap-
plications (e.g., drag reduction of ships and drones [11],
improvement of propeller performance [12], micro-pump
design [1,13]) and stimulated many experimental and the-
oretical studies [14–25]. This is an active area of research
with extensive literature, see [8, 9, 26–31], and references
therein.

The effect of a coating of complex morphology on vis-
cous flow has been conventionally quantified by a parame-
ter called effective slip length [1,4,14,18,23–25]. This pa-
rameter can be introduced with the following arguments.
Near a flat surface the velocity of flow is directed along the
surface, it is zero at the surface (no-slip boundary condi-
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tion) and can be modeled by a linear profile

v(y) = Jy, (1)

where y is the distance from the surface, constant J is
related to the friction drag at the surface τ = µdv/dz =
µJ , and µ is fluid viscosity. With a coating of complex
morphology, the flow just above and inside the coating
can be very complex. Nevertheless, far from the surface
the linear relation v(y) is restored but with an additional
parameter λ

v(y) = J(y − λ), (2)

where λ (can have either sign) has a dimension of length
and is called the effective slip length [1, 4, 14, 18, 23–25].
This parameter is the aggregated measure of the effect
of coating morphology on the hydrodynamic properties of
the surface. Condition y = λ corresponds to the fictitious
coordinate at which the flow velocity would extrapolate
to zero (relative to the surface y = 0). Likewise, the pa-
rameter λ can be introduced by postulating a radiation
boundary condition at the surface [16]:

v + λ
∂v

∂y
= 0. (3)

The effective slip length may also incorporate the effect
of changing boundary conditions at some parts of the sur-
face (from no-slip condition v = 0 to no-stress condition
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Fig. 1: Examples of 2D riblet coating: a - coating with a pe-
riodic system of riblets; b - a system of riblets with trapped
air pockets; c - coating with a periodic system of partially hy-
drophobic riblets modeled with partially absorbing (radiation)
boundary condition (depicted in black); V0 is the direction of
the flow.

τ = 0) due to the air bubbles trapped between the spikes,
see Fig. 1. Evidently, the patches of no-stress areas of
the surface (e.g., due to trapped air) may lead to a signif-
icant reduction of viscous drag and that is often referred
to as hydrophobic properties of the coating. Alternatively,
roughness can block access of the flow to some parts of the
surface so that the intrinsic hydrophobicity of the surface
(as its physicochemical property) can be significantly am-
plified [20]. This necessitates investigation of the interplay
of the effects of hydrophobicity and roughness. To incor-
porate the effect of hydrophobicity of the spikes due to
the no-stress and no-slip patches of the spike surface the
spikes can be modeled with the radiation boundary con-
ditions (see below). All these cases are depicted in Fig.
1.

The main focus of many theoretical studies of spiky
coatings was the analytical derivation of the value of pa-
rameter λ as a function of coating morphology. Let
us consider a steady flow of viscous fluid with the low
Reynolds number (Stokes flow). The flow is unidirectional
and this implies that velocity vector is directed along the
z axis and depends only on the other two coordinates (i.e.,
v ≡ v(x, y)). It is well-known that in this case the equa-
tions of motion reduce to the 2D Laplace equation for the

longitudinal velocity [4, 14,32]

∂2v

∂x2
+

∂2v

∂y2
= 0. (4)

For the 2D coatings (the canopy that is periodic in the
cross-flow direction and does not change along the flow,
see Fig. 1) a wealth of analytical results have been derived
by employing the property of conformal invariance of Eq.
(4) [4,5,31]. For instance, for the 2D comb-like boundary
or riblets shown on Fig. 1, the results are as follows. For
the no-slip boundary condition at the spikes and on the
base, Fig. 1a, [4, 33]

λ =
W

π
ln [cosh(πH/W )] (no-slip on the base), (5)

and for the no-slip boundary condition at the spikes and
the no-stress (‘hydrophobic’) boundary condition on the
base, Fig. 1b, [31,34]

λ =
W

π
ln [sinh(πH/W )] (no-stress on the base), (6)

where W is the period of the comb-like structure (distance
between spikes) and H is the height of the spikes. As
H → ∞, both equations (5) and (6) behave similarly as

λ ≈ H − ln 2

π
W, (7)

so λ tends to H minus a universal offset proportional to
the period of the structure. For the riblets of other shapes
(e.g., semicircle, triangular, rectangular cross-sections) the
results are similar and can be found in [4, 5].

For a periodic configuration of alternating (no-slip and
no-stress) stripes on a flat surface oriented perpendicular
to the flow velocity [23–25], one has

λ =
W

2π
ln
[
1/ sin

(π
2
σ
)]

, (8)

where σ is the surface fraction of the no-stress stripes, W
is the period of the stripes.

For the 3D morphological structures of the coating (e.g.,
spikes, pillars, or hemispheres) conformal transformation
cannot be applied and there are only a limited number of
papers in which the parameter λ has been derived ana-
lytically, see [36–42] and references therein. In particular,
the authors of Refs. [36–39] considered the model (that we
refer to as the disk model) in which a viscous flow exists
only above ‘nanoforest’ composed of a lattice of identical
cylindrical pillars. In this model, the effect of the coating
on the viscous flow is reduced to the friction forces act-
ing at the top disks of each pillar (the flow satisfies the
no-slip boundary condition on the top of the circular pil-
lar, y = 0) whilst the flow inside the ‘nanoforest’ (e.g.,
between the pillars) is disregarded (at y = 0 the no-stress
boundary condition was assumed everywhere except the
top disks). It was found that at the limit of a small areal
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density of the ‘nanoforest’ pillars (or surface fraction of
the top disks), σ ≪ 1, the effective slip length obeys the
scaling law [29,36]

λ = H −
(

A√
σ
−B

)
W, σ → 0, (9)

where W is the period of the pillar lattice (for simplic-
ity assumed to be the square lattice), A = (3/16)

√
π,

B = (3/2π) ln(1 +
√
2) ≈ 0.4208 [37] (note that this origi-

nal value of B was later corrected in [38] to B ≈ 0.4655).
It was also found that this scaling law is geometry spe-
cific, viz., for the elongated (quasi-one-dimensional) cross-
section of the structural elements (wall-like in the current
context) it changes from the power-law (9) to the logarith-
mic form [29,37]:

λ = H − 1

3π
ln

(
4

πσ

)
W, σ → 0. (10)

Formulas (9) and (10) are valid for σ ≪ 1 [36], [37]. The
limit σ → 0 (no disks) corresponds to λ → −∞ or no fric-
tion (drag) on the surface so that the approximate rela-
tion (2) does not make sense anymore. The later condition
follows from Eq. (3) when the first term, which is propor-
tional to 1/λ, becomes insignificant. The second terms in
Eqs. (9) and (10) become zero at σ = (A/B)2 ≈ 0.18 and
σ = 4/π ≈ 1.27, respectively, instead of σ = 1 (uniform
surface with the no-slip boundary condition), which is due
to the inapplicability of Eqs. (9) and (10) at high σ.
The aim of the present paper is to derive the self-

consistent approximate expression for the effective slip
length of the spiky coating as a function of the height
of its 3D structural element, similar to Eqs. (5), (6) for
2D.

Riblets with periodic gaps. – To appreciate the
effect of the pillar height, we need to incorporate the flow
between pillars. This flow indeed depends on the gaps
between the pillars in the row. Without the gaps the so-
lution is given by Eqs. (5, 6). To deduce an approximate
model of the flow with gaps we use the well-known frame-
work of slip length that was conventionally applied for the
analytical treatment of the Stokes flow with the periodic
boundary conditions [1, 23–25].

Assume that the periodic system of pillars that was
formed by the 2D riblets with the periodic identical gaps
as shown in Fig. 2. Near the edges of the gaps the flow
has strong downstream dependency that rapidly (expo-
nentially) disappears in the traverse direction, so that the
flow between riblets becomes uniform in the downstream
direction with its velocity being determined by the size of
the gaps (for details, see [25] and references therein).

Let x, y denote the horizontal and vertical axis, respec-
tively, and the z axis is directed along the riblets (and
flow velocity) as shown in Fig. 2. The boundary con-
dition at the solid part of the riblets is v = 0 (no-slip)
and at the gaps, the boundary condition is ∂xv = 0 (no

a

b

Fig. 2: Models of coatings: a - periodic system of riblets; b -
periodic system of riblets with periodic gaps.

tangential stress ). Applying the aforementioned argu-
ments, the alternating boundary conditions at the riblet
surface (y < H, x = ±W/2) imply that this surface (grey
riblets in Fig. 1c) can be translated to the problem of
Stokes flow over a texture of superhydrophobic transverse
strips [1,23–25] and analytically treated with the effective
boundary condition

∂v

∂x
+

v

λs
= 0, x = ±W/2, 0 < y < H, (11)

where λs is the slip length and given by Eq. (12)

λs =
L

π
ln
[
1/sin

(π
2
σs

)]
, (12)

where L = s + g is the period of the solid-gap structure
of an individual riblet, s is the width of the solid part of
the riblet (per period), g = L− s is the width of the gap,
σs = s/L. For the case g = 0 (no gaps) we return to the
solution given by Eqs. (5, 6).
With the effective boundary condition (11) the original

3D problem reduces to a 2D problem that can be tack-
led analytically (although due to the radiation boundary
condition at the riblets conformal mapping is not help-
ful). Assume that v = v0 = const for some y = δ ≫ H
(Couette flow) and for a given λs we can derive offset λ
as δ → ∞. The parameter λ, being a function only of the
geometry of the coating, is independent of δ, v0, and µ.
Formally, due to the periodicity of the system, we need

to find a solution of the Eq. (4) for 0 ≤ y ≤ δ and |x| <
W/2 with the following boundary conditions (see Fig. 1c):

∂v

∂x
+

v

λs
= 0, x = ±W/2, 0 < y < H, (13)

∂v

∂x
= 0, x = ±W/2, H < y < δ, (14)
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v = v0, y = δ, (15)

v = 0, y = 0, no-slip base, (16)

or
∂v

∂y
= 0, y = 0, no-stress base. (17)

The parameter λ for this setting can be derived from
the solution of Eqs. (13 – 17) by assuming that far above
the coating (H ≪ y ≪ δ) the solution takes the form (2)
and then by matching this solution with the one inside
the coating (0 ≤ y ≤ H). This is possible but would
involve some tedious calculations [43]. For the purpose
of this study, we derive a simpler (approximate) solution
for λ that can straightforwardly be deduced from the fact
that the Robin boundary conditions (13) can be replaced
with the homogeneous boundary conditions v = 0 but
imposed on the equivalent boundaries at y = W/2 + λs

and y = −W/2− λs. From here the approximate solution
is immediately given by Eqs. (5, 6) with substitutionW →
W + 2λs:

λ =
W + 2λs

π
ln [cosh(πH/(W + 2λs))] (18)

for the no-slip boundary condition on the base, and

λ =
W + 2λs

π
ln [sinh(πH/(W + 2λs))] . (19)

for the no-stress on the base, where λs is given by Eq.
(12).
This is the main result of the present Letter. It provides

insights into the dependence of the effective slip length
on two-dimensional arrangements of the pillars and their
height. At λs = 0 we return to the previous results for
the 2D case, Eqs. (5), (6). As H → ∞, we recover the
asymptotic relation similar to Eq. (7):

λ ≈ H − ln 2

π
(W + 2λs). (20)

In view of Eq. (12) the limit σs → 0 in this formula
recovers the logarithmic dependency similar to Eq. (10).
Finally, for λs → ∞ and H fixed (sparse configuration of
the needle-like pillars), one finds

λ ≈ πH2

2(W + 2λs)
, no-slip base, (21)

forno-slip base, and

λ ≈ 2λs +W

π
ln

(
πH

W + 2λs

)
− W

π
. (22)

for no-stress base. For the case of a square configuration
of pillars (W = L) the plots of Eqs. (18, 19) are depicted
in Fig. 3. For the no-slip boundary condition on the base
(top panel), the parameter λ is positive and exhibits a
monotonic increase with σs (i.e., the fraction of the solid
part of the riblet). When H is large, the dependence on σs

is very weak, while λ remains close to H, except for very
small values of σs (note that λ is rescaled by H in this
panel). In particular, one sees that the asymptotic relation
(20) accurately reproduces the full solution. In turn, in the
limit σs → 0 (no riblet), the effective slip length vanishes
according to Eq. (21), as it should. However, this limit
is achieved extremely slowly for large H. In fact, one has
λs ≈ (L/π) ln(1/σs), and this parameter should be much

larger than πH/2 or, equivalently, σs ≪ e−π2H/(2L), to be
able to apply Eq. (21). For instance, if H/L = 10 (the red

curve), one has e−π2H/(2L) ∼ 10−22, i.e., the asymptotic
relation (21) is not applicable for any reasonable σs. In
contrast, if the riblet height H is much smaller than W ,
the asymptotic relation (21) provides an accurate approx-
imation for the whole range of σs. In the intermediate
case when H ∼ W , the relation (21) is applicable only for
small σs (top panel, middle curve).

The situation is quite different for the no-stress bound-
ary condition on the base (bottom panel). While the effec-
tive slip length still grows monotonously with σs, it takes
negative values as σs → 0. Moreover, λ diverges to −∞
in this limit, in agreement with Eq. (22). As previously,
the approach to this limit is very slow when H is large, so
that Eq. (22) is not applicable. In this setting, one can
use the large-height expression (20).

The parameter λ completely defines the relative change
of drag due to coating

τcoat − τflat
τflat

=
λ

δ − λ
≈ λ

δ
(23)

for λ ≪ δ and δ is defined in Eq. (15). Eqs (18) and (19)
and the data presented in Fig. 3 provide a clear guidance
for targeted coating optimisation.

Numerical Validation. – To validate our results we
solve the 3D Stokes system of equations of fluid mo-
tion numerically by imposing the boundary condition of
v = v0 = consts far away from the coating. Without
the riblets the solution corresponds to the conventional
Couette flow (viscous flow with the linear velocity profile
with no-slip boundary condition at z = 0). The pres-
ence of riblets changed the velocity profile in accordance
with Eq. (2) and this allows us to retrive the parameter
λ. The solution was implemented with the open source
code NEK5000, a high-order spectral element solver [46].
The Reynolds number of the flow based on the prescribed
velocity at the top boundary of the flow (v0) and the
riblet height (H) was fixed at ReH = v0H/ν = 10 (ν
is the kinematic viscosity of the medium), so that the
Reynolds number based on the spanwise spacing of the
riblets ReW = v0W/ν ranges from 5 to 40. The number
of hexahedral spectral elements in the simulations ranged
from 90 to 120 elements and a fifth order polynomial with
a Gauss-Lobatto-Legendre grid spacing within the element
was used to fully resolve the flow. Selected cases were also
simulated at a lower Reynolds number (ReH = 1) (and
the same riblets height) and with a refined mesh. In all
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Fig. 3: The effective slip length λ as a function of σs, shown by
symbols and given by Eqs. (18, 19) for the no-slip (top) and
no-stress (bottom) condition on the base, respectively. Here
L/W = 1 and three values of H/W are considered. Solid
and dashed lines present the asymptotic behavior (21, 22) for
moderate heights H/W = 0.1 and H/W = 1, while dash-
dotted line indicates the large-height asymptotic relation (20).
Note that λ is rescaled by H on the left panel and by W on
the right panel.

cases the same results were obtained. This indicates that
at this flow regime (Stokes flow) and for simulated sce-
narios the numerical results are independent of Reynolds
number and mesh resolution. The value of the effective
slip length λ was determined by extrapolating the linear
velocity profile from far above the riblets to the position
corresponding to v = 0. The effective slip length is sim-
ply the distance between the tip of the riblets and this
position.

Top panel of Fig. 4 compares numerical and analyti-
cal results in Eq. (18). The bottom panel presents the
relative deviation (in percentage) between the analytical
and numerical results. The best agreement is observed
for the case of low riblets (the left part of the figure),
which is almost independent of gaps in the riblets’ walls.
In turn, the worst agreement corresponds to high riblets
with larger gaps in their walls (right bottom corner). This
trend is intuitively clear, since our simplified assumption
of the vertical wall homogenisation implies a uniform ve-
locity of the flow which obviously cannot be satisfied for
the very high riblets (flow localises near the tips of the
spiky coating without penetrating to its bottom).
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Fig. 4: Comparison of analytical prediction for the effective
slip length given by Eq (18) with the result derived from the
numerical solution of the equations of viscous flow over coating
with riblets. The top panel depicts the plots of solutions and
the bottom figure is their relative deviation (percentages).

Discussion and future work. – In summary, for a
model of 3D spiky coating we derived an approximate for-
mula for the effective slip length as a function of the pillar
height, and the 2D arrangements of the pillars. For the
case of unidirectional flow over the riblets without gaps
the parameter λ is a scalar. With the presence of the gaps
in the riblets’s wall the flow becomes three-dimensional
and parameter λ becomes a tensor. Due to apparent sym-
metry arguments, this tensor reduces to the two compo-
nents, viz., along and across the flow. Our approach as-
sumed that the two-dimensional structure of the flow is
approximately preserved, so the cross-flow component of
λ is relatively small and can be disregarded.

There are several extensions that can easily be incor-
porated into the proposed model. For instance, there is
no need to assume that riblets should have only one gap
per period, since there is the formula for λs for an arbi-
trary number of gaps per period [21,44]. This enables the
analytical treatment of coatings with much more complex
structures.

Our results can also be extended for the pillars of ar-
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bitrary cross-section (i.e., different from an infinitely thin
interval) provided the momentum flux through the top
surface of the pillar can still be neglected. To this end,
we can apply the following rationale. It is known that the
Stokes force (which is proportional to the momentum flux
over the surface of the pillar) is proportional to the capaci-
tance of the object (or logcapacity in 2D) [45]. As a conse-
quence, to translate the results of the proposed framework
to arbitrary pillars, it is sufficient to find a solid interval
of an equivalent logcapacity for a given pillar cross-section
(e.g., the logcapacity of an ellipse with semi-axes a and b
is (a + b)/2 [47]). Moreover, as the parameter s is in the
argument of logarithm, the final result is insensitive to mi-
nor inaccuracies in estimation of the equivalent logcapac-
ity. Indeed, this approximation can only hold for sparse
configurations: s/W ≪ 1.
This approach also allows us to make informative con-

clusions regarding the applicability of the disk model
[29, 36] for a coating of tall pillars (a brush). In the disk
model all drag is generated by the viscous flow acting on
top of the pillars while in the present model it is a result
of viscous force acting on their side surface of the riblets
whilst the contribution of the force from the top surface
area is neglected. The effective slip length due to the mo-
mentum flux through the top surface and the side of the
pillars can be characterised by the second terms (offsets)
in Eqs. (9), (20), respectively. By comparing these terms
we arrive at the simple condition of validity of the disk
model

1√
σ

≪ (1 + 2λs/W ) ln 2

πA
+

B

A
, (24)

where constants A and B are defined in Eq. (9) and λs is
given by Eq. (12). We note that both terms on the right
side of this inequality are positive and B/A ≈ 5.4 so this
condition is quite restrictive for σ.
We believe that the presented results can be useful for

the targeted design of engineered coatings with desirable
hydrodynamic properties before proceeding with extensive
computational simulations and experimental evaluation.

Data availability. – The data that support the find-
ings of this study are available from the corresponding
author upon request.

Acknowledgements. – A.T.S. grateful to Ian R.
MacGillivray and Paul A. Martin and many insightful dis-
cussions. D.S.G. acknowledges the Alexander von Hum-
boldt Foundation for support within a Bessel Prize award.

REFERENCES

[1] Rothstein J. P., Ann. Rev. Fluid Mech., 42 (2010) 89.
[2] Stone H.A., Stroock A.D. and Ajdari A., Ann. Rev.

Fluid Mech., 36 (2004) 381.
[3] Monti A., Nicholas S., Omidyeganeh M., Pinelli A.

and Rosti M. E., J. Fluid Mech., 945 (2022) A17.
[4] Bechert D. W. and Bartenwerfer M., J. Fluid Mech.,

206 (1989) 105.

[5] Luchini P., Manzo F. and Pozzi A., J. Fluid Mech., 228
(1991) 87.

[6] Dean B. and Bhushan B., Phil. Trans. R. Soc. A, 368
(2010) 4775.

[7] Martin S. and Bhushan B., J. Fluid Mech., 756 (2014)
5.

[8] von Deyn L. H., Gatti D. and Frohnapfe B., J. Fluid
Mech., 951 (2022) A16.

[9] Ran W., Zare A. and Jovanovi M.R., J. Fluid Mech.,
906 (2021) A7.

[10] Lee C., Choi C.H., andKim C.J., Exp. Fluids, 57 (2016)
176.

[11] Domel A.G. et al , J. R. Soc, Interface., 15 (2018)
20170828.

[12] Chen L. et al , J. Ocean Eng., 269 (2023) 113440.
[13] Huang S. et al , J. Materials Chemistry A, 36 (2016)

13771.
[14] Crowdy D. G., Phys. Fluids, 23 (2011) 091703.
[15] Sbragaglia M. and Prosperetti A., Phys. Fluids, 19

(2007) 043603.
[16] Sbragaglia M. and Prosperetti A., J. Fluid Mech.,

578 (2007) 35.
[17] Ling H. et al , Phys. Rev. Fluids, 2 (2017) 124005.
[18] Bazant M. Z. and Vinogradova O. I., J. Fluid Mech.,

613 (2008) 125.
[19] Golovin K. et al , ACS Appl. Mater. Interfaces, 9 (2017)

11212.
[20] Quere D., Ann. Rev. Fluid Mech., 38 (2008) 71.
[21] Crowdy D. G., Phys. Fluids,, 23 (2011) 072001.
[22] Truesde R. et al , Phys. Rev. Lett., 97 (2006) 044504.
[23] Philip J., Z. Angew. Math. Phys., 23 (2006) 353.
[24] Lauga E. and Stone H. A., J. Fluid Mech., 489 (2003)

55
[25] Asmolov E.S. and Vinogradova O.I., J. Fluid Mech.,

706 (2012) 108
[26] Zeng Q., Nanoscale, 13 (2022) 11734
[27] Li Z. and Guo Z., Nanoscale, 15 (2023) 1493
[28] Miyoshi H. and Rodriguez-Broadbent H, and Cur-

ran A. and Crowdy D., J. Eng. Math., 137 (2022) 3
[29] Yariv E., Phys. Rev. Fluids, 8 (2023) L012101
[30] Modesti D. et al , J. Fluid Mech., 917 (2021) A55
[31] Crowdy D. G., J. Fluid Mech., 925 (2021) R2
[32] Bazant M. Z., Phys. Rev. Fluids, 1 (2016) 024001
[33] Skvortsov A. and Walker A., Phys. Rev. E, 90 (2014)

023202
[34] Skvortsov A. T., Berezhkovskii A. M., and Dagdug

L., J. Chem. Phys., 150 (2019) 194109
[35] Davies J., Maynes D., Webb B. W., and Woolford

B., Phys. Fluids., 18 (2006) 087110
[36] Davis A. M. J. and Lauga E., Phys. Fluids, 21 (2009)

113101
[37] Davis A. M. J. and Lauga E., J. Fluid Mech., 661 (2010)

402
[38] Schnitzer O. and Yariv E., J. Fluid Mech., 843 (2018)

667
[39] Ng Chiu-On and Wang C. Y., Fluid Dyn. Res., 43

(2011) 065504
[40] Ybert C. et al , Physics of Fluids, 19 (2007) 123601
[41] Lindsay A.E., Bernoff A.J. and Ward M.J., Physics

of Fluids, 15 (2017) 74
[42] Berezhkovskii A. M., Makhnovskii Y. A., Monine

M. I., et al , J. Chem. Phys., 121 (2004) 11390

p-6



Slip length for a viscous flow over spiky surfaces

[43] Grebenkov D. S. and Skvortsov A. T., J. Chem.
Phys., 157 (2022) 244102

[44] Skvortsov A., Phys. Rev. E, 102 (2020) 012123
[45] Hubbard J. B. and Douglas J. F., Phys. Rev. E, 47

(1993) R2983
[46] Fischer P. F., Lottes J. W., and Kerkemeier S.G.,

http://nek5000.mcs.anl.gov
[47] Landkof N., Foundations of Modern Potential Theory

(Springer Verlag, Berlin) 1972.

p-7


	Introduction. –
	Riblets with periodic gaps. –
	Numerical Validation. –
	Discussion and future work. –
	Data availability. –
	Acknowledgements. –
	

