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NON-ARCHIMEDEAN TECHNIQUES AND DYNAMICAL
DEGENERATIONS

CHARLES FAVRE AND CHEN GONG

Abstract. We develop non-Archimedean techniques to analyze the de-
generation of a sequence of rational maps of the complex projective line.
We provide an alternative to Luo’s method which was based on ultra-
limits of the hyperbolic 3-space. We build hybrid spaces using Berkovich
theory which enable us to prove the convergence of equilibrium mea-
sures, and to determine the asymptotics of Lyapunov exponents.
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Introduction

The main goal of this paper is to develop non-Archimedean techniques
to analyze the degeneration of a sequence of rational maps of the complex
projective line.

The moduli space of rational maps.
A complex rational map f : P1

C → P1
C of degree d ≥ 2 is determined in

homogeneous coordinates by two homogeneous polynomials P,Q of degree
d without common factors so that f [z0 : z1] = [P (z0, z1) : Q(z0, z1)]. The
condition on P and Q to have no non-trivial common zeroes can be expressed
as the non-vanishing of their homogeneous resultant Res(P,Q). It follows
that the space Ratd of complex rational maps of degree d ≥ 2 carries a
natural struture of algebraic variety, and is a Zariski open subset of P2d+1

C .
The automorphism group of the projective line PGL2 acts by conjugacy

on Ratd, and Silverman [70] has proved the existence of an affine algebraic
variety ratd whose complex points ratd(C) coincide with the set of conjugacy
classes Ratd(C)/PGL2(C). The canonical class map cl : Ratd → ratd is
open. It is customary to write [f ] = cl(f) for a rational map f ∈ Ratd(C).

The moduli space ratd has dimension 2d− 2 and is a rational variety by a
theorem of Levy [49]. Milnor has shown that rat2 is isomorphic to the affine
space A2. When d ≥ 3, ratd admits orbifold singularities by Miasnikov-
Stout-Williams [54].

Characteristics of holomorphic dynamical systems.
Any rational map f ∈ Ratd(C) defines a holomorphic map on the Rie-

mann sphere f : Ĉ → Ĉ whose dynamics is described by the Fatou-Julia
theory [56]. The sphere can be decomposed as the disjoint union of the Fa-
tou set, a totally invariant open set on which the dynamics of f is regular;
and the Julia set Jf , a compact totally invariant set on which the dynamics is
chaotic. By a theorem of Lyubich and Freire-Mané-Lopès, f admits a unique
probability measure of maximal entropy µf called the equilibrium measure,
whose support is the Julia set, see, e.g., [6]. The Lyapunov exponent of f
with respect to µf is defined by the integral

χf =

∫

log |df |dµf ,

where |df | is the norm of the derivative of f computed in terms of the spher-
ical metric on Ĉ. This integral converges, and we have ∞ > χf ≥ 1

2 log d > 0
(see op.cit.) so that f is weakly expanding on Jf .

Presentation of the main problem.
The complex affine varieties Ratd and ratd defined above can be analytified

and give rise to complex analytic (Stein) varieties Ratand (C) and ratand (C).
Note that as sets Ratand (C) and ratand (C) are canonically in bijection with
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Ratd(C) and ratd(C) respectively. In the sequel, we shall drop the exponent
an to keep the notations lighter.

We say that a sequence fn ∈ ratd(C) is degenerating if fn leaves any fixed
compact subset of ratd(C) for n large enough. Our main goal is to construct
limits of fn which are dynamically meaningful in order to analyze how the
characteristics of the dynamics of fn evolve as n → ∞. More precisely, we
shall exhibit a sequence fn ∈ Ratd(C) such that [fn] = fn and suitable sub-
sequences of fn converge in a natural way to a rational map defined over a
non-Archimedean metrized field. In the applications, it is essential to trans-
fer dynamical informations between the complex and the non-Archimedean
rational maps. This is in general a very delicate issue. We shall explain how
the complex equilibrium measures and the complex Lyapunov exponents
converge in a natural way to their non-archimedean counterparts.

Algebraic methods to understand degenerations.
Early tentatives to understand degenerations of complex dynamical sys-

tems relied on purely complex theoretic or algebraic techniques. Silver-
man [70] constructed a GIT (projective) compactification ratd(C) of ratd(C)
extending former works by Milnor [55] and Epstein [26] in the case d = 2.
Demarco [19] observed that the iteration maps Il : ratd(C) → ratdl(C) do not
extend as regular maps to this compactification, and analyzed the indeter-
minacy locus of these maps. Her work was completed by Kiwi and Nie [47].
Demarco [18] also proposed a way to compactify ratd(C) using limits of their
measures of maximal entropy. Among other things this technique enabled
her to prove that In was proper.

Meromorphic families define dynamics over the field of Laurent series.
The next step was undertaken by Kiwi in a series of influential works.

Pick any holomorphic family (ft)t∈D∗ of rational maps parameterized by the
complex unit disk D∗ = {0 < |t| < 1}, and suppose it extends meromorphi-
cally to the puncture. Such a family is determined by a pair of homogenous
polynomials Pt, Qt having coefficients in the ring of holomorphic functions
on D∗ that are meromorphic at 0. Kiwi realized that one could interpret
Pt, Qt as polynomials with coefficients in the non-Archimedean metrized field
C((t)) of formal Laurent series, so that (ft) naturally defines a rational map
fna : P

1
C ((t)) → P1

C ((t)). This simple and fruitful idea was successfully applied
in the cubic polynomial case [44] and then in the quadratic rational case [45].
It then played a key role in the systematic study of rescaling limits [46], and
in the work of Demarco-Faber [15, 20] in which the limit in Ĉ of equilibirum
measures of (ft) was described as t→ 0. More recently Pilgrim and Nie [59]
used this idea to prove the boundedness of bicritical hyperbolic components
of disjoint type extending a theorem by Epstein [26].

Hybrid spaces.
Hybrid spaces are geometric objects mixing complex and non-Archimedean

varieties. The appearance of such spaces can be traced back to the construc-
tion of a compactification of the SL2-character variety by Morgan-Shalen [57].
Similar spaces appeared as compactifications of the space of polynomial maps
by Demarco-McMullen [22] using R-trees. Hybrid spaces were formalized by
Berkovich [5].
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To motivate their introduction, note that to fully exploit the connection
between the complex and non-Archimedean worlds, it is important to un-
derstand the Fatou-Julia of a rational map g defined on a non-Archimedean
field k. This theory has been extensively developed in the early 2000’s by
Rivera-Letelier and Benedetto (see [3] for a detailed account on this theory).
It turns out that the natural space over which the Fatou-Julia theory of g can
be carried over is the Berkovich analytification P

1,an
k of the projective line.

One can for instance construct an equilibrium measure µg having support
Jg as in the complex case, and define its Lyapunov exponent χg (see [61]).
We refer to §1.2 for details of the construction of P

1,an
k . Suffice it to say

that building blocks of Berkovich spaces are compact sets M(B) defined as
the set of multiplicative semi-norms on a suitable Banach ring B (the space
M(B) is called the Berkovich spectrum of B).

Varying the Banach ring allows for a lot of flexibility in the theory, and
lies at the root of the idea of hybrid spaces which originates in the paper
of Berkovich cited above. These spaces combine harmoniously complex va-
rieties and non-Archimedean analytic varieties, and are natural objects over
which one can make sense and study degenerations of measures. In holo-
morphic dynamics, they were introduced by the first author building on a
work by Boucksom-Jonsson [11]. Namely, he showed in [27] the convergence
of the equilibrium measures µft of a meromorphic family (ft)t∈D∗ to µfna in
a natural hybrid space, and proved that the asymptotics of the Lyapunov
exponents χft was governed by χfna (an alternative proof of the latter fact
was given by Okuyama-Gauthier-Vigny in [33]). This method have been
applied since then to a variety of contextes including automorphisms of al-
gebraic varieties [37, 38], or SL2-character varieties [14, 25]. In a series of
recent works, Poineau [66] have extended the continuity of the equilibrium
measures to a quite large category of Berkovich spaces which encompasses
hybrid spaces.

To summarize the discussion of the latter two paragraphs, non-Archime-
dean degeneration techniques are now well-understood in the case of mero-
morphic families (ft)t∈D∗ and are systematically used in many works in arith-
metic dynamics [21, 28, 41, 67].

Degeneration of a sequence of rational maps and Luo’s construction.
Recently, Luo [51, 52] classified nested hyperbolic components and found

a way to analyze the degeneration of a sequence of rational maps, even when
they do not arise from a meromorphic family. As our paper aims to propose
an alternative method to his approach, let us spend some time discussing his
construction.

Pick any f ∈ Ratd(C). The first step is to measure in a dynamical way
the distance of [f ] to the boundary of ratd(C) in ratd(C). Denote by (H3, dH)
the hyperbolic 3-space, and pick any base point x⋆ ∈ H3. Recall that the
visual boundary of H3 is the Riemann sphere Ĉ. Luo considers a natural
extension E(f) : H3 → H3 of f : Ĉ → Ĉ based on the notion of conformal
barycenter (see also [62]), and introduces the quantity

rL(f) := sup
E(f)(y)=x⋆

dH(y, x⋆) ∈ R∗
+



NON-ARCHIMEDEAN TECHNIQUES AND DYNAMICAL DEGENERATIONS 5

He proves that rL(f) := inf [f ]=f rL(f) is a proper function ratd(C), so that
the bigger rL(f) is, the closer f is to the boundary ratd(C) \ ratd(C).

Now choose any degenerating sequence fn ∈ ratd(C), and set ǫn := rL(fn)
−1

(so that ǫn → 0). Choose lifts fn ∈ Ratd(C) such that [fn] = fn and
rL(fn) = rL(fn) for all n. Then Luo considers the sequence of pointed met-
ric spaces (H3, x⋆, ǫndH) and its ultra-limit Hω in Gromov’s sense [43, §9].
This construction depends on the choice of a (non-principal) ultra-filter ω
which is an element of the power set of N (see §3 for details). The defining
property of ω ensures the existence of a limit (along ω) of sequence of many
classes of objects (like bounded sequences in a locally compact metric space,
or pointed metric spaces as above). Using this tool, Luo proves that the
sequence E(fn) defines a self-map fω on Hω, and the crucial fact that this
map is d-to-one, [51, Theorem 1.2]. He goes further by proving that Hω nat-
urally embeds in the Berkovich analytification of P1,an

H (ω)
for some complete

non-Archimedean metrized field H (ω) and building on the fact that fω is
finite-to-one, he concludes that fω extends as a rational map in Ratd(H (ω)).

Degeneration of a sequence of rational maps using Berkovich spaces.
Let us now explain our strategy. For any f ∈ Ratd(C) defined by homoge-

nous polynomials P,Q of degree d and normalized so that the maximum
of their coefficients equal 1, we set |Res(f)| := |Res(P,Q)|. The function
|Res | : Ratd(C) → R∗

+ is continuous, bounded from above, and proper. We
prove (Proposition 2.2) that | res(f)| := sup[f ]=f |Res(f)| defines a function
ratd(C) → R∗

+ which is also proper, continuous and bounded from above.
Set Cd = e supratd(C) | res |.

Choose any degenerating sequence fn ∈ ratd(C), and set this time ǫn :=
(− log | res(fn)|/Cd)−1 (so that ǫn → 0). Pick any lift fn ∈ Ratd(C) such that
[fn] = fn and |Res(fn)| = | res(fn)| for all n. We now consider the Banach
ring

(1) Aǫ = {z ∈ CN | sup
N

|zn|ǫn <∞} .

Our main observation is that the sequence fn naturally defines a rational map
of degree d over the ring Aǫ. Considering the Berkovich analytification P

1,an
Aǫ

of the projective line over Aǫ, we get a hybrid space over which we can prove
the continuity of the equilibrium measures, of the Lyapunov exponents, and
recover Luo’s construction. The next theorem summarizes our main results.

Theorem 0.1. Let fn be a degenerating sequence in ratd(C). Set

ǫn := (− log(| res(fn)|/Cd))−1 ,

and choose fn ∈ Ratd(C) such that [fn] = fn and |Res(fn)| = | res(fn)| for all
n. Let Aǫ be the Banach ring defined by (1). Then the following statements
hold true.

(1) The Berkovich analytification P
1,an
Aǫ is a compact space, coming with

a canonical continuous map π : P1,an
Aǫ → βN where βN is the Stone-

Čech compactification of the integers. For any integer n ∈ N, the fiber
is homeomorphic to the Riemann sphere π−1(n) ≃ Ĉ, and π−1(N) is
dense in P

1,an
Aǫ . For any ω ∈ βN \ N, the fiber π−1(ω) is isomorphic
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to the Berkovich analytification of the projective line over a non-
Archimedean field H (ω).

(2) There exists a rational map f ∈ Ratd(A
ǫ) which induces a continuous

self-map f : P1,an
Aǫ → P

1,an
Aǫ such that π ◦ f = π, and for any n ∈ N,

we have f |π−1(n) = fn under the above identification π−1(n) ≃ Ĉ.
When ω ∈ βN \N, the map fω = f |π−1(ω) is a rational map of degree
d over H (ω) which does not have potential good reduction.

(3) The family of equilibrium measures µfω supported on π−1(ω) where
ω ranges over βN forms a continuous family of probability measures
on P

1,an
Aǫ . Furthermore, the Lyapunov exponent

(2) χω :=

∫

π−1(ω)
log |df |ωdµfω ,

is continuous on βN.

As an application of our techniques, we provide a new proof of the proper-
ness of the iteration map, a result originally due to DeMarco, see [18, Corol-
lary 0.3].

Corollary 0.2. The iteration map Il : ratd(C) → ratdl(C) given by Il(f) =
f l is proper for any d ≥ 2 and any l ∈ N.

A few comments on our theorem are in order. The Stone-Čech com-
pactification of N is characterized by the universal property that any map
f : N → K to a compact space K extends continuously f̄ : βN → K. It
can be defined as the set of all ultra-filters on N. The Banach ring Aǫ is a
product of countably many copies of C with the norm | · |ǫn , and Berkovich
proved that the spectrum M(Aǫ) is isomorphic to βN, see [4, Proposition
1.2.3]. The map π : P1,an

Aǫ → βN is the composition of the canonical map
π : P1,an

Aǫ → M(Aǫ) with the homeomorphism M(Aǫ) ≃ βN.
The field H (ω) is a complex Robinson field, and appears classically in

non-standard analysis1. It turns out to be both spherically complete and
algebraically closed. A map g ∈ Ratd(H (ω)) has good reduction if its Julia
set Jg is reduced to a single point. By [32, Theorem C], it is equivalent to
say that g has zero entropy, or that it is defined by homogenous polynomials
Pω, Qω normalized so that their coefficients have norm ≤ 1, and their re-
ductions in the residue field of H (ω) defines a rational map of degree d. A
map has potential good reduction if it is conjugated to a map having good
reduction. The statement that fω does not have potential good reduction
reflects the fact that the classes [fn] are degenerating in the moduli space
ratd(C).

The continuity of Lyapunov exponents might be surprising as there exists
degenerating sequences of rational maps fn such that χfn → ∞ whereas the
Lyapunov exponent χω appearing in (2) is always finite. Choose any integer
n ∈ N. In fact, we have the relation χn = ǫn × χfn , so that an alternative
way to express the continuity of Lyapunov exponent in the hybrid space is

1Ducros, Hrushovski and Loeser [24] have recently studied non-archimedean integrals
as limits of complex ones. They also used a non-standard model of the field of com-
plex numbers endowed with both an archimedean and non-archimedean to analyze these,
although in a way different to us.
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to say that for any ultra-filter ω ∈ βN, the sequence ǫn × χfn converges to
the non-Archimedean Lyapunov exponent χfω along ω.

Comparison with previous approaches. Suppose first that (ft)t∈D∗ is a mero-
morphic family, and fna ∈ Ratd(C ((t))) does not have potential good re-
duction. Pick any sequence tn ∈ D∗ tending to 0. Then it is not difficult to
show that

ǫn = − log(| res(ftn)|/Cd)−1 ≍ − log |tn|−1.

In this case, for any ω ∈ βN \N the field H (ω) is a metrized field extension
of C ((t)), and fω is the base field extension of fna to H (ω). The continuity
of the equilibrium measure and the Lyapunov exponents generalizes results
by Demarco-Faber and the first author mentioned above.

Let us now compare our approach with the ideas of Luo. We shall prove:

Theorem 0.3. There exists a constant C > 1 such that
1

C
≤ 1 + rL(f)

− log(| res(f)|/Cd)
≤ C

for all f ∈ ratd(C).

This statement says that our choice of normalization ǫn coincides with
Luo’s choice up to a bounded universal constant. We shall also prove (Theo-
rem 6.1) that Luo’s ultra-limits of fn are identical to our fω for any ω ∈ βN.
Since our techniques bypass the use of hyperbolic geometry, we expect it to
be amenable to various other contexts, such as in higher dimensions and over
different base fields.

Organization of the text. In §1, we recall some basic notions on Berkovich
analytic spaces over a general Banach ring, and discuss in details the case
of the projective line. We then briefly describe potential theory on the
Berkovich projective line over a metrized field, with an emphasis on how
the Laplacian operator varies when we replace a norm on a field by a power
of it.

In §2, we define the moduli space of rational maps, and discuss the func-
tion | res |, proving it is continuous using basic results in geometric invariant
theory. In the non-Archimedean case, this function is directly related to the
minimal resultant function introduced by Rumely [69]. We conclude this
section by recalling how to define the equilibrium measure of a rational map
defined over a metrized field.

The aim of §3, is to prove the first two items of Theorem 0.1. We begin
with a discussion of the Stone-Čech compactification including the notion
of ultra-filters. We then discuss the structure of the Berkovich projective
line over a product Banach ring of the form Aǫ as above. We explain how to
choose the sequence ǫn from a given sequence fn ∈ ratd(C) so that it naturally
induces an endomorphism of P1

Aǫ, and prove the properness of the iteration
map (Corollary 0.2). Note that our argument to show that fω cannot have
potential good reduction when fn degenerates relies on the minimal resultant
function of Rumely.

The next section §4 is technical in nature. It contains a discussion on
continuous families of measures on the hybrid space P

1,an
Aǫ . We introduce a

notion of model (and quasi-model) functions that play the role of smooth
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functions in complex manifolds and of model functions in Berkovich analytic
spaces (see, e.g., [9, §2.5]). Using Stone-Weierstrass theorem, we prove that
model functions forms a dense subset of the set of continuous functions on
P
1,an
Aǫ . We then prove the continuity of the push-forward of a continuous

function by a rational map defined over Aǫ (Proposition 4.13), a technical
yet crucial result to obtain the continuity of equilibrium measures.

In §5, we analyze the convergence of measures in the hybrid space P
1,an
Aǫ ,

and prove in particular the third item in Theorem 0.1. Our strategy follows
closely [27, 66]. First we consider a sequence of smooth volume form µn on
π−1(n) arising from metrics gn with constant positive curvature on the Rie-
mann sphere. In Theorem 5.2, we describe the possible limits of µn on the
non-Archimedean fibers π−1(ω) in terms of behaviour of the point xn ∈ H3

R

determined by gn. Using the continuity of the push-forward proved in the
previous section, and the convergence of potentials defining the equilibrium
measures, we prove the continuity of equilibrium measures of an endomor-
phism defined over Aǫ, as well as the continuity of the Lyapunov exponents.

The last section §6 is devoted to the proof of Theorem 0.3, and to the
comparison of our construction with that of Luo. We exploit Theorem 5.2
on the convergence of measures associated with metrics of constant curvature
to build a direct connection between the ultra-limit of H3

R along a ultra-filter
ω, and the Berkovich projective line P

1,an
H (ω) (Theorem 6.1).

Acknowledgements. We warmly thank Marco Maculan for discussions on
GIT on non-Archimedean fields; and to Mattias Jonsson for his insightful
comments.

Notations.

• B a Banach ring, B× its group of units, M(B) the Berkovich spec-
trum of B, see §1.1).

• P
1,an
B the Berkovich projective line over B, Ĉ the Riemann sphere,

see §1.2.
• Cǫ the complex field endowed with the norm | · |ǫ, where | · | is the

standard Euclidean norm on C; sǫ the canonical homeomorphism
from P

1,an
Cǫ

to the Riemann sphere; s#ǫ the morphism between the
sheaf over the Riemann sphere and P

1,an
Cǫ

, see §1.3.1.
• Hk the hyperbolic space of P1,an

k ; dk the hyperbolic distance on Hk;
dP1(k) the spherical metric on P1(k), see §1.2.2, §1.2.3.

• Ratd the space of rational maps of degree d ≥ 1; ratd the moduli
space of degree d; |Res | : Ratand → R+ the resultant function of a
rational map; | res | : ratand → R+ the minimal resultant function,
see §2.1, §2.2.

• µcan the canonical measure on P
1,an
k , i.e., the Haar measure on the

unit circle if k is Archimedean, and the Dirac measure supported on
the Gauss point if k is non-Archimedean; µf the equilibrium measure
of a rational map f , see §2.3)

• βN the Stone-Čech compactification of N; Aǫ the product Banach
ring associated with a sequence ǫ ∈ (0, 1]N, see §3.1, §3.2.
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• M+(P1, B) the space of continuous families of positive measures on
P
1,an
B ; D(P 1,an

B ) the set of model functions on P
1,an
B , see §4.1, §4.2.

• H3 the upper-half space model of the hyperbolic space of dimension
3; H̄3 the hyperbolic space along with its conformal boundary; dH
the hyperbolic distance on H3; G(C) the space of conformal metrics
on the Riemann sphere that have constant curvature 4π; D̄(x) the
projective disk on P1(C) induced by x ∈ H3, see S5.1.

• x⋆ the point (0, 1) ∈ H3; µ(x) the probability measure on the Rie-
mann sphere which is fixed by any Möbius transformation fixing
x ∈ H3; µFS the Fubini-Study measure, see §5.1.

• |df | the derivative of f with respect to the spherical metric on P1(k);
χf the Lyapunov exponent of f , see §5.4.

• rL Luo’s degeneration map on Ratd(C); rL Luo’s degeneration map
on ratd(C); E(f) the barycentric extension of f , see §6.2, §6.3.

1. Berkovich spaces

1.1. Analytic spaces over a Banach ring. A Banach ring (B, ‖ · ‖) is
by convention a commutative ring with unity 1, endowed with a norm
‖ · ‖ : B → R+ which is complete, such that ‖ a + b ‖ ≤ ‖ a ‖+ ‖ b ‖, and
‖ ab ‖ ≤ K ‖ a ‖ ‖ b ‖ for some K > 0 and for all a, b ∈ B, see [7, A.1.2.1].
We do not require the norm to be multiplicative.

A multiplicative semi-norm | · | : B → R+ on a Banach ring is bounded if
there exists C > 0 such that for all b ∈ B, we have |b| ≤ C ‖ b ‖ . Observe
that if ‖ · ‖ is power multiplicative, i.e., if ‖ bn ‖ = ‖ b ‖n for all b ∈ B and
n ∈ N, then | · | is bounded if and only if |b| ≤ ‖ b ‖ for all b ∈ B.

The Berkovich spectrum M(B) is the set of all bounded multiplicative
seminorms on B endowed with the weakest topology with respect to which all
real valued functions on M(B) of the form | · | → |f |, f ∈ B, are continuous.
By [4, Theorem 1.2.1], it is a compact space. It also carries a structural sheaf
that we define in more generality below.

We now recall the notion of analytic spaces over B following [48]. We first
define the affine space An,anB of dimension n over B. As a topological space, it
is the set of all multiplicative semi-norms on B[T1, ..., Tn] whose restrictions
to B belongs to M(B). We endow A

n,an
B with the weakest topology making

all real valued functions of the form: | · | → |P |, P ∈ B[T1, ..., Tn] continuous.
If x ∈ A

n,an
B , P ∈ B[T1, ..., Tn], then we usually denote by |P (x)| = |P |x ∈

R+ the value of P at x. Consider the prime ideal

ker(x) = {P ∈ B[T1, ..., Tn], |P |x = 0} .

The complete residue field H (x) of x is defined as the completion of the
fraction field of B[T1, ..., Tn]/ ker(x) with respect to the norm induced by x.

We now define the structural sheaf on A
n,an
B . For any open subset U ⊆

A
n,an
B , let SU be the elements in B[T1, ..., Tn] that do not vanish on U . We

set K(U) = S−1
U B[T1, ..., Tn] and define O(U) to be the set of applications

f : U →
⊔

x∈U
H (x)
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such that for all x ∈ U , f(x) ∈ H (x) and there exists a neighbourhood Vx
such that f |Vx is a uniform limit of elements in K(Vx). One can verify that
the map sending U to O(U) is a sheaf [4].

An analytic map f : U → V between two open sets of An,anB and A
m,an
B

is a morphism of ringed spaces such that the induced residue field extension
f# : H (f(x)) → H (x) is isometric for all x ∈ U .

Lemanissier and Poineau [48, Chapitre 2] defined the category of B-
analytic spaces as follows. Local models (X,OX ) are determined by the
choice of an open subset U ⊂ A

n,an
B , and a coherent subsheaf I of the struc-

tural sheaf of U such that X is the support of the quotient sheaf OU/I , and
OX = OU/I . Note that we have a canonical closed immersion X →֒ U .

A B-atlas on a locally ringed space is an open cover Ui where each Ui
is isomorphic to a local model, and the patching maps are B-analytic. A
B-analytic space is then a locally ringed space with an equivalence class of
B-atlas.

Since we shall only use the projective line over B, we do not develop the
general theory of B-analytic spaces here, referring to op. cit.

Observe that any B-analytic space X is equipped with a canonical (con-
tinuous) structure map π : X → M(B). The map π : An,anB → M(B) is
sending a semi-norm on B[T1, · · · , Tn] to its restriction on B. We extend it
to each local model U by composition with the immersion U ⊆ A

n,an
B . These

maps patch together on a general B-analytic space.
The fiber π−1(x) in A

n,an
B is canonically isomorphic (as an analytic space)

to A
n,an
H (x), so that the fiber π−1(x) in a general B-analytic space X is a

Berkovich analytic space defined over the complete field H (x).

Remark 1.1. When B is a metrized field, then the category of B-analytic
spaces consists of k-analytic spaces without boundary in the sense of Ber-
kovich [4].

Remark 1.2. Under additional assumptions on the Banach ring, (for exam-
ple when B is either a metrized field, or a ring of integers of number field, or
a hybrid field, etc.), then the structure sheaf of any B-analytic space enjoy
many good properties: local rings are Henselian, Noetherian, and excellent by
[63, Corollary 2.5.2] and [65, Corollaries 8.19 and 9.3]; the structural sheaf is
coherent by [65, Corollary 10.10]; the affine spaces A

n,an
B are locally arcwise

connected [48, Theorem 7.2.17].

A standard example for analytic spaces is the Berkovich analytification
of an algebraic variety X defined over a metrized field (k, | · |), see [4, §3.4,
3.5] for details. When X = SpecA is an affine variety, and A is a finitely
generated k-algebra, then Xan is by definition the space of all multiplicative
semi-norms on A whose restriction to k is | · |.
1.2. The Berkovich projective line over a Banach ring. We define the
Berkovich projective line over a general Banach ring (B, ‖ · ‖) and discuss its
structure.

1.2.1. General construction of the Berkovich projective line. The projective
Berkovich line P

1,an
B over B is the B-analytic space given by a B-atlas con-

taining two charts X0 and X1, each isomorphic to A
1,an
B and patched along
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A
1,an
B \ {0} as follows. A point x0 ∈ X0 \ {0} (resp. x1 ∈ X1 \ {0}) is a

semi-norm on B[z0] (resp. on B[z1]), and we identify them when

|P (1/T )|x0 = |P (T )|x1
for all polynomial P ∈ B[T ]. This construction naturally gives homogeneous
coordinates [z0 : z1] on P

1,an
B . To simplify notation we usually write z = z0,

0 = [0: 1] and ∞ = [1: 0] so that P
1,an
B = A

1,an
B ⊔ {∞}.

Every homogeneous polynomial P (z0, z1) ∈ B[z0, z1] of degree d deter-
mines a function ψP : P1,an

B → R:

ψP (x) =
|P (z0, z1)|

max{|z0|d, |z1|d}
=

{ |P (z0,1)|x
max{|z0|dx,1}

, x ∈ X0

|P (1,z1)|x
max{1,|z1|dx}

, x ∈ X1.

Observe that ψP is a continuous function vanishing exactly on {P = 0} and
that the topology on P

1,an
B is the weakest topology such that all the functions

ψP are continuous. The space P
1,an
B is compact.

The canonical continuous map

π : P1,an
B → M(B)

sending a point x ∈ P
1,an
B to its restriction to B is proper, and for all s ∈

M(B), the fiber π−1(s) is canonically identified with P
1,an
H (s).

For the record, recall that a point p ∈ P1(B) is determined by a pair
z0, z1 ∈ B2 such that z0B + z1B = B, and this pair is unique up to multi-
plication by a unit in B×.

1.2.2. Berkovich projective line over an algebraically closed metrized field k.
More details can be found in [42].

Supppose first that the field k is Archimedean. In this case, by Gelfand-
Mazur’s theorem and Ostrowski’s theorem, there exists 0 < ǫ ≤ 1 such that
k is isometric to Cǫ = (C, | · |ǫ), where | · | is the standard Euclidean norm
on C. When ǫ = 1, then P

1,an
k is the Riemann sphere Ĉ; when ǫ ∈ (0, 1)

then the map on Xi sending a semi-norm | · |x on C[zi] to | · |1/ǫx induces a
homeomorphism sǫ : P

1,an
Cǫ

→ Ĉ.
Assume now that the field k is non-Archimedean. In that case, a point

x ∈ P
1,an
k = A

1,an
k ⊔ {∞} can be classified as follows. Note first that x is

either ∞ or a multiplicative semi-norm on k[z] whose restriction to k is the
standard norm.

• If the norm on k is trivial, that is, for any a ∈ k∗, |a| = 1, then x is
of the following form:

(T1) Either x = ∞, or there exists a ∈ k such that |P |x = |P (a)| for
all P ∈ k[z];

(T2) x is the trivial norm, that is, |P |x = 1 for any non-zero P ∈ k[z];
(T3) there exists a ∈ k and 0 < r < 1, such that

|P |x = rm,

if P (z) = (z − a)mQ(z) with Q(a) 6= 0.
• If the norm is non-trivial, then x falls into one of the following four

categories:
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Type-1 : x = ∞ or there exists a ∈ k such that for any P ∈ k[z],
|P |x = |P (a)|;

Type-2 : there exist a ∈ k and r ∈ |k∗| such that

|P |x = max
z∈B̄(a,r)

|P (z)| = max{|bi|ri},

where P (z) = bd(z− a)d+ ...+ b1(z− a)+ b0, and B̄(a, r) is the
closed ball of radius r centered at a in k;

Type-3 : there exist a ∈ k and r ∈ R+ \ |k∗| such that for all P ∈ k[z],
|P |x = maxz∈B̄(a,r) |P (z)| as in the previous case;

Type-4 : there exists a sequence of decreasing closed balls B̄n with
⋂

B̄n = ∅, such that |P |x = infnmaxz∈B̄n
|P (z)| for all P ∈ k[z].

Usually, we write ζ(a, r) for the (Type-2 or-3) point associated with the ball
B̄(a, r), and denote the Gauss point by xg = ζ(0, 1).

A Type-1 point is also referred to as a rigid point. Observe that the set
of Type-1 points can be identified with P1(k).

Remark 1.3. A field k is spherically complete if for any decreasing sequence
B̄n of closed disks, we have

⋂

B̄n 6= ∅. When k is spherically complete, there
is no Type-4 point on P

1,an
k .

The compact space P
1,an
k has a structure of R-tree, in the sense that any

two points can be joined by a unique continuous injective map [0, 1] → P
1,an
k

up to reparameterization (see [60, §3] for a thorough discussion on R-trees).
In particular, it is homotopic to a point. A tree structure naturally induces
a topology (also called the observer’s topology) admitting as a basis of open
sets connected components of complements of finitely many points (see [29,
§3.2]). One can verify that the tree topology on P

1,an
k coincides with the

topology as a Berkovich analytic space.
On a tree, one can naturally define the notion of endpoints, branched

points and regular points (see [29, §3.1.2]). In the trivially valued case,
P
1,an
k is star-like: it contains a single branched point (the trivial norm);

endpoints are exactly of the form (T1); and we have a single branch joining
the trivial norm to an endpoint consisting of regular points of Type (T3).
In the non-trivially valued case, Type-1 and-4 points are endpoints; Type-2
(resp. Type-3) are branched (resp. regular) points.

In the remainder of this section, we assume that k is not trivially valued.
The hyperbolic space Hk is defined as the complement in P

1,an
k of Type-1

points. For any pair of Type-2 or-3 points x, y ∈ Hk defined by the closed
balls B̄(a1, r1) and B̄(a2, r2) respectively, we let

dk(x, y) = 2 logmax{r1, r2, |a1 − a2|} − log r1 − log r2.

Proposition 1.4. The map dk(·, ·) extends continuously to Hk × Hk and
defines a complete distance on Hk. The group of projective linear transfor-
mations PGL2(k) acts by isometries on (Hk, dk) and transitively on Type-2
points.

We refer to [1, Proposition 2.29] for a proof.
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1.2.3. Berkovich projective line over a general complete metrized field. De-
note by k̂a the completion of the algebraic closure ka of k. This is an al-
gebraically closed complete field. Denote by Gal(ka/k) the absolute Galois
group of k. It acts by isometries on k̂a fixing k, hence continuously on P

1,an

k̂a

and by isometries on Hk̂a by the following formulas:

|bdzd + ...+ b0|σ(x) = |σ(bd)zd + ...+ σ(b0)|x,

where bi ∈ k, x ∈ A
1,an
k and σ ∈ Gal(ka/k). This action also preserves the

type of points as discussed in the previous paragraph so that we may speak
of the type of points in P

1,an
k . Finally we have

P
1,an
k = P

1,an

k̂a
/Gal(ka/k),

by [4, Proposition 1.3.5], so that P
1,an
k is still an R-tree.

We shall use at several places the spherical distance on P1(k). When
k = Cǫ with ǫ ∈ (0, 1] is Archimedean, it is defined by the formula:

(3) dP1(k)([z0 : z1], [w0 : w1]) =
|z0w1 − z1w0|

(|z0|2/ǫ + |z1|2/ǫ)ǫ/2(|w0|2/ǫ + |w1|2/ǫ)ǫ/2
.

This formula agrees with the standard spherical metric in the case ǫ = 1,
and the exponents are chosen so that dCǫ = dǫC ◦ sǫ.

When k is non-Archimedean, then we set:

(4) dP1(k)([z0 : z1], [w0 : w1]) =
|z0w1 − z1w0|

max{|z0|, |z1|}max{|w0|, |w1|}
.

The diameter of P1(k) is equal to 1, and the topology induced by this distance
coincides with the Berkovich topology restricted to P1(k).

1.3. Potential theory on the Berkovich projective line over a field.
In this section, (k, | · |) is an algebraically closed and complete metrized field.
We briefly recall how to define a Laplace operator on P

1,an
k , and discuss what

happens when one replaces (k, | · |) by (k, | · |ǫ) for some ǫ > 0.

1.3.1. The Archimedean case. Let Cǫ be the metrized field (C, | · |ǫ) with
ǫ ∈ (0, 1]. Recall that Ĉ = P

1,an
C1

is the Riemann sphere, and that we have a
homeomorphism sǫ : P

1,an
Cǫ

→ Ĉ, sending a semi-norm | · | on Cǫ[z] to | · |1/ǫ.
For any x ∈ P

1,an
Cǫ

, we have a canonical isometry τx : H (x) ≃ Cǫ. Observe
that the identity map Iǫ : Cǫ → (C, | · |) is Hölder-continuous (but is not an
isometry).

Pick any open subset U ⊂ Ĉ and any f ∈ O(U) (by Mittag-Leffler’ theo-
rem O(U) is the space of holomorphic functions on U). For any x ∈ P

1,an
Cǫ

,

set s#ǫ f(x) = τ−1
x (I−1

ǫ (f(sǫ(x)))) ∈ H (x). We get an isomorphism of C-
algebras s#ǫ : O(U) → O(s−1

ǫ (U)) which satisfies

(5) |s#ǫ h(x)| = |h ◦ sǫ(x)|ǫ,
for any x ∈ s−1

ǫ (U). In particular, we get Hölder-continuous field isomor-
phisms s#ǫ : H (sǫ(x)) → H (x) for all x ∈ P

1,an
Cǫ

.
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1.3.1.1. Subharmonic functions. Pick any ǫ ∈ (0, 1], and any open subset U
of P1,an

Cǫ
. The space of subharmonic functions SH(U) on U is defined as the

smallest class of upper-semicontinuous (usc) functions that contains log |h|
for any h ∈ O(U) and is stable under multiplication by positive constants,
taking maxima, and decreasing limits. It follows from, e.g., [17, Theorem
6.1], that in the case ǫ = 1 these functions are exactly those usc functions
whose mean value on any round disk D ⊂ U centered at a point x exceeds
u(x). The latter definition being local, SH is in fact a sheaf on Ĉ, and by (5),
we have an isomorphism s#ǫ : SH(U) → SH(s−1

ǫ (U)) so that SH is a sheaf on
P
1,an
Cǫ

for any ǫ.

1.3.1.2. Laplace operator. Let M+(U) be the set of positive Borel measures
on some open set U ⊂ Ĉ. The Laplace operator on SH(U) can be de-
fined as the differential operator ∆ = i

π∂∂, or as the unique operator
∆: SH(U) → M+(U) which is continuous under decreasing limits and such
that the Poincaré formula holds

∆ log |h| =
∑

x∈U
mx,hδx

for any h ∈ O(U) having a discrete set of zeroes, where mx,h ∈ N is the
multiplicity of x as a zero of h.

One can proceed in the same way on Cǫ, and define a Laplace operator ∆
on SH(U) with U ⊂ P

1,an
Cǫ

with values in M+(U) which is continuous under
decreasing limits and such that

(6) ∆ log |h|ǫ =
∑

x∈U
mx,hδx

for any h ∈ O(U). Comparing the latter equation with (5), and observ-
ing that zeroes of s#ǫ (h) are mapped by sǫ to zeroes of h preserving the
multiplicity, we obtain for any u ∈ SH(U) with U ⊂ Ĉ the identity:

(7) (sǫ)∗∆(u ◦ sǫ) =
1

ǫ
∆u

1.3.1.3. Quasi-subharmonic functions. Since P
1,an
Cǫ

is compact, the maximum
principle implies that any subharmonic function on P

1,an
Cǫ

is constant. We
thus define the class QSH(P1,an

Cǫ
) of usc functions u : P1,an

Cǫ
→ [−∞,+∞)

such that locally near any point u is the sum of a smooth function and a
subharmonic function. Since ∆ is a local differential operator, one can define
∆u ∈ M(P1,an

Cǫ
) as a signed measure. One can prove that

∫

P
1,an
Cǫ

∆u = 0 for

any u ∈ QSH(P1,an
Cǫ

). Conversely, pick any Borel measure µ ∈ M(P1,an
Cǫ

) such
that µ(P1,an

Cǫ
) = 0, and decompose it as a difference µ = µ+ − µ− such that

µ± ∈ M+(P1,an
Cǫ

), and µ+ ⊥ µ−, [68, 6.14]. Then there exist u± ∈ QSH(P1,an
Cǫ

)

such that ∆(u+ − u−) = µ. When µ− is a (smooth) volume form, then
u+ − u− is quasi-subharmonic, see, e.g., [23, Theorem 10].

1.3.2. The non-Archimedean case. To avoid trivialities, we shall assume that
(k, | · |) is not trivially valued. Potential theory on curves has been developed
in [29, 1, 74].
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1.3.2.1. Subharmonic functions. Pick any connected open subset U ⊂ P
1,an
k .

Since the projective line is an R-tree, U is also a tree, and UH = U ∩ Hk

endowed with the metric dHk
is a metric R-tree in the sense of [42, §2.2]. For

the sake of convenience, we defined a subgraph of U as a connected closed
subtree Γ having finitely many endpoints lying in Hk. A function u : Γ → R is
subharmonic if it is continuous, its restriction to any segment of Γ is convex,
and the sum of its derivatives at all outward directions at a branched point
is non-negative. A function u : U → [−∞,∞) is subharmonic if and only if
it is usc, and its restriction to any subgraph is subharmonic.

As above, we denote by SH(U) the space of all subharmonic functions: it
is stable under multiplication by positive constants, under taking maxima
and by decreasing limits, and contains all functions log |h| for any analytic
functions h ∈ O(U). Observe that SH defines a sheaf, and given any sub-
graph Γ and any u ∈ SH(U), then u ◦ rΓ ∈ SH(U) where rΓ : U → Γ denotes
the canonical retraction.

When U is an open ball, then a theorem of Stevenson [72, Example 4.8,
Theorem 4.9] states SH(U) is the smallest class of usc functions stable under
the preceding operations. The result is unclear in full generality.
1.3.2.2. Laplace operator. Pick any subgraph Γ ⊂ U and any u : Γ → R

subharmonic. Then ∆Γu is defined as the unique positive measure whose
restriction on any segment e not containing a branched and end point is
equal to the second derivative (in the distributional sense) of the convex
function u|e; and the mass at any branched or end point v is the sum of the
derivatives of u at all outward directions at v.

There exists a unique linear map ∆: SH(U) → M+(U) that is contin-
uous under decreasing limits and satisfies the following property. For any
subgraph Γ of U and for any u ∈ SH(U), then (rΓ)∗∆u = ∆Γu|Γ.

With the same notation as in the previous section, Poincaré formula holds:

∆ log |h| =
∑

x∈U
mx,hδx

for any h ∈ O(U) having a discrete set of zeroes.
1.3.2.3. Quasi-subharmonic functions. Smooth functions do not make sense
in non-Archimedean geometry. We say that u : P1,an

k → R is tropical if
and only if there exists a subgraph Γ such that u|Γ is piecewise linear, and
u = u ◦ rΓ.

A function is said to be quasi-subharmonic if it can be written locally
as the sum of a subharmonic function and a tropical function. We let
QSH(P1,an

k ) be the space of all quasi-subharmonic functions. For any u ∈
QSH(P1,an

k ), one can define ∆u as a signed Borel measure.
As in the Archimedean case, for any signed Borel measure µ ∈ M(P1,an

k )

such that µ(P1,an
k ) = 0, there exist u± ∈ QSH(P1,an

k ) such that ∆(u+−u−) =
µ, see [1].

For any x, y ∈ P
1,an
k , denote by x∧y the unique point z such that [xg, x]∩

[xg, y] = [x, z]. When µ = ρ−δxg where ρ is a probability (positive) measure,
then

gρ(x) = −
∫

d(xg, x ∧ y)dρ(y) ∈ QSH(P1,an
k )
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and ∆gρ = µ. We call the function gρ the (global) potential of ρ.

2. Rational maps on the projective line

2.1. The space of rational maps and the resultant. Let k be an al-
gebraically closed field. For each d ∈ N∗, a rational map f of degree d
with coefficients in k is represented by a pair of homogeneous polynomials
P (z0, z1), Q(z0, z1) ∈ k[z0, z1] of degree d having no common factor, such
that the map

[z0 : z1] → [P (z0, z1) : Q(z0, z1)]

represents the action of f on P1
k. Such a pair is unique up to scaling, so

that f naturally defines a point in P2d+1(k). The condition that P and Q
are coprime can be expressed as the non-vanishing of their homogeneous
resultant:

Res(P,Q) = det



































a0 0 · · · 0 b0 0 · · · 0

a1 a0
. . .

...
... b0

. . .
...

... a1
. . . 0

...
. . . 0

...
...

. . . a0 bd−1 b0

ad a1 bd
. . .

...
...

0
. . .

... 0
. . . bd−1

...
...

. . . ad
...

...
. . . bd bd−1

0 · · · 0 ad 0 · · · 0 bd



































when P (z0, z1) = a0z
d
0 + a1z

d−1
0 z1 + ... + adz

d
1 , and Q(z0, z1) = b0z

d
0 +

b1z
d−1
0 z1 + ... + bdz

d
1 . Note that the resultant is homogeneous of degree

2d+ 2 in the variables ai, bj .
It is thus natural to define the space Ratd as the Zariski open subset of

[P : Q] ∈ P2d+1
k satisfying Res(P,Q) 6= 0. Its set of k-points is precisely the

set of rational maps of degree d on P1
k. Note that Rat1 coincides with the

algebraic group PGL2.
Assume now that (k, | · |) is a complete metrized field. For any rational

map f ∈ Ratd(k), we set

|Res(f)| = |Res(P,Q)|
max{|ai|2d+2, |bj |2d+2} ∈ R∗

+

with the same notation as above. Observe that this value is well-defined
because of the homogeneity properties of the resultant.

For convenience, we say that a pair of homogeneous polynomials P,Q of
degree d is a normalized representation of a rational map f : P1

k → P1
k of

degree d, if f = [P : Q], and max{|ai|, |bj |} = 1 where P =
∑

i aiz
i
0z
d−i
1 and

Q =
∑

i biz
i
0z
d−i
1 . Observe that |Res(f)| = |Res(P,Q)| for any normalized

representation of f .

Proposition 2.1. The function − log |Res | : Ratd(k) → R can be contin-
uously extended to the Berkovich analytification of Ratd. It is plurisubhar-
monic, proper and bounded from below.
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In the Archimedean case, plurisubharmonic functions are defined as usc
function whose restriction to any analytic curve is subharmonic, see [16] for
basics on this class. In the non-Archimedean case, the general theory has
been developed by Ducros and Chambert-Loir in [12]. Suffice it to say that
the class of psh functions contains log |h| for any analytic map h, and is
stable under taking maxima.

Proof. Keeping the same notation as above, we first observe that

si =
a2d+2
i

Res(P,Q)
, tj =

b2d+2
j

Res(P,Q)

define regular functions on Ratd, and k[Ratd] is a finite module over k[si, tj].
It follows that − log |Res | = logmax{|si|, |tj |} extends canonically to Ratand
as a continuous function, and is plurisubharmonic.

To see that − log |Res | is proper, we note that |Res | is in fact defined
and continuous on the compact space P

2d+1,an
k and Ratd = {|Res | > 0}. �

2.2. The moduli space and the minimal resultant. Let (k, | · |) be any
complete metrized field which is algebraically closed, and pick any integer
d ≥ 2.

The group PGL2 has a natural left action on Ratd by conjugacy: M · f =
M ◦ f ◦M−1. In order to apply results from geometric invariant theory, it is
better to work with the action of the affine reductive group SL2 (note that
the canonical morphism SL2 → PGL2 has finite kernel).

By Hilbert theorem, the ring of invariant regular functions

k[Ratd]
SL2 = {h ∈ k[Ratd], h(M · f) = h(f) for all M,f}

is finitely generated. We may thus define the affine variety

ratd = Speck[Ratd]
SL2 .

Denote by π : Ratd → ratd the canonical map.
According to [70], all SL2-orbits are closed, and the stabilizer of any ele-

ment in Ratd is finite, so that Ratd is included in the set of stable points for
the SL2-action. It follows that ratd(k) is naturally in bijection with conju-
gacy classes of rational maps of degree d on P1

k. It is customary to write [f ]
for the class in ratd(k) of a rational map f ∈ Ratd(k). In order to clarify the
difference between an actual rational map and a conjugacy class of rational
maps, we shall use gothic fonts like f to denote a point in ratd.

We refer to [49] for more details on the geometry of ratd.

Pick any f ∈ ratd(k), and choose f ∈ Ratd(k) such that [f ] = f. We define

− log | res(f)| = inf
M∈PGL2(k)

− log |Res(M · f)| ∈ R.

This is well-defined because − log |Res | is bounded from below by Proposi-
tion 2.1.

The next result follows quite directly from Kempf-Ness theory. We refer
to [53, Chapter 3] for general results on minimizing functions on orbits of
action of general affine reductive groups over arbitrary metrized fields.
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Proposition 2.2. The function − log | res | : ratd(k) → R extends as a con-
tinuous function on the Berkovich analytification of ratd. This extension is
proper and bounded from below.

Remark 2.3. Except if d = 2 (see [54, 55, 70]), the algebraic variety ratd is
singular. One can still define a notion of psh function in this singular setting
(see [34] for the Archimedean case, and [12] for the non-Archimedean one).
It is not clear whether − log | res | is psh on ratd.

We shall need the following lemma.

Lemma 2.4. The map

Ψ: SL2 ×Ratd → Ratd×Ratd

defined by Ψ(M,f) = (M · f, f) is proper.

Note that since SL2 → PGL2 has finite kernel, the induced map

Ψ: PGL2 ×Ratd → Ratd×Ratd

is also proper.

Proof. This is a general result from geometric invariant theory. All points
in Ratd are SL2-stable hence Ratd /SL2 is a geometric quotient. It follows
from [58, Proposition 0.8] that the map

Ψ: SL2 ×Ratd → Ratd×Ratd

defined by Ψ(M,f) = (M · f, f) is proper. �

Proof in the Archimedean case. Suppose k = C. Since all points are sta-
ble, all orbits are Zariski closed hence closed for the euclidean topology on
Ratd(C).

For a fixed f ∈ Ratd(C), the map SL2(C) → Ratd(C) sending M to M · f
is proper by the previous lemma, hence the function M 7→ − log |Res(M · f)|
is also proper. It follows that − log |Res | attains its minimum on the orbit
of f .

Let us prove the properness of − log | res |. Choose any sequence fn ∈
ratd(C) such that supn− log | res(fn)| is bounded. For each n, choose fn ∈
Ratd(C) such that [fn] = fn, and − log | res(fn)| = − log |Res(fn)|. Since
− log |Res | is proper, fn is bounded, hence fn is also bounded.

To see the continuity of − log | res | we proceed in a similar way. Suppose
fn → f ∈ ratd(C). Choose elements fn (resp. f) with [fn] = fn (resp. [f ] = f)
minimizing − log |Res | on their respective orbits. Any cluster point of the
fn’s belongs to the orbit of f (a priori it might happen that there are none).
It follows that

− log | res(f)| = − log |Res(f)| ≤ lim inf
n

log | res(fn)|

hence − log | res | is lsc.
Conversely, choose any sequence f ′n such that f ′n → f and [f ′n] = fn.

To see that such a sequence exists, consider the SL2(C)-invariant set A :=
⋃

n π
−1(fn). If A is not closed, it admits a cluster point g which necessarily

lies in the orbit of f , and the existence of f ′n follows. If A is closed, then π(A)
is also closed in the euclidean topology by Kempf-Ness theorem (see, e.g., [53,
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Theorem 1.6 (3) Chapter 3]), which contradicts the fact that A = π−1(π(A)).
Now we have

lim sup
n

− log | res(fn)| ≤ lim sup
n

− log |Res
(

f ′n
)

|

= − log |Res(f)| = − log | res(f)|

proving − log | res | is also usc. �

Proof in the non-Archimedean case. In this case, one has to be carefully with
the definition of orbits since points in Ratand have different field of definitions.
We have the following maps between k-varieties

SL2×Ratd Ratd

Ratd

pr2

̟

where pr2 denotes the projection onto the second factor, and ̟(M,f) =
M · f . This diagram is also valid in the analytic category. The orbit of a
point f ∈ Ratand is by definition the set SLan2 ·f = ̟pr−1

2 (f) ⊂ Ratand .
Choose f ∈ Ratand , and denote by H its complete residue field. Then

pr−1
2 (f) is isomorphic to SLan2,H , and we have a canonical map SLan2,H →

Ratand given by M 7→ M · f = pr1(Ψ
an(M,f)), where Ψ is the map from

Lemma 3.24 whose image is the orbit of f . Since Ψ is proper, its analytifi-
cation is also proper, hence M 7→ M · f is proper. As in the complex case,
it follows the function − log |Res | is proper hence admits a minimum in the
orbit of f . The properness of − log | res | follows as in the archimedean case.

We aim at proving that − log | res | is continuous. By Poineau [64], ratand
is Fréchet-Urysohn (meaning that for any subset A, and any point x ∈ Ā
there exists a sequence xn ∈ A such that xn → x). It follows that one
can show that − log | res | is continuous using sequences. Now all arguments
used in the Archimedean case works exactly the same way (including Kempf-
Ness theory as discussed by Maculan in [53]) and prove that − log | res | is
continuous. �

Rumely’s minimal resultant. Suppose now that k is an algebraically closed
non-Archimedean field. In that case, the previous function log | res | has
strong connections with the minimal resultant function ordResf introduced
by Rumely in [69], and further studied in [39, 73].

The basic observation (see [71, Exercice 2.12]) is that for any f ∈ Ratd(k),
and for any M ∈ PGL2(k

◦), we have

|Res(f)| = |Res(M · f)|.

Since PGL2(k
◦) is precisely the subgroup of PGL2(k) fixing the Gauss point,

and PGL2(k) acts transitively on Type-2 points, we obtain a well-defined
function ordResf on the set of Type-2 points which sends the point M(xg)
to − log |Res(M · f)|.

A theorem of Rumely [69] states that ordResf can be canonically extended
as a function ordResf : Hk → [0,∞] that is continuous with respect to the
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metric dHk
and proper. Moreover, the locus where ordResf attains its min-

imum is either a single Type-2 point or a segment containing at least one
Type-2 point.

Finally suppose that ordResf (xg) = 0, and choose a normalized represen-
tation f = [P : Q]. Then the resultant of P and Q has norm 1, hence the
reduction map f̃ = [P̃ : Q̃] ∈ Ratd(k̃) has degree exactly d. In that case, we
say that f has good reduction.

Altogether we obtain the following statement due to Rumely:

Theorem 2.5. Let (k, |·|) be any algebraically closed non-Archimedean com-
plete field, and pick f ∈ Ratd(k).

Then − log | res([f ])| = 0 if and only if f has potential good reduction,
i.e., is conjugated by a projective transformation to a rational map having
potential good reduction.

2.3. Rational map on P
1,an
k and the equilibrium measure.

Let (k, | · |) be any complete and algebraically closed metrized field, and
pick any rational map f ∈ Ratd(k) of degree d ≥ 2. This is an endomor-
phism of the projective variety P1

k hence it induces a continuous map on
the analytification P

1,an
k . In concrete terms, f = [P : Q] maps a rigid point

[z0 : z1] ∈ P1(k) to [P (z0, z1) : Q(z0, z1)]; and a point x ∈ Hk having a trivial
kernel to f(x) so that |h(f(x))| = |(h◦ f)(x)| for any rational map h ∈ k(z).

We aim at defining a canonical (equilibrium) measure which is invariant
by f . The construction proceeds as follows. The endomorphism f : P1,an

k →
P
1,an
k is continuous, finite, open and surjective, see, e.g., [42, Proposition 4.3].

It follows that one can define a local degree at any point x ∈ P
1,an
k by setting

degx(f) = dimκ(f(x))

(

Ox/mf(x)Ox

)

.

where Ox is the local ring of analytic functions at x, mx its maximal ideal,
and κ(x) = Ox/mx (observe that H (x) is the completion of κ(x)).

Proposition 2.6. For every connected open set V and every connected com-
ponent U of f−1(V ), the integer

∑

f(y)=x,y∈U
degy(f)

is independent of the point x ∈ V . In particular, for every y ∈ P
1,an
k , we

have
∑

x∈f−1(y)

degx(f) = d.

For any function ϕ : P1,an
k → R, define

f∗ϕ(x) =
∑

y∈f−1(x)

degy(f)ϕ(y).(8)

The previous proposition implies that if ϕ is continuous, then f∗ϕ is con-
tinuous, and its sup-norm is bounded by d times the sup-norm of ϕ, so that
for any Radon measure µ ∈ M(P1,an

k ), the pullback of µ by f can be dually
defined by the identity 〈f∗µ,ϕ〉 = 〈µ, f∗ϕ〉 for any continuous function ϕ
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(we use the notation 〈µ,ϕ〉 =
∫

ϕdµ). We refer the readers to [1, §9.4] for
more details.

Denote by µcan ∈ M+(P1,an
k ) the Haar (probability) measure on {|z| = 1}

if (k, | · |) is Archimedean, or the Dirac mass at the Gauss point if it is
non-Archimedean.

By the discussion of §1.3, there exists a continuous function gf (which is
the difference of two functions in QSH(P1,an

k )) such that

1

d
f∗µcan − µcan = ∆gf,0 .

In homogeneous coordinates, we have f = [P : Q], and this function is ex-
plicitly given by

gf,0[z0 : z1] =
1

d
log

max{|P |, |Q|}
max{|z0|d, |z1|d}

.

It follows that the sequence of probability measures 1
dn f

n∗µcan converges,
and we denote by µf ∈ M+(P1,an

k ) its limit. It can be written as

(9) µf = µcan +∆gf

where gf =
∑

k≥0 d
−kgf,0 ◦ fk is continuous. It also satisfies f∗µf = dµf .

One can also show that µf is mixing (hence ergodic), see, e.g., [6, 32].
By definition, the Julia set Jf of f is the support of µf , and the Fatou set

Ff is its complement. The Fatou set is open and the Julia set is compact.
Both are totally invariant.

One can show that the Fatou set is precisely the locus where the iterates
{fn} form a normal family (see [30, Theorem 5.4] in the non-Archimedean
setting).

In the Archimedean setting, Jf is a perfect (uncountable) set. In the non-
Archimedean setting, either Jf is reduced to a singleton in which case f has
potential good reduction; or it is perfect and uncountable (see [3, Theorem
8.15(e)]).

3. Sequential hybridation using non-standard analysis

3.1. The Stone-Čech compactification of N. We start by discussing the
notion of ultrafilters on the set N of natural numbers. We refer to [13] for a
detailed treatment.

Definition 3.1. A subset ω of the power set of N is called an ultrafilter, if
(1) ∅ /∈ ω;
(2) if E,F ∈ ω, then E ∩ F ∈ ω;
(3) if E ∈ ω and E ⊆ F , then F is also in ω;
(4) if E ⊆ N, either E or Ec = N \E is in ω.

A set in ω is called an ω-big set. A set whose complement lies in ω is said
to be ω-thin. If a proposition is satified for a ω−big set, we say that this
proposition is true ω−almost surely.

An ultrafilter is said to be principal if there exists an integer n such that
this ultrafilter is exactly {F ⊆ N, n ∈ F}, we denote such an ultrafilter by
ωn.
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Proposition 3.2. For each infinite set E ⊆ N, there exists a non-principal
ultrafilter ω that contains E.

Proof. Consider the family of sets {E \ F} with F finite. By [13, Theo-
rem 7.1], there exists a ultrafilter ω containing all these sets (the existence
is a consequence of Zorn’s lemma). It cannot be principal, hence the propo-
sition. �

Definition 3.3. Let X be a Hausdorff topological space, ω an ultrafilter and
xn be a sequence on X. We define x to be an ω-limit of xn, if, for all
neighbourhood V of x, {n ∈ N, xn ∈ V } is an ω-big set.

We briefly summarize the properties of ω-limits of a sequence here:

Proposition 3.4. Let xn be a sequence on a Hausdorff space X, then:
(1) if X is compact, the ω-limit of xn exists and is unique;
(2) if x = limn→∞ xn in the usual sense, then x = limω xn for any non-

principal ultrafilter ω;
(3) if X is first countable, and x = limω xn, then there exists a subse-

quence xnk
of xn such that

lim
k→∞

xnk
= x.

Proof. If the first statement is not true, then for every x ∈ X, there exists a
neighbourhood Vx of x such that

Nx = {n ∈ N, xn ∈ Vx}
is not ω-big. The entire space X is covered by a finite number of such Vx’s.
Therefore, N is covered by a finite number of subsets, each of which is not big.
Since the intersection of two big sets is big, it follows that the intersection
of two sets, each of which is not ω-big, is also not ω-big. This leads to a
contradiction.

The second statement follows from a simple observation that a non-prin-
cipal ultrafilter ω contains all cofinite sets. Otherwise, if {n1, · · · , nk} be-
longs to the ultrafilter at least one of the ni is in ω. If not, N \ {ni} ∈ ω,
hence

N \ {n1, ..., nk} =
k
⋂

i=1

N \ {ni} ∈ ω,

which contradicts the assumption. For the last statement, let Uk be a basis
of neigbourhood of x, take xnk

∈ Uk, then limk→∞ xnk
= x. �

Remark 3.5. Note that if ω is a principal ultrafilter associated with the
integer m, then limω xn = xm.

Denote by βN the set of all ultrafilters on N. For each subset E ⊆ N, define
UE = {ω ∈ βN, E ∈ ω}. Note that for all E,F ⊆ N, UE ∩ UF = UE∩F .
Hence, the collection UE forms a basis for a topology on βN, and the open
sets are unions of such U ′

Es. Also note that
⋃k
i=1 UEi = U∪k

i=1Ei
.

We have a canonical injection N → βN, sending n to the principal ultra-
filter ωn. Pick any ω ∈ βN and any open neighborhood ω of the form
UE . Then for any n ∈ E we have ωn ∋ E, hence N is dense in βN. Since
Un = {ωn} is open, it follows that N (with its discrete topology) is also open
in βN.
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Theorem 3.6. The topological space βN is compact and totally disconnected,
and contains N (endowed with its discrete topology) as an open dense subset.

It satisfies the following universal property. Any map f : N → K with
K compact can be continuously extended to a map F : βN → K by setting
F (ω) = limω f(n).

The space βN is referred to as the Stone-Čech compactification of N.

Proof. Let us show that βN is Hausdorff. Pick two ultra-filters ω 6= ω′. Then
there exists E ⊂ N such that E ∈ ω and E /∈ ω′. Then ω ∈ UE , ω′ ∈ UEc

and we have UE ∩ UEc = ∅.
Suppose Ui is an open cover of βN. We may suppose that Ui = UEi

for some Ei ⊂ N. If we cannot find any finite sub-cover, then the collection
{Eci } has the finite intersection property: any finite intersection of Eci is non-
empty. It follows from [13, Theorem 2.2] that there exists some ω containing
all Eci , a contradiction. It follows that βN is compact.

Pick any ω 6= ω′ ∈ βN and E ∈ ω, Ec ∈ ω′ as above. It follows that
{UE , UEc} is an open cover by disjoint open sets. Since ω ∈ UE and ω′ ∈ UE′ ,
hence βN is totally disconnected.

Finally given f : N → K, we define F : βN → K by setting F (ω) =
limω f(n). We claim that this map is continuous. Let U be a neighbourhood
of F (ω). There exists an ω-big set E such that for all n ∈ E, f(n) ∈ V with
V open and V̄ ⊂ U . Therefore, F (UE) ⊆ U , and the proof is complete. �

3.2. Product Banach rings. In all this section we fix ǫ = (ǫn) any sequence
of positive real numbers in (0, 1].

3.2.1. The Berkovich spectrum and the Stone-Čech compactification. We de-
fine the product Banach ring associated with ǫ as follows:

Aǫ =
{

(xn) ∈ CN, |xn|ǫn is bounded
}

,

where | · | denotes the standard Euclidean norm on the field C of complex
numbers. We endow Aǫ with the norm ‖ · ‖ defined by:

‖(xn) ‖ = sup
n

|xn|ǫn .

This definition makes Aǫ into a Banach ring whose norm is power multi-
plicative. Recall that its Berkovich spectrum M(Aǫ) is the collection of
multiplicative seminorms | · | on Aǫ such that |(xn)| ≤ supn |xn|ǫn .

Be aware that Aǫ is a Banach C-algebra if and only if ǫ = (1) because

‖ c · (1) ‖ = sup
n

|c|ǫn

for all c ∈ C.

Remark 3.7. An element x = (xn) is a unit in Aǫ if and only if ( 1
xn

) ∈ Aǫ.
This proves that the set of all units (Aǫ)× is equal to those x for which there
exists M > 1 such that 1

M ≤ |xn|ǫn ≤M for all n.

Theorem 3.8. The map  : βN → M(Aǫ) sending a ultrafilter ω to the
seminorm charaterized by

|(xn)n≥1|(ω) = lim
ω

|xn|ǫn
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is a homeomorphism.

The case of an arbitrary product of metrized fields is treated in [4, Propo-
sition 1.2.3].

Proof. The continuity of  is clear.
We first show that  is injective. Pick ω1 6= ω2 ∈ βN, and E ⊂ N such that

E ∈ ω1 and Ec ∈ ω2. Let xE ∈ Aǫ be the sequence such that xn = 0 on E
and 1 on Ec. We have |xE |(ω1) = 0 and |xE |(ω2) = 1 so that (ω1) 6= (ω2)

We claim that  is surjective. We shall use the fact that for any semi-norm
|b| = 0 implies |a+ b| = |a| for any a.

Observe that for any y ∈ M(Aǫ), and for any E ⊂ N we have |xE |y ≤
‖xE ‖ = 1, and xE xEc = 0, xE + xEc = 1. Since | · |y is a multiplicative
seminorm, by the trick above either |xE |y or |xEc|y equals 1 while the other
equals 0.

Let ω = {E ⊆ N, |xE |y = 1}. We shall prove that ω is an ultrafilter
and that y = (ω). By the preceding argument, for any subset E ⊆ N,
either E or Ec belongs to ω. Let E,F ∈ ω, then |xE∩F |y = |xE |y|xF |y = 1,
thus E ∩ F also belongs to ω. Additionally, if E ∈ ω and E ⊆ F , then
|xFxE|y = |xE |y = 1. Consequently, we have |xF |y = 1, implying F ∈ ω.
Therefore, ω is an ultra-filter.

Pick x = (xn) ∈ Aǫ, and set α = limω |xn|ǫn . To conclude the proof it is
sufficient to show that |x|y = α. For any η > 0, there exists E ∈ ω such that
for all n ∈ E,

α− η < |xn|ǫn < α+ η.

Define

x′n =

{

xn, if n ∈ E

α1/ǫn , otherwise.

Then |(x′n)|y = |(xn)xE + (x′n)xEc|y = |(xn)xE |y = |(xn)|y.
Since y is a bounded seminorm, we have

|(x′n)|y ≤ sup |x′n|ǫn ≤ α+ η
∣

∣

∣

∣

(x′n)
−1

∣

∣

∣

∣

y

≤ sup

∣

∣

∣

∣

(x′n)
−1

∣

∣

∣

∣

ǫn

≤ (α− η)−1.

Thus α− η ≤ |(x′n)|y = |(xn)|y ≤ α+ η. We conclude by letting η → 0. �

3.2.2. Complete residue fields. Let ω be an ultrafilter, which we identify with
its image in M(Aǫ). Recall that the complete residue field H (ω) is obtained
as the completion of the quotient ring Aǫ/ ker(ω) where

ker(ω) =
{

(xn) ∈ CN, lim
ω

|xn|ǫn = 0
}

.

Observe that ker(ω) is a maximal ideal of Aǫ. Indeed, pick y /∈ ker(ω). Then
limω |yn|ǫn > 0. The set of integers E such that |yn|ǫn < 2−1 min {|y|ω, 1}
is ω-thin, hence xE ∈ ker(ω), and y + xE is invertible by Remark 3.7. It
follows that Aǫ/ ker(ω) is a field. Since ω is bounded, ker(ω) is closed hence
Aǫ/ ker(ω) is complete for the residue norm, and it follows that H (ω) =
Aǫ/ ker(ω).
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Proposition 3.9. For any ω ∈ βN, the complete residue fields H (ω) is
algebraically closed and spherically complete, and |H (ω)| = R+.

(1) If e = limω ǫn > 0, then H (ω) is isometric to (C, | · |e) hence is an
Archimedean metrized field.

(2) If limω ǫn = 0, then H (ω) is a non-Archimedean metrized field, and
the image of Aǫ is H (ω) is dense.

Remark 3.10. When limω ǫn = 0, H (ω) is a complexified Robinson field.
We refer to [50] for a detailed treatment of such fields.

Proof. Suppose e = limω ǫn > 0. Pick x ∈ Aǫ. Then |x|ω = limω |xn|ǫn ,
hence |xn| is bounded from above. It follows that xω = limω xn exists in C.
The map x 7→ xω is a morphism Aǫ → C which factors through ker(ω) hence
induces an isometric field morphism H (ω) = Aǫ/ ker(ω) → (C, | · |e).

Suppose now that limω ǫn = 0. Then |(2)|ω = limω |2|ǫn = 1 so that H (ω)
is a non-Archimedean field. Observe that ker(ω) = {(an) ∈ Aǫ, limω |an|ǫn =
0}. We already observed that Aǫ/ ker(ω) is a field. This implies that the
image of Aǫ is equal to H (ω).

We now prove that H (ω) is spherically complete. We may suppose that
limω ǫn = 0. Let B̄i = B̄(αi, ri) be any decreasing sequence of closed balls,
with ri > 0 and αi = (αi,n)n ∈ Aǫ so that |αi − αj |ω < ri for all j ≥ i.

We define a strictly decreasing sequence of ω-big sets N = N0 ⊇ Nk ⊇
Nk+1 such that for any i ≤ j ≤ k and l ∈ Nk, we have |αi,l − αj,l|ǫl ≤ ri.

Suppose N0, · · · , Nk have been constructed. Since for any i ≤ k + 1, we
have |αi − αk+1|ω < ri, one can find an ω-big set N such that for all l ∈ N ,
we have

|ai,l − ak+1,l|ǫl < ri.

We set Nk+1 = (N ∩Nk) \ {minNk}.
Set bn = ajn,n with jn = minNn, and let β = (bn). Choose any integer i.

For any n ≥ i, we have

|ai,n − bn|ǫn = |ai,n − ajn,n|ǫn ≤ ri.

It follows that |αi − β| ≤ ri, hence β ∈ B̄i, thus
⋂∞
i=0 B̄i is not empty.

Finally we prove that H (ω) is algebraically closed. Again, it is sufficient
to treat the case limω ǫn = 0, so that H (ω) is non-Archimedean. Pick any
polynomial Pω ∈ H (ω)[z]. Then we can find a sequence of polynomials

Pn(z) = a0,nz
d + a1,nz

d−1 + ...+ ad,n ∈ C[z]

such that ai = (ai,n) ∈ Aǫ, a0 ∈ (Aǫ)×, and the image of P =
∑

aiz
i in

H (ω) is equal to Pω. We may factorize each polynomial Pn(z) = a0,n
∏d
i=1(z−

αi,n). Since a0 is invertible in Aǫ, the sequence αi = (αi,n) belongs to Aǫ

since

|αi,n| ≤ max
{

(2d|ai,n|/|a0,n|)1/i , i = 1, · · · , d
}

.

It is moreover a zero of P , and its image in H (ω) is a zero of Pω which
concludes the proof. �

The last argument relates the sequence of zeroes of Pn to the zeroes of
Pω. The following converse holds.
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Proposition 3.11. Pick any polynomial P (z) ∈ Aǫ[z] of degree d ≥ 1,
determined by a sequence Pn ∈ C[z].

For any ω ∈ βN, and for any zero α ∈ H (ω) of multiplicity m of Pω,
there exist sequences αi,n ∈ C, 1 ≤ i ≤ m such that Πmi=1(z−αi,n) is a factor
of Pn for each n, and (αi,n) = α in H (ω) for each i.

Proof. Without loss of generality, we may suppose that α = 0, so that
Pω(z) = zmQω(z) with Qω ∈ H (ω)[z], and Qω(0) 6= 0. Pick any polynomial
Q ∈ Aǫ[z] projecting toQω. We can then write P (z) = zmQ(z)+H(z), where
H is determined by a sequence of complex polynomials Hn(z) =

∑d
i=0 hi,nz

i

such that (hi,n) ∈ Aǫ for each i, and limω |hi,n|ǫn = 0.
Also, Q is determined by a sequence of polynomials Qn(z) =

∑d
i=0 qi,nz

i ∈
C[z], such that |qi,n| ≤M1/ǫn for some M > 1, and all i, n, and |q0,n|ǫn ≥ 2ρ
for some ρ > 0 on a ω-big set E, since Qω(0) 6= 0.

Pick any r ∈ (0, 1) such that Mdr < ρ, and η > 0 so that η < rm × ρ.
On the circle |z| = r1/ǫn , we have |Hn(z)| ≤ η1/ǫn for all n in an ω-big set
E′ ⊂ E. On the other hand, for all |z| = r1/ǫn , we have |Qn(z)| ≥ ρ1/ǫn for
all n ∈ E′. We get |zmQn(z)| ≥ ρ1/ǫnrm/ǫn > |H(z)| on |z| = r1/ǫn for all
n ∈ E′.

By Rouché’s theorem, for all n ∈ E′ the polynomial Pn(z) = zmQn(z) +

Hn(z) admits exactly m zeros α1,n, · · · , αm,n in the disk |z| ≤ r1/ǫn .
By letting r → 0, we obtain limω |αj,n|ǫn = 0 for all j which concludes the

proof. �

3.2.3. The projective line over Aǫ. The analytification of the projective line
over Aǫ admits a canonical continuous proper map π : P1,an

Aǫ → M(Aǫ) ≃ βN.
When H (ω) = Ce is Archimedean, then there is a canonical isomorphism
se : π

−1(ω) → Ĉ (see §1.3). When H (ω) is non-Archimedean, then it π−1(ω)
contains only Type-1 and Type-2 points by Proposition 3.9.

Pick any sequence of point pn ∈ Ĉ. Then we may write in homogeneous
coordinates pn = [z0,n : z1,n] with max{|z0,n|, |z1,n|} = 1, so that zi = (zi,n) ∈
Aǫ. Note that z0Aǫ+z1Aǫ = Aǫ so that p = [z0 : z1] defines a point in P1(Aǫ),
and observe it does not depend on the choice of zi,n.

Conversely pick any point p = [z0 : z1] ∈ P1(Aǫ). By construction, we
have z0Aǫ + z1A

ǫ = Aǫ. The pair (z0, z1) is unique up to multiplication by
a unit in (Aǫ)×. Write zi = (zi,n) and set λ = (max{|z0,n|, |z1,n|}). Observe
that the condition z0A

ǫ + z1A
ǫ = Aǫ implies λ ∈ (Aǫ)×. Replacing zi by

λ−1zi we may suppose that max{|z0,n|, |z1,n|} = 1. We have proved

Lemma 3.12. The map defined above α : ĈN → P1(Aǫ) is a bijection.

Pick any ω ∈ βN, and suppose that H (ω) is non-Archimedean. Let
H̃ (ω) be the residue field of the complete metrized field H (ω). We claim
that there is a canonical map

(10) θω : P
1(H̃ (ω)) → Ĉ

defined as follows.
Pick a point p̃ = [z̃0 : z̃1] ∈ P1(H̃ (ω)); choose some lifts z0, z1 ∈ H (ω)

with max{|z0|ω, |z1|ω} = 1. Since Aǫ/ ker(ω) is dense in H (ω) we may
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suppose that z0, z1 ∈ Aǫ. Replacing by z0,n, z1,n by 1 on an ω-thin set, we
may suppose that z0Aǫ + z1A

ǫ = Aǫ. We let θω(p̃) = limω[z0,n : z1,n] ∈ Ĉ.
This map is well-defined because if [z′0 : z

′
1] ∈ P1(Aǫ) defines the same

point p̃, then in the spherical distance (see §1.2.3), we have

lim
ω
dP1(H (ω))([z0 : z1], [z

′
0 : z

′
1]) < 1

which implies limω[z0,n : z1,n] = limω[z
′
0,n : z

′
1,n] in Ĉ.

Observe that θω is surjective, and the following diagram is commutative.

ĈN P1(Aǫ) P1(H (ω)) P1(H̃ (ω))

P1(C)

α

limω

rω

θω

Figure 1. Relating projective lines

Finally, we discuss the spherical distance on P1(Aǫ), see (3) and (4) for
the definition. We use the above lemma to identify points in P1(Aǫ) and
sequences of points in Ĉ.

Lemma 3.13. For any points x, y ∈ P1(Aǫ), and for any ω ∈ βN, we have

lim
ω
dP1(C)(xn, yn)

ǫn = lim
ω
dP1(Cǫn )

(s−1
ǫn xn, s

−1
ǫn yn) = dP1(H (ω))(xω, yω) .

Proof. Write x = (xn) ∈ ĈN, and y = (yn) ∈ ĈN. We may suppose that
neither x nor y are equal to [1 : 0], and up to replace xn and yn in an ω-thin
set, we have xn = [zn : 1], and yn = [wn : 1] with (zn), (wn) ∈ Aǫ. In the
standard euclidean norm | · | on C, we have

dP1(C)(xn, yn)
ǫn = dP1(Cǫn

)(s−1
ǫn xn, s

−1
ǫn yn) =

|zn − wn|ǫn
(|zn|2 + 1)ǫn/2(|wn|2 + 1)ǫn/2

.

When limω ǫn > 0, the result is clear. When limω ǫn = 0, since limω |zn|ǫn =
|zω|, we have

lim
ω
(|zn|2 + 1)ǫn/2 = max{|zω|, 1}

and the result follows. �

3.2.4. Product Banach rings with different characteristic exponents. We dis-
cuss the relationship between Aǫ and Aǫ

′

and their Berkovich spectra for
two different sequences ǫ, ǫ′. To simplify notation, given any two sequences
of positive real numbers ǫ, ǫ′ we write ǫ . ǫ′ iff ǫn ≤ Cǫ′n for some C > 0;
and ǫ ≍ ǫ′ if and only if ǫ . ǫ′ and ǫ′ . ǫ.

Proposition 3.14. Let ǫ′ = (ǫ′n) be another sequence with 0 < ǫ′n ≤ 1.
Then, Aǫ ⊆ Aǫ

′

if and only if ǫ′ . ǫ.
In particular, Aǫ = Aǫ

′

if and only if ǫ ≍ ǫ′.

Remark 3.15. In general, we may have Aǫ = Aǫ
′

but the norm on Aǫ is
not necessarily equivalent to that of Aǫ

′

.
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Proof. Suppose ǫ′n ≤ Cǫn, and pick x = (xn) ∈ Aǫ. Then

|xn|ǫ
′

n ≤ max{1, |xn|}ǫ
′

n ≤ max{1, |xn|}Cǫn ≤ max{1, |x|ǫ}C <∞ ,

so that x ∈ Aǫ
′

.
Conversely, assume Aǫ ⊆ Aǫ

′

and write ǫ′n = αnǫn for some αn > 0. The
sequence xn = 2

1
ǫn , belongs to Aǫ ⊆ Aǫ

′

. Thus there exists M > 0 such that

sup
n

|xn|ǫ
′

n = sup
n

2αn < M.

Therefore, we have 0 < αn <
logM
log 2 <∞, which proves ǫ′ . ǫ. �

Pick ǫ, ǫ′ ∈ (0, 1], and write ǫ′ = αǫ. Recall that Cǫ = (C, | · |ǫ). Recall
from §1.3, that we have a canonical homeomorphism σα : P

1,an
Cǫ

→ P
1,an
Cǫ′

sending a semi-norm | · | on Cǫ[z] to | · |α. This map induces field continuous
isomorphisms σ#α : H (σα(x)) → H (x) for all x ∈ P

1,an
Cǫ

(which are isometric
if and only if α = 1).

Proposition 3.16. Suppose ǫ′, ǫ ∈ (0, 1]N satisfy ǫ′ ≍ ǫ, and write αn =

ǫ′n/ǫn. The locally ringed space isomorphisms σαn : P
1,an
Cǫn

→ P
1,an
Cǫ′n

extend to

an isomorphism of locally ringed spaces σ : P1,an
Aǫ → P

1,an

Aǫ′
over βN .

Proof. Since αn is bounded from above, it admits a unique extension to βN
by setting αω = limω αn. Since αn is bounded away from zero, we have
αω ∈ (0, 1] for all ω ∈ βN.

For any ω ∈ βN, set ǫω = limω ǫn, and ǫ′ω = limω ǫ
′
n, and define

σα : P
1,an
H (ǫω)

→ P
1,an
H (ǫ′ω)

by sending the semi-norm |·| on H (ǫω)[z] to |·|αω . This is a homeomorphism.
Recall that we denote by π : P1,an

Aǫ → M(Aǫ) ≃ βN the canonical projection.
Then for any polynomial P ∈ Aǫ[z] and for any x ∈ P

1,an
Aǫ , we have

(11) |P (σ(x))| = |P (x)|απ(x)

Since x 7→ απ(x) is continuous, it follows that the map σ : P1,an
Aǫ → P

1,an

Aǫ′
given

by σ(x) = σαπ(x)
(x) is a homeomorphism.

Since analytic functions on an open subset U ⊂ P
1,an

Aǫ′
are obtained as lo-

cally uniform limits of rational functions having poles outside U , the equal-
ity (11) induces isomorphisms σ# : O(U) → O(σ−1(U)), and continuous field
isomorphisms σ# : H (σ(x)) → H (x) for any x ∈ P

1,an
Aǫ . This concludes the

proof. �

3.3. Sequential hybridation. Recall from §3.2 that we have a canonical
identification M(Aǫ) ≃ βN.

If B is any ring, a rational map f : P1
B → P1

B defined over B is given
in homogeneous coordinates by a pair of homogeneous polynomials P,Q
of degree d whose resultant is a unit in B. When B is a Banach ring,
then f induces a continuous map f : P1,an

B → P
1,an
B over M(B), and for any

b ∈ M(B), we denote by fb the restriction of f on the fiber π−1(b) where
π : P1,an

B → M(B) is the canonical morphism. It is a rational map of degree
d defined over H (b).
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Recall that ratd is an affine variety. We fix ratd any projective variety
containing ratd as a Zariski open dense subset (for instance the one described
by Silverman [70] using geometric invariant theory).

Let Cd = e supratd(C) | res |.
Theorem 3.17. Let fn be any sequence in ratd(C). Set

ǫn = (− log(| res(fn)|/Cd))−1 ,

and choose fn ∈ Ratd(C) such that [fn] = fn and |Res(fn)| = | res(fn)| for
all n. Let Aǫ be the Banach ring defined by (1).

(1) There exists a rational map f ∈ Ratd(A
ǫ) which induces a continuous

self-map f : P1,an
Aǫ → P

1,an
Aǫ such that π ◦ f = π, and for any n ∈ N,

we have f |π−1(n) = fn under the above identification π−1(n) ≃ Ĉ.
(2) If H (ω) is non-Archimedean, then fω does not have potential good

reduction.
(3) The field H (ω) is non-Archimedean if and only if limω fn ∈ rat

an
d \

ratand .

Remark 3.18. This theorem implies a slightly more general version of Theo-
rem 0.1 (2). Indeed we assumed in the introduction that the sequence fn is de-
generating, in which case H (ω) is non-archimedean if and only if ω ∈ βN\N.
Observe that Theorem 0.1 (1) is a consequence of the discussion of §3.2.3.

Remark 3.19. The sequence fn is not uniquely defined, and we actually
have quite a lot of flexibility. It follows from Proposition 3.14, that for any
sequence gn ∈ Ratd(C) such that |Res(fn)| ≍ |Res(gn)|, then we get a
rational map g ∈ Ratd(A

ǫ′) and a homeomorphism P1
Aǫ → P1

Aǫ′ conjugating f
to g. We refer to any sequence ǫ ∈ (0, 1]N and any rational map f ∈ Ratd(A

ǫ)
satisfying Properties (1) – (3) of the theorem to a sequential hybridation of
fn.

Remark 3.20. By [32, Theorem E], the topological entropy htop(f) of a
rational map f defined over a complete metrized field (k, | · |) of degree d ≥ 2
is equal to 0 if and only if the norm on k is non-Archimedean and f has
potential good reduction. In other words, property (2) of the previous theorem
can be alternatively formulated by saying that htop(fω) > 0 for any ω ∈ βN.

Proof. For each n, pick any rational map fn ∈ Ratd(C) representing the class
fn such that | res(fn)| = |Res(fn)|, see §2.2. Observe that by construction
ǫn = (− log(| res(fn)|/Cd))−1 ∈ (0, 1]. In homogeneous coordinates, we may
write fn = [Pn : Qn], and normalize the coefficients of Pn and Qn so that the
maximum of their moduli is equal to 1. It follows that by construction we
have

|Res(Pn, Qn)|ǫn = |Res(fn)|ǫn = exp

(

− log
|Res(fn)|

Cd

)

∈ [e−1, Cd] .

It follows that P = (Pn) and Q = (Qn) are homogeneous polynomials with
coefficients in Aǫ and Res(P,Q) is a unit. Consequently, f = (fn) defines an
endomorphism of degree d of P1

Aǫ. By construction, (1) holds.
Suppose that H (ω) is non-Archimedean. By Proposition 3.9, ω is a non-

principal ultra-filter and limω ǫn = 0. It follows that |Res(Pn, Qn)| → 0.
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Since

| res(fω)| ≤ |Res(fω)| = lim
ω

| res(fn)|ǫn = lim
ω

|Res(Pn, Qn)|ǫn = e−1 < 1,

the rational map fω does not have potential good reduction by Theorem 2.5.
Let us prove (3). Suppose that H (ω) is non-Archimedean. We have

already seen that ω is non-principal and limω ǫn = 0. Suppose by contradic-
tion that limω[fn] is the conjugacy class of a rational map g ∈ Ratd(C). By
Proposition 2.2, limω | res(fn)| = | res(g)| which implies limω ǫn > 0, impos-
sible.

Conversely suppose H (ω) is Archimedean. By Proposition 3.9, we have
limω ǫn > 0 hence − log | res(fn)| is bounded from above on a ω-big set.
Since − log | res | is proper on ratd(C) by Proposition 2.2, we conclude that
limω fn ∈ ratand . �

An application of the previous techniques is a new proof of a result by
DeMarco, see [18, Corollary 0.3], see Corollary 0.2 from the introduction.

Corollary 3.21. The iteration map Il : ratd(C) → ratdl(C) given by Il(f) =
f l is proper for any d ≥ 2 and any l ∈ N.

Remark 3.22. The iteration map is also proper as a scheme morphism. It
follows that Il : ratd(k) → ratdl(k) is proper for any field of characteristic 0.
Our techniques being characteristic free, it is likely that Il is proper for any
field k.

Remark 3.23. Our proof is based on the characterization of properness on
locally compact metric spaces in terms of sequences. This is not essential,
and we could have used the hybridation of families of holomorphic maps.

Proof. Suppose by contradiction that Il is not proper. Then we can find a
degenerating sequence fn ∈ ratd such that fkn → g ∈ ratdl(C).

Set ǫn = −(log | res(fn)|/Cd)−1, and pick any endomorphism f ∈ Ratd(A
ǫ)

satisfying the conclusion of Theorem 3.17. Since fn is degenerating, ǫn → 0,
and we have [fn| = fn.

Choose any g ∈ Ratdl(C) such that [g] = g. By assumption, we can find
gn → g∞ ∈ Ratdl(C), and Mn ∈ PGL2(C) such that Mn · gn = f ln for all n.

Pick any non principal ultra-filter ω. Since ǫn → 0, H (ω) is a non-
Archimedean metrized field, and fω ∈ Ratd(H (ω)) does not have potential
good reduction by Theorem 3.17 (2). By [3, Corollary 8.14], it follows that
f lω does not have potential good reduction either.

Pick any normalized representations

Mn =

(

an bn
cn dn

)

such that max{|an|, |bn|, |cn|, |dn|} = 1.

Lemma 3.24. We have ǫn ≍ − log |det(Mn)|−1.

It follows in particular that M = (Mn) is an element of PGL2(A
ǫ).

We shall now prove that gω = M−1
ω · f lω has good reduction, which gives

a contradiction.
Choose normalized representations gn = [Pn : Qn], and observe that the

pair of homogeneous polynomials Pω (resp. Qω) determined by the sequence
Pn (resp. Qn) forms a normalized representation gω = [Pω : Qω]. Reducing
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Pω and Qω in H̃ (ω), we obtain a rational map g̃ω on P1
H̃ (ω)

of degree ≤ dl,

and we have equality if and only if gω has good reduction, see [71, § 2.5]).
Recall from (10) that we have a canonical map θω : H̃ (ω) → C, and the

image of Pω and Qω under this map gives a rational map gC on P1(C) of
degree ≤ deg(g̃ω). It follows by construction that gC = g∞ so that deg(g̃ω) =
dl hence gω has good reduction.

The figure below explains how all maps gn, g, gω , g̃ω, g∞ fit into one com-
mutative diagram. �

P1(C)N P1(Aǫ) P1(H (ω)) P1(H̃ (ω))

P1(C)

gn
α

limω

g

rω

gω

g̃ω

θω

g∞

Figure 2. Infering good reduction

Proof of Lemma 3.24. The variety Ratd is a Zariski open subset of Ratd =
P2d+1 and Ψ extends as a rational map

Ψ̄ : Rat1 × Ratd 99K Ratd × Ratd

Recall that PGL2(C) and Ratd(C) the complex analytification of the respec-
tive C-affine schemes, and keep Ψ for the holomorphic map induced by the
morphism above on PGL2(C)× Ratd(C). We write |det | for the restriction
of |Res | to Rat1(C) = PGL2(C) as

|Res(M)| = |ad− bc|
max{|a|, |b|, |c|, |d|}2 if M =

(

a b
c d

)

.

Now, the meromorphic map

Ψ̄ : Rat1(C)× Ratd(C) 99K Ratd(C)× Ratd(C)

is holomorphic on X = Rat1(C)×Ratd(C) and its restriction to X is proper
by Lemma 2.4 and GAGA. Denote by ∆ and ∆′ the boundary divisors:

∆ := Rat1(C)× Ratd(C) \Rat1(C)× Ratd(C),

∆′ := Ratd(C)× Ratd(C) \Ratd(C)× Ratd(C) .

Locally near any point p ∈ ∆′, there exists a polynomial P such that {P = 0}
cuts out the divisor ∆′, and |P | ≍ min{|Res(f1)|, |Res(f2)|}. In a similar
way, for any point q ∈ ∆ with for any polynomial Q cutting out the boundary
divisor ∆, we have |Q| ≍ min{|det(M)|, |Res(f)|}. Since Ψ̄ is proper, P ◦ Ψ̄
cuts out ∆, and by Lojasiewicz’ inequalities, we may thus find some positive
real numbers C,α > 1 such that

(12) Cmin{|det(M)|, |Res(f)|}1/α ≥ min{|Res(M · f)|, |Res(f)|}
≥ C−1min{|det(M)|, |Res(f)|}α
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Returning to our original lemma. We have a sequence gn ∈ Ratdl(C)
converging to g∞ ∈ Ratd(C) so that |Res(gn)| is bounded away from 0
and ∞, and Mn ∈ PGL2(C). It follows from (12) (applied to M = Mn

and f = gn), that − log |det(Mn)| ≍ − log |Res(Mn · gn)| which implies the
result. �

4. Family of measures over a Banach ring

Let (B, ‖ · ‖) be any Banach ring. In this short section, we discuss the
general notion of families of probability measures on P

1,an
B .

4.1. Continuous family of Radon measures. Recall that P1,an
B is a com-

pact space, and we have a canonical projection map π : P1,an
B → M(B), such

that for any b ∈ M(B), π−1(b) is isomorphic to P
1,an
H (b) in a canonical way.

A positive Radon measure µ on a compact space K is a positive linear
functional µ : C0(K) → R, i.e., a linear map such that µ(ϕ) ≥ 0 when
ϕ ≥ 0. A probability measure is a positive Radon measure with µ(K) = 1.
We endow the set of positive (resp. probability) measures M+(K) (resp.
M1(K)) on K with the weakest topology such that the function µ→

∫

ϕdµ
is continuous for any ϕ ∈ C0(K).

A linear functional

L : C0(P1,an
B ) → C0(M(B))

is said to be positive if it maps positive functions to positive functions.

Definition 4.1. A continuous family of positive measures on P
1,an
B is a

positive linear functional L : C0(P1,an
B ) → C0(M(B)) such that for all ϕ ∈

C0(M(B)) we have L(ϕ ◦ π) = ϕ× (L1).

We denote by M+(P1, B) the collection of all continuous families of pos-
itive measures on P

1,an
B . We endow it with the weakest topology for which

all evaluation maps are continuous.
We introduce the set FB of families of positive measures {µb}b∈M(B) such

that µb is supported on π−1(b) for all b ∈ M(B), and the map b 7→ µb is
continuous for the weak-∗ topology on M(B).

Theorem 4.2. For any family µ = (µb)b∈M(B) ∈ FB, we set

(13) Lµ(ϕ)(b) =

∫

ϕ|π−1(b)dµb

for any ϕ ∈ C0(P1,an
B ), and any b ∈ M(B).

Then Lµ defines a continuous family of positive measures, and the map
µ→ Lµ establishes a bijection between FB and M+(P1, B).

Remark 4.3. The map L is a homeomorphism when M+(P1, B) is endowed
with the weak-∗ topology, and FB with the compact open topology.

Remark 4.4. The space M+(P1, B) is not compact, but for each M > 0,
the subset of continuous families of measures with uniformly bounded mass
≤M is compact.
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Suppose B = Aǫ, for some ǫ ∈ (0, 1]N, so that M(B) ≃ βN by Theo-
rem 3.8. Recall that N with its discrete topology is a open dense subset of
βN.

Since π−1(n) is open in P
1,an
Aǫ , the extension by 0 of a continuous function

on π−1(n) remains continuous on P
1,an
Aǫ . It follows that an operator L ∈

M+(P1, Aǫ) defines by restriction a sequence of positive measures on P
1,an
Cǫn

,

hence a sequence of positive measures µn on Ĉ. Also L1 is continuous hence
bounded so that the mass of µn is uniformly bounded.

Conversely, let µn be any sequence of positive measures of bounded mass
on P1

C. For any ϕ ∈ C0(P1,an
Aǫ ), the function N 7→ R sending n to

∫

ϕs∗ǫndµn
is bounded hence we can define

Lϕ(ω) = lim
ω

∫

ϕs∗ǫndµn

for any ω ∈ βN. It is continuous by the universal property Proposition 3.6,
and L is bounded since the mass of µn are uniformly bounded.

We have thus obtained

Corollary 4.5. Pick any sequence ǫ ∈ (0, 1]N. Any sequence of positive
measures µn ∈ M+(Ĉ) of uniformly bounded mass determines a unique con-
tinuous family of positive measures on P

1,an
Aǫ such that

Lϕ(ω) = lim
ω

∫

ϕs∗ǫndµn

for all ϕ ∈ C0(P1,an
Aǫ ) and all ω ∈ M(Aǫ) ≃ βN.

Any continuous family of positive measures on P
1,an
Aǫ is obtained in this

way.

Proof of Theorem 4.2. Let µ = (µb)b∈M(B) be any weakly continuous fam-
ily of positive measures on P

1,an
B such that the support of µb is included

in π−1(b), and define Lµϕ(b) =
∫

ϕdµb for any ϕ ∈ C0(P1,an
B ). Since the

family is continuous, Lµϕ is continuous. The operator is positive, and if
ϕ ∈ C0(M(B)) we have Lµ(ϕ ◦ π)(b) = ϕ(b) ×Mass(µb) so that L defines a
continous family of positive measures as in Definition 4.1.

Let us prove that µ 7→ Lµ is injective. If µ′ = (µ′b)b∈M(B) 6= µ, then
we can find b ∈ M(B) such that µ′b 6= µb, hence a continuous function
ϕ0 ∈ C0(π−1(b)) such that

∫

ϕ0dµ
′
b 6=

∫

ϕ0dµb. By Tietze-Urysohn’s theorem
applied on the compact space P

1,an
B , there exists a continuous function ϕ on

P
1,an
B whose restriction to π−1(b) is equal to ϕ0. We have Lµ′ϕ(b) 6= Lµϕ(b)

as required.
We now show that µ 7→ Lµ is surjective. Let L : C0(P1,an

B ) → C0(M(B))
be any positive linear functional satisfying (13). Choose any b ∈ M(B), and
pick any continuous function f ∈ C0(π−1(b)). Recall that Tietze-Urysohn’s
theorem implies the existence of ϕ̃ ∈ C0(P1,an

B ) such that sup |ϕ̃| ≤ sup |ϕ|
and ϕ̃|π−1(b) = ϕ. We set

Lbϕ = Lϕ̃(b) .

Let us prove that this does not depend on the choice of extension ϕ̃. For
this, it is sufficient to prove that if g ∈ C0(P1,an

B ) is such that g|π−1(b) = 0,
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then Lg(b) = 0. Writing g = max{g, 0} − max{−g, 0}, we may suppose
that g ≥ 0. Observe that b′ 7→ Sg(b′) = supπ−1(b′) g is continuous, and
0 ≤ g ≤ Sg ◦ π. By the positivity of L, we obtain

0 ≤ L(g)(b) ≤ Sg(b)× L1(b) = 0 .

This proves Lb is a positive linear functional, hence defines a positive measure
µb supported on the fiber π−1(b). The fact that b 7→ µb is weakly continuous
follows immediately from the fact that Lϕ is continuous when ϕ is. �

4.2. Model functions. In order to study the convergence of measures on
P
1,an
B , it is important to work with a suitable class of functions of geometric

origin that we now introduce. We refer to [35, 8, 10, 27, 66] for a study of
this class when B is a field, and P1 is replaced by any projective variety.

Recall that for each l ∈ N the space of global sections of the line bundle
O(l) → P1

B can be identified with the space of homogeneous polynomials
P ∈ B[z0, z1] of degree l. Recall that we set logψP (z0, z1) = log |P (z0, z1)|−
l log max{|z0|, |z1|}.

For any finite collection of sections σ ⊂ H0(P1
B ,O(l)) we set

ϕσ = logmax
Pi∈σ

ψPi .

Note that ϕσ : P
1,an
B → [−∞,+∞) is continuous. Such functions are called

quasi-model functions.
The following observation is immediate from the local form of a quasi-

model function.

Lemma 4.6. Let ϕ = ϕσ be any quasi-model function associated with a
finite set of sections σ ⊂ H0(P1

B ,O(l)). Then for any b ∈ M(B), ∆ϕ|π−1(b)

is a well-defined signed Borel measure whose variation has total mass ≤ 2l.

Proof. Observe that ∆ϕ|π−1(b)+lµcan is locally equal to ∆max log |Pi|, hence
is a positive measure. It follows that we can write ∆ϕ|π−1(b) = (∆ϕπ−1(b) +
lµcan)− lµcan, hence the claim. �

Remark 4.7. It is actually true that ∆ϕ|π−1(b) forms a continuous family
of (signed) measures. We shall neither prove nor use this fact.

A model function is a quasi-model function associated with a finite family
of sections Pi having no zeroes in common (this is equivalent to say that
the linear system induced by these sections has no base point). Any model
function is a continuous function P

1,an
B → R. Let D(P1,an

B ) denote the Q-
vector subspace of C0(P1,an

B ) generated by all model functions.
When l = 0, global sections of the trivial line bundle are exactly B. A

finite subset (bi) ⊂ B does not vanish simultaneously on P1
B if and only if (bi)

is not included in any proper ideal of B. The latter condition is equivalent
to say ΣbiB = B. Therefore, max log |bi| is a model function if and only if
ΣbiB = B. In particular, log |b| is a model function if and only if b is a unit
in B.

Let D(B) be the Q-vector subspace in C0(M(B)) generated by all func-
tions of the form max log |bi| with ΣbiB = B. We say that B satisfies
property (N) if there exists ϕ ∈ D(B) such that supϕ < 0.
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Recall that the spectral norm on B is defined as ρ(b) = limn ‖ bn ‖1/n =
supM(B) |b|. Observe that property (N) is implied the next condition:

• there exist b1, · · · , bn such that
∑

biB = B and ρ(bi) < 1 for all i.
We discuss some examples of Banach rings at the end of this section.

Theorem 4.8. When B has property (N), then D(P1,an
B ) is dense in C0(P1,an

B ).

Lemma 4.9. The space D(P1,an
B ) is stable under maximum, and contains all

functions of the form ϕ ◦ π with ϕ ∈ D(B).

Proof. Let σ be any finite family of sections (Pi)1≤i≤m of O(d) having no
zeroes in common. For any l ∈ N, define σl to be the set of sections
∏

i1,··· ,il Pi1 · · ·Pil . Then ϕσl = l × ϕσ.
If τ is a family of sections (Qj) of O(m), then the family σ ⊗ τ = (PiQj)

of sections of O(l +m) satisfies

ϕσ⊗τ = ϕσ + ϕτ

Suppose now that ϕ =
∑k

i=1 qiϕσi −
∑l

i=1 plϕτl ∈ D(P1,an
B ), with qi, pl ∈

Q+. Then for some sufficiently divisible m ∈ N, mqi,mpl are all integers and
we have

mϕ = ϕ⊗iσ
mqi
i

− ϕ⊗jτ
mpj
j

This proves that any element in D(P1,an
B ) is the difference of two functions

associated with a finite collection of sections having no common zeroes.
Let us now check that D(P1,an

B ) is stable under taking maxima. Since
max{a − b, c} = max{a, c + b} − b, the preceding fact implies that it is
sufficient to treat the case max{ϕσ1 , ϕσ2} for two finite collections of sections
σ1 ⊂ H0(O(l1)), and σ2 ⊂ H0(O(l2)) with l1 ≤ l2. Let τ = (zi0z

l2−l1−i
1 ).

Then we have max{ϕσ1 , ϕσ2} = ϕσ with σ = (σ1 ⊗ τ) ∪ σ2 ⊂ H0(O(l2)).
Finally suppose bi ∈ B satisfy

∑

biB = B, and let ϕ = max log |bi| ∈
C0(M(B)). Then we have ϕ ◦ π = ϕσ with σ = {biz0, biz1}i ⊂ H0(O(1))
which implies the last claim. �

Proof of the Theorem 4.8. We apply the Stone-Weierstrass theorem for lat-
tices, see, e.g., [36, Theorem 7.28].

It suffices to show that D(P1,an
B ) separates points. Choose x 6= y ∈ P

1,an
B .

Translating by 1 if necessary, we may assume that the two points are in the
same affine chart {[z : 1]} ⊂ A

1,an
B , then we can find a polynomial P0 ∈ B[z]

of degree d such that |P0(x)| 6= |P0(y)|, and the homogeneous polynomial
P (z0, z1) = zd1P (z0/z1) satisfies ψP (x) 6= ψP (y).

Pick any integer n ∈ N. By assumption, there exists a model function
ϕ ∈ D(B) such that supϕ < 0. Multiplying this function by a suitable
integer, we may find ϕn such that ϕn < −n, and ϕn = ψ+

n − ψ−
n where

ψ±
n = logmax |b±i,n| where

∑

i b
±
i,nB = B. Define

σ±n =
{

P (z0, z1), b
±
i,nz

d−j
1 zj0

}

i,j
.

We have ϕn = ϕσ+n − ϕσ−n = max{ψP , ϕn ◦ π} ∈ D(P1,an
B ) and ϕn → ψP as

n→ ∞, hence for any n large enough ϕn separates x and y as desired. �
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Corollary 4.10. For any sequence ǫ ∈ (0, 1]N, the set of model functions
D(P1,an

Aǫ ) is dense in the set of continuous functions C0(P1,an
Aǫ ).

This follows immediately from the previous theorem by considering the
unit b = (2−1/ǫn) ∈ (Aǫ)× which satisfies ρ(b) = 1/2 so that log |b| < − log 2.

We conclude this section by discussing some examples of Banach rings
satisfying or not property (N).

• A complete metrized field (k, | · |) has the property (N) if and only if
the norm is non-trivial (even though in all cases M(k) is reduced to
a single point).

• If the complete residue field of some b ∈ M(B) is trivially valued,
then B cannot have property (N). This is the case when B is a field
k endowed with the hybrid norm | · |hyb = max{| · |0, | · |}.

• Suppose (k, | · |) is a non-Archimedean complete metrized field. Then
the ring (k◦, | · |) has never property (N).

• For any non-trivially valued complete metrized field (k, | · |), any
Banach k-algebra (for which ‖ b ‖ = |b| for all b ∈ k) satisfies (N).

• If all complete residue fields are isometric to (C, | · |), then B can be
canonically embedded into C0(K,C) where K(= M(B)) is a compact
space, and it satisfies property (N).

Remark 4.11. Let B be any Banach ring (with unity). If D(B) separates
points in M(B), then it is dense in C0(B). In that case, B has property (N)
and D(P1,an

B ) is also dense in C0(P1,an
B ). It is however unclear whether D(B)

separates points if and only if B has property (N).

Remark 4.12. Let B be any Banach ring. Then the Q-vector space gener-
ated by the constant function 1 and all model functions is dense in C0(P1,an

B ).

4.3. Push-forward of continuous functions. In the remaining two sub-
sections, we work in the ring Aǫ. Let f ∈ Ratd(A

ǫ).
The pushforward of a function on the Berkovich projective line over a

metrized field is defined in §2.3, see (8). We define the pushforward of a
function ϕ : P1,an

Aǫ → R by f ∈ Ratd(A
ǫ) as follows:

(14) f∗ϕ(x) = (fω)∗ϕ|π−1(ω)(x), for all x ∈ π−1(ω), and ω ∈ βN.

Proposition 4.13. For any continuous function ϕ ∈ C0(P1,an
Aǫ ), the function

f∗ϕ is also continuous.

We rely on the following characterization of continuity in terms of ultra-
filters.

Lemma 4.14. A function ϕ : P1,an
Aǫ → R is continuous if and only if for all

ω ∈ βN, the restriction ϕω = ϕ|π−1(ω) is continuous and for any sequence
xn ∈ π−1(n), we have limω ϕ(xn) = ϕ(limω xn).

Recall that in the situation above, limω xn is always a Type-1 point in
P
1,an
H (ω).

Proof. The direct implication is immediate. We proceed by contradiction
for the converse implication. Suppose that ϕ is not continuous. Then there
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exists x ∈ P
1,an
Aǫ and η > 0, such that for all neighbourhood U ∋ x in P

1,an
Aǫ ,

there exists xU ∈ U such that |ϕ(xU )− ϕ(x)| > η. Set ω = π(x).
We claim that for any point y ∈ π−1(ω), and for any open neighborhood

V ∋ y in π−1(ω), there exists a sequence yn ∈ π−1(n) such that limω yn ∈ V .
We only need to consider the case H (ω) is non-Archimedean. We are also
reduced to the case y is a Type-1 point because these points are dense. Then
y = [z0,ω : z1,ω] for a pair zi,ω ∈ H (ω), and we may find [z′0 : z

′
1] ∈ P1(Aǫ)

such that the point y′ = [z′0,ω : z
′
1,ω] belongs to V . This implies the claim in

this case since limω[z
′
0,n : z

′
1,n] = y′.

From this claim and the assumption limω ϕ(xn) = ϕ(limω xn), it follows
that we may (and shall) assume that xU ∈ π−1(N).

Since ϕω is continuous, there exists a compact neighborhood W̄ of x in
π−1(ω) such that supW̄ |ϕ − ϕ(x)| ≤ η/2. We may suppose that W̄ is of
the form W̄ = ∩ki=1{ri ≤ ψPω,i ≤ si} where ri < si ∈ R, and Pi,ω are
homogeneous polynomials with coefficients in H (ω). Since Aǫ/ ker(ω) is
equal to H (ω), we may even suppose that each Pω,i can be lifted to a
polynomial Pi with coefficients in Aǫ. Write W ′ = ∩ki=1{ri < ψPi < si} ⊂
P
1,an
Aǫ . Observe thatW ′ is an open neighborhood of x such that W̄ ′∩π−1(ω) ⊂
W̄ .

Consider the set E of integers n ∈ N for which there exists xn ∈ π−1(n)∩
W ′ such that |ϕ(xn)− ϕ(x)| > η. If E is ω-thin, then its complement Ec is
ω-big, and U = π−1{Ec ∈ ω′} is an open neighborhood of x. The point xU
projects to Ec and satisfies |ϕ(xU )− ϕ(x)| > η, a contradiction.

We conclude that E is ω-big, and we get a sequence xn ∈ π−1(n) ∩W ′

such that |ϕ(xn) − ϕ(x)| > η. The limit x′ = limω xn belongs to W̄ , and
ϕ(x′) = limω ϕ(xn) so that |ϕ(xU )− ϕ(x)| ≥ η. This is impossible, hence ϕ
is continuous. �

Proof of Proposition 4.13. By the previous lemma, it suffices to show for any
continuous function ϕ and any ultrafilter ω ∈ βN, and any sequence of points
xn ∈ π−1(n), we have

lim
ω
f∗ϕ(xn) = f∗ϕ(xω),

where xω = limω xn ∈ P1(H (ω)). We may suppose that we are in a fixed
affine chart so that xω = [zω : 1] and xn = [zn : 1], and assume that f−1(xω)
does not contain the point [1 : 0].

Let yω be any preimage by fω of xω with local degree m ≥ 1. We claim
that there exist distinct points yn,j ∈ f−1

n (xn) such that yω = (yn,j) in H (ω)
for all j, and

∑

j degyn,j
(fn) = m.

To see this, pick any representation fn = [Pn : Qn], and consider the
polynomial Hn(z) = Pn(z, 1) − znQn(z, 1) which defines a polynomial of
degree d in Aǫ (since yω 6= [1: 0] by assumption). Since Hω has a zero of
multiplicity m at yω, Proposition 3.11 implies the existence of m sequences
(possibly with repetitions) y′n,j, 1 ≤ j ≤ m, such that (y′n,j) = yω ∈ H (ω),
and that

∏

j(z − y′n,j) is a factor of degree m of Hn. Set yn,1 = y′n,1, and
by induction yn,j = y′n,l where l is the minimal integer for which (y′n,l) /∈
{(yn,1, · · · , (yn,j−1)} to avoid repetition. This implies the claim.
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Write f−1
ω (xω) = {y1ω, · · · , ykω}, mi = degyiω(fω), and choose sequences

yin,j ∈ f−1
n (xn) such that (yin,j) = (yiω) in H (ω) for all integers i, j, and

∑

j degyin,j
(fn) = mi.

Note that on an ω-big set, the points yin,j are distinct, so that
∑

imi = d

implies f−1
n (xn) = {yin,j} on that set. We thus get

lim
ω
f∗ϕ(xn) = lim

ω

∑

(

degyin,j
fn

)

ϕ(yin,j) = lim
ω

∑

i

∑

j

(

degyin,j
fn

)

ϕ(yin,j)

=
∑

i

miϕ(y
i
ω) = f∗ϕ(xω),

and the proof is complete. �

By the previous proposition, we can define the pull-back of a Radon
measure µ ∈ M(P1,an

Aǫ ) on P
1,an
Aǫ by duality. For every continuous function

ϕ ∈ C0(P1,an
Aǫ ), we set

∫

ϕdf∗µ =

∫

f∗ϕdµ.

The operator f∗ : M(P1,an
Aǫ ) → M(P1,an

Aǫ ) is continuous.

4.4. Push-forward of quasi-model functions. Let f ∈ Ratd(A
ǫ), as in

the previous section, and pick a representation f = [P : Q] where P,Q ∈
Aǫ[z0, z1] are homogeneous polynomials of degree d determined by a sequence
of complex polynomials Pn =

∑

aj,nz
j
0z
d−j
1 , Qn =

∑

bj,nz
j
0z
d−j
1 such that

C−1 ≤ |Res(Pn, Qn)|ǫn ≤ C for some constant C > 1.
Recall the norm ‖ z ‖ = supn |zn|ǫn on Aǫ. If R =

∑

cjz
j
0z
l−j
1 ∈ Aǫ[z0, z1]

is a homogeneous polynomial of degree l, then we let ‖R ‖ = max ‖ cj ‖.
Define

F∗R(z0, z1) =
∏

F (w0,w1)=(z0,z1)

R(w0, w1)

where F = (P,Q). This map is defined on pairs (z0, z1) ∈ (Aǫ)2 such that
z0A

ǫ + z1A
ǫ = Aǫ, and (z0,n, z1,n) ∈ C2 \ {(0, 0)} is not in the critical set of

Fn (which is a union of at most 2d− 2 lines).

Lemma 4.15. The function F∗R is a homogeneous polynomial of degree dl
with coefficients in Aǫ, and

‖F∗R ‖ ≤ C ‖R ‖
for some constant C > 0 independent on R.

Proof. We claim that there exists a constant C > 1 such that

C−1 ‖(w0, w1) ‖d ≤ ‖F (w0, w1) ‖ ≤ C ‖(w0, w1) ‖d

for all w0, w1 ∈ (Aǫ)2. The upper bound is trivial. For the lower bound,
by [71, Theorem 2.13] applied to P and Q on the ring Aǫ[z0, z1], we get
homogeneous polynomials Ui, Vi ∈ Aǫ[z0, z1] of degree d− 1 such that

PU0 +QV0 = Res(P,Q)z2d−1
0 and PU1 +QV1 = Res(P,Q)z2d−1

1



NON-ARCHIMEDEAN TECHNIQUES AND DYNAMICAL DEGENERATIONS 39

and the claim follows from ‖PUi +QVi ‖ ≤ 2max{‖P ‖ ‖Ui ‖, ‖Q ‖ ‖Vi ‖}.
In particular we get ‖(z0, z1) ‖ ≥ C−1 ‖(w0, w1) ‖d when F (w0, w1) = (z0, z1)
hence

(15) ‖F∗R(z0, z1) ‖ ≤ C ‖R ‖ ‖(z0, z1) ‖dl

whenever it is defined. It follows that for each n, Fn∗Rn is a well-defined
holomorphic function on the complement of finitely many lines which hence
extends to C2. It is also homogeneous of degree dl, hence Fn∗Rn is a homo-
geneous polynomial. We conclude that (15) holds for any (z0, z1) ∈ (Aǫ)2,
and this implies the lemma. �

The previous construction gives a way to define a linear map σ 7→ f∗σ from
H0(P1

Aǫ ,O(l)) to H0(P1
Aǫ ,O(dl)). Note that we slightly abuse notation, since

this map depends on the choice of a lift F .

Proposition 4.16. Let σ ∈ H0(P1
Aǫ ,O(l)). The difference ϕf∗σ − df∗ϕσ is

continuous on P
1,an
Aǫ .

Remark 4.17. Since the maximum of a sum is not necessarily the sum of
maxima, it is a priori unclear whether f∗ preserves the sets of quasi-model
and model functions.

Proof. The difference ϕf∗σ − df∗ϕσ is equal to

dl
∑

F (w0,w1)=(z0,z1)

deg[w0 : w1](f) logmax{|w0|, |w1|} − dl logmax{|z0|, |z1|}

which is the same as l f∗(d log max{|z0|, |z1|} − log max{|P |, |Q|}). This
function is continuous by Proposition 4.13. �

5. Convergence of measures on P
1,an
Aǫ

5.1. Basics in hyperbolic geometry. A basic reference for this section
is [2, §4].

We fix an affine coordinate z on the Riemann sphere Ĉ, and work with the
Poincaré model of the hyperbolic 3-space H3. The latter is the Riemannian
threefold whose underlying space is

H3 = {(z, h) ∈ C× R+},
endowed with the metric gH = h−2(d|z|2+dh2) (of constant sectional curva-
ture −1), where | · | denotes the standard Euclidean norm on C. The induced
distance is given by

cosh dH ((z1, h1), (z2, h2)) = 1 +
|z1 − z2|2 + |h1 − h2|2

2h1h2
.(16)

The group of direct isometries of H3 is the group of Möbius transformations
PGL2(C). When M(z) = az+b

cz+d , then we have

M(z, h) =

(

(az + b)(cz + d) + ac̄h2

|cz + d|2 + |c|2h2 ,
|ad− bc|h

|cz + d|2 + |c|2h2
)

.
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In particular M(z, h) = (az + b, |a|h) when M(z) = az + b with a ∈ C∗ and
b ∈ C, and

M(z, h) =

(

z̄

|z|2 + h2
,

h

|z|2 + h2

)

for the inversion M(z) = z−1. The stabilizer G of the point x⋆ = (0, 1) is
the compact group

G =

{(

a −c̄
c ā

)

, with |a|2 + |c|2 = 1

}

≃ SO(3)

so that H3 can be identified by the map M 7→ M · x⋆ with the homoge-
neous space PGL2(C)/G. Observe also that PGL2(C) acts naturally and
continuously on H̄3 = H3 ⊔ (C ∪ {∞}) = H3 ⊔ Ĉ.

Let now G(Ĉ) be the space of conformal metrics on the Riemann sphere
that have constant curvature 4π. Define the Fubini-Study metric as

gFS =
4π d|z|2

(1 + |z|2)2 .

Then PGL2(C) acts also on G(Ĉ) and the isotropy group of gFS is again
equal to G. It follows that the map µ : H3 → G(Ĉ) given by µ(M · x⋆) =
M∗gFS is well-defined, and µ is a homeomorphism.

Finally pick any x ∈ H3 different from x⋆, and consider the set

(17) H(x) = {y ∈ H3, dH(y, x) < dH(y, x⋆)}.
When x = (0, t) with 0 < t < 1, we have H(x) = {(z, h) ∈ C × R∗

+, |z|2 <
t−h2} which is a half-sphere orthogonal to the plane C×{0}, and its closure
in H̄3 intersects Ĉ along the euclidean disk D̄(x) = {|z| <

√
t}.

Recall that the spherical distance on Ĉ is defined by

dP1(C)([z0 : z1], [w0 : w1]) =
|z0w1 − z1w0|

√

|z0|2 + |z1|2
√

|w0|2 + |w1|2
.

Spherical disks are preserved by Möbius transformations, and the group G
preserves also their radii. We have thus proved

Lemma 5.1. For any x 6= x⋆ ∈ H3, the intersection D̄(x) of the closure of
H(x) in H̄3 with Ĉ is a closed disk of radius

√
t with

cosh dH(x, x⋆) = 1 + (t− 1)2/2t

for the spherical metric on the Riemann sphere.

It is convenient to call D̄(x) ⊂ Ĉ the associated disk with x.

5.2. Convergence of metrics of constant curvature on P
1,an
Aǫ . Fix ǫ =

(ǫn) ∈ (0, 1]N, and recall that the Banach ring Aǫ is defined as

Aǫ =

{

(an) ∈ CN, sup
n

|an|ǫn <∞
}

equipped with the norm ‖(an) ‖ = supn |an|ǫn . Recall also the canonical
homeomorphism se : P

1,an
Ce

→ Ĉ from §1.2 for any e ∈ (0, 1].



NON-ARCHIMEDEAN TECHNIQUES AND DYNAMICAL DEGENERATIONS 41

Recall from §3.2.3 that a sequence p ∈ (Ĉ)N defines a point α(p) ∈ P1(Aǫ).
Given ω ∈ βN, we shall write pω for the point defined by α(p) in the fiber
π−1(ω). Observe that pω is always of Type-1.

Fix a sequence of conformal metrics ρn ∈ G(Ĉ) of constant curvature 4π

on the Riemann sphere. We identify such a metric hn(z)d|z|2 ∈ G(Ĉ) with
the smooth positive (1, 1)-form λn = hn(z)

i
2dz ∧ dz̄. By Gauss-Bonnet,

this volume form has total mass 1 so that µn ∈ M+(Ĉ) in the notation of
§4.1. By Corollary 4.5, let µn = (sǫn)

∗λn, we obtain a continuous family
of probability measures (µω)ω∈βN, and our aim is to describe µω for any
non-principal ultra-filter ω.

Recall that the Fubini-Study metric is equal to µ(x⋆) with x⋆ = (0, 1) ∈
H3; and from Table 1 that a point p = (pn) ∈ (Ĉ)N can be identified with a
point in P1(Aǫ) hence defines a point in pω ∈ P1(H (ω)) for all ω.

Theorem 5.2. Pick any sequence of points xn ∈ H3, and consider the prob-
ability measures µn = µ(xn) ∈ M+(Ĉ). Choose any sequence ǫ = (ǫn) ∈
(0, 1]N, and any ω ∈ βN.

(1) Suppose that e = limω ǫn > 0, so that H (ω) ≃ Ce is Archimedean.
(a) If limω dH(xn, x⋆) < ∞, then xω = limω xn belongs to H3, and

(se)∗µω = µ(xω) is a conformal metric with constant sectional
curvature.

(b) If limω dH(xn, x⋆) = ∞, then xω = limω xn belongs to Ĉ and
(se)∗µω is the Dirac mass at the point xω.

(2) Suppose that limω ǫn = 0, so that H (ω) is non-Archimedean.
(a) If limω ǫndH(xn, x⋆) = 0, then µω is a Dirac mass at the Gauss

point.
(b) If limω ǫndH(xn, x⋆) ∈ R∗

+, µω is a Dirac mass at a point of
Type-2 xω ∈ P

1,an
H (ω).

(c) if limω ǫndH(xn, x⋆) = ∞, then µω is a Dirac mass at a point
xω ∈ P1,an(H (ω)) of Type-1. Moreover, for any sequence yn ∈
D̄(xn), we have yω = xω.

(3) Pick any other sequence yn ∈ H3 such that limω ǫndH(xn, yn) = 0,
and let νn = µ(yn). Then for any non-principal ultrafilter ω, the two
limiting measures coincide νω = µω.

Remark 5.3. It is possible to interpret geometrically the Type-2 point xω
which appears in Case (2b). Indeed the image of the set

{(yn) ∈ (Ĉ)N, yn ∈ D̄(xn)}

in P1(H (ω)) is a closed projective disk defining xω.

Recall that the canonical measure µcan is defined as the Dirac mass at the
Gauss point in the non-Archimedean case, and as the Haar measure on the
unit circle {|z| = 1} in the Archimedean case.

Corollary 5.4. The family of measures {µcan|π−1(ω)} is continuous.
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Proof. It follows from (7) that for any integer n, we have µcan|π−1(n)−µFS,n =
∆gn with

gn = log
max{|z0|2/ǫn , |z1|2/ǫn}
(|z0|2/ǫn + |z1|2/ǫn)1/2

.

Observe that the sequence {gn} defines a continuous function on P
1,an
Aǫ whose

restriction to π−1(ω) is equal to 0 when H (ω) is non-Archimedean.
When limω ǫn = 0, then limω sup |gn| = 0. For any model function ϕ, we

have
∫

ϕdµcan|π−1(n) −
∫

ϕdµFS,n =
∫

gn∆ϕ, and limω

∫

gn∆ϕ = 0. Since
limω µFS,n = µcan by Theorem 5.2 (2a) we conclude that limω

∫

ϕµcan|π−1(n) =
ϕ(xg) for all model function ϕ, hence limω µcan|π−1(n) = µcan|π−1(ω) by den-
sity.

In the case limω ǫn > 0, then we can argue directly observing that the
measure limω µcan|π−1(n) is then a probability measure invariant by rotation
hence equal to µcan|π−1(ω). �

The rest of the section is devoted to the proof of Theorem 5.2.

Step 1. We suppose that xn = x⋆ for all n, and compute µω in this case.
Write µFS = µ(x⋆) ∈ M+(Ĉ). Pick any model function of the form ϕσ

where σ = {Pi} is a finite subset of sections of H0(O(d)) having no base
points. Write Pi =

∑

ajz
j
0z
d−j
1 with aj = (aj,n) ∈ Aǫ. By assumption, we

have
∫

ϕσdµω = lim
ω

∫

ϕσ(sǫn)
∗dµFS = lim

ω

∫

Ĉ

ǫn log
maxj

{∣

∣

∣

∑

aj,nz
j
0z
d−j
1

∣

∣

∣

}

max{|z0|, |z1|}d
dµFS .

Suppose first that ǫ = limω ǫn > 0 so that H (ω) is Archimedean. Then
aj,n is bounded and aj,ω = limω aj,n ∈ C so that we can define Pj,ω =
∑

aj,ωz
j
0z
d−j
1 ∈ C[z0, z1]. We then have

(18)
∫

ϕσdµω =

∫

Ĉ

ǫ log
maxj {|Pj,ω|}
max{|z0|, |z1|}d

dµFS

which implies (sǫ)∗µω = µFS.
Suppose now that limω ǫn = 0 so that H (ω) is non-Archimedean. We

claim that the support of µω is the Gauss point in P
1,an
H (ω), which implies

µω = δxg .
Since µFS is invariant under z 7→ z−1, the support of µω is also invariant

under this inversion. Choose any c ∈ H (ω) such that |c| ≤ 1, and any r < 1.
It is sufficient to prove that µω(B(c, r)) = 0. Since the image of Aǫ equals
H (ω) by Proposition 3.9 (2), we may find (cn) ∈ Aǫ whose image [cn] = c
in H (ω).

Consider the set of homogeneous polynomials L1 = z0 − (cn)z1, and L2 =

z0− (cn+ r
1/ǫn)z1. Note that the collection σ = {L1, L2} of sections of O(1)

has no base point.
In the chart x = [z : 1] with (zn) ∈ Aǫ, the model function ϕσ can be

computed explicitely, and we obtain

ϕσ(x)|A1,an
Cǫn

= ǫn log max{|zn − cn|, |zn − cn + r1/ǫn |} − ǫn log max{|zn|, 1}
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and taking the limit along ω, we get

ϕσ(x)|A1,an
H (ω)











= −r, |z − c| < r;

≤ 0, r ≤ |z − c| ≤ 1;

= 0, |z − c| > 1.

Observe that we only need to prove that
∫

ϕσdµω = 0. But
∫

ϕσdµω = lim
ω
ǫn

∫

Ĉ

log

(

max{|z − cn|, |z − cn + r1/ǫn |}
max{|z|, 1}

)

dµFS(z)

In order to estimate the right hand side, we use basic ideas from potential
theory. We leave it to the reader to use a more direct geometric approach.

Recall µcan be the Haar measure on the unit circle {|z| = 1} ⊂ Ĉ. Recall
that µcan = µFS + ∆g for some continuous quasi-subharmonic function g,
see §1.3. Write ϕn = logmax{|z − cn|, |z − cn + (r1/ǫn)|} − log max{|z|, 1},
and observe that this defines a continuous function on Ĉ. We have

∫

Ĉ

ϕndµFS =

∫

Ĉ

ϕndµcan −
∫

Ĉ

ϕn∆g

By Jensen’s formula [40], we have

In =

∫

Ĉ

ϕndµcan =

∫

Ĉ

log max
{

|z − cn|, |z − cn + (r1/ǫn)|
}

dµcan

≥ max

{∫

Ĉ

log |z − cn|dµcan,
∫

Ĉ

log |z − cn + (r1/ǫn)|dµcan
}

≥ max{log+ |cn|, log+ |cn − (r1/ǫn)|} ≥ 0 .

On the other hand, by Lemma 4.6 we get

Jn =

∣

∣

∣

∣

∫

Ĉ

ϕn∆g

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ĉ

g∆ϕn

∣

∣

∣

∣

≤ sup |g| ×Mass(|∆ϕn|) ≤ 2 sup |g| ,

and using limω ǫn = 0, we conclude that
∫

ϕσdµω = lim
ω
ǫn

∫

Ĉ

ϕndµFS ≥ lim
ω
ǫn(In − Jn) ≥ 0

This implies
∫

ϕσdµω = 0 and concludes the proof. �

Step 2. We suppose now limω ǫndH(xn, x⋆) <∞ and determine µω. In other
words, we prove (1a) and the fact that µω is a Dirac mass at a Type-2 point
when limω ǫn = 0.

Choose any sequence of affine maps Mn(z) = anz + bn such that xn =
Mn(x⋆) ∈ H3.

Lemma 5.5. Pick ω ∈ βN, and ǫ ∈ (0, 1]N. Let Mn(z) = anz+bn be any se-
quence of complex affine Möbius transformations, and write xn =Mn(x⋆) ∈
H3.

Then we have limω ǫndH(xn, x⋆) < ∞ if and only if limω |bn|ǫn < ∞ and
limω |an|±ǫn <∞.

By this lemma, there exists an ω-big set E such that

sup
n∈E

max{|bn|ǫn , |an|±ǫn} <∞.
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We replace (an, bn) for all n /∈ E by the constant sequence (1, 0). This implies
(bn) ∈ Aǫ, and (an) ∈ (Aǫ)× and does not change limω µn. In particular, the
sequence (anz + bn) induces an affine automorphism M(z) = az + b of the
affine line over Aǫ.

Let ϕσ be any model function associated with a finite family σ = {Pi}
of sections Pi ∈ O(d) over P

1,an
Aǫ . Observe that M∗σ = {Pi ◦M} is again

a family of sections over the same space, and ϕσ ◦M = ϕM∗σ is a model
function. We have:

∫

ϕσdµω = lim
ω

∫

ϕσ(sǫn)
∗dµn

= lim
ω

∫

Ĉ

ǫn log
maxj

{∣

∣

∣
Pnj ◦Mn

∣

∣

∣

}

max{|anz0 + bnz1|, |z1|}d
dµFS

If e = limω ǫn > 0, then H (ω) is Archimedean, supE dH(xn, x⋆) < ∞ on
some ω-big set E, and limω xn = xω ∈ H3. Since xn = Mn(x⋆), we have
xω =Mω(x⋆), and the preceding step implies

∫

ϕσdµω =

∫

Ĉ

e log
maxj {|Pj,ω ◦Mω|}

max{|aωz0 + bωz1|, |z1|}d
dµFS

which proves (1a).

Suppose now that limω ǫn = 0. Then H (ω) is non-Archimedean, and by
the preceding step we have

∫

ϕσdµω =

∫

π−1(ω)
log

maxj {|Pj,ω|}
max{|z0|, |z1|}d

(Mω)∗δxg ,

hence µω is a Dirac mass at the Type-2 point

xω =Mω(xg) ∈ P
1,an
H (ω).(19)

This ends Step 2. �

Proof of Lemma 5.5. By (16), we have

(20) cosh dH(Mn(x⋆), x⋆) = 1 +
|bn|2 + (|an| − 1)2

2|an|
.

Observe that 1
2e
t ≤ cosh t ≤ et for all t ≥ 0. Write Θ = limω ǫndH(xn, x⋆)

and suppose that Θ <∞. Then

lim
ω

|an|±ǫn ≤ lim
ω

max{2, |an|±1}ǫn ≤ max{2, 8eΘ} <∞

since max{t, t−1} ≤ 4(t− 1)2/t for all t > 2; and

lim
ω

|bn|2ǫn ≤ lim
ω
(2|an|)ǫn × eΘ <∞ .

Conversely, suppose limω |an|±ǫn <∞ and limω |bn|ǫn <∞. Then

eΘ ≤ lim
ω

(

6max{1, |bn|2|an|−1, (|an| − 1)2|an|−1}
)ǫn

<∞

which concludes the proof. �
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Step 3. We finally treat the case limω ǫndH(xn, x⋆) = ∞.
By Lemma 5.1, the projective disk D̄(xn) ⊂ Ĉ has a radius

√
tn ∈ (0, 1]

and cosh dH(xn, x⋆) = 1 + (tn − 1)2/2tn. Since limω dH(xn, x⋆) = ∞ in all
cases, we get limω tn = 0, and dH(xn, x⋆) = log t−1

n + o(1) on an ω-big set.
Recall that xn ∈ H3 can be mapped to the point (0, tn) with tn ∈ (0, 1)

as above by an element g of the maximal compact subgroup G of PGL2(C)
fixing x⋆. The next lemma thus implies

(21) lim
ω
µn(Ĉ \ D̄(xn)) = 0 .

Lemma 5.6. There exists a constant C > 0 such that for any t ∈ (0, 1), we
have

µ(xt)
(

Ĉ \ D̄(xt)
)

≤ Ct

where xt = (0, t) ∈ H3.

Suppose that limω ǫn > 0. Then we can consider the limit along ω of xn
in H̄3: this is a point xω ∈ Ĉ = H̄3 \H3, and it follows from (21) that µω is
supported on xω.

Suppose now that limω ǫn = 0. Pick any two sequences yn, y′n ∈ D̄(xn) ⊂
Ĉ. Since dH(xn, x⋆) = log t−1

n + o(1), we get in the spherical distance

lim
ω
dP1(C)(yn, y

′
n)
ǫn ≤ lim

ω
2(
√
tn)

ǫn = 0

and yω = y′ω ∈ P1(H (ω)) by Lemma 3.13. We denote by xω ∈ P1(H (ω))
the point determined by any sequence yn ∈ D̄(xn).

To conclude, we need to prove that µω is supported at xω. Pick any
positive continuous function ϕ on P

1,an
Aǫ which is vanishing at xω. Write

ϕn = (sǫn)∗ϕ : Ĉ → R+. Then we have

0 ≤
∫

ϕωdµω = lim
ω

∫

ϕndµn = lim
ω

∫

D̄(xn)
ϕndµn .

We also have limω supD̄(xn) ϕn = 0, since if supD̄(xn) ϕn = ϕn(yn) for some
yn ∈ D̄(xn), then yω = xω by our previous considerations. It follows that
∫

ϕωdµω = 0 hence µω is supported at xω.
This ends the proof of Step 3. �

Proof of Lemma 5.6. The point (0, t) is the image by the Möbius map z 7→ tz

of x⋆ so that we have µ(xt) =
t2d|z|2

4(t2+|z|2)2 . It follows

µ(0, t)
(

Ĉ \ D̄(0, t)
)

=

∫

|z|≥
√
t

t2d|z|2
4(t2 + |z|2)2 = 2−1πt

∫ ∞

1

rdr

(t+ r2)2

hence the result. �

End of the proof of Theorem 5.2. It remains to prove (3). Pick any sequence
yn ∈ H3 such that limω ǫndH(xn, yn) = 0, and let νn ∈ M+(Ĉ) be the se-
quence of conformal measures associated with yn.

When limω ǫn > 0 and limω dH(xn, x⋆) <∞, then limω µn is the conformal
measure associated with the point x∞ = limω xn ∈ H3 by Step 2. Our
assumption implies limω yn = xω ∈ H3, and Step 2 applied to yn implies
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νω is also the conformal measure associated with xω. The same argument
applies using Step 3 in the case limω dH(xn, x⋆) = ∞.

Suppose that limω ǫn = 0. When limω ǫndH(xn, x⋆) < ∞ then we also
have limω ǫndH(yn, x⋆) <∞, and the result follows from the next lemma.

Lemma 5.7. Suppose limω ǫn = 0, and (xn) is a sequence of points in H3

such that limω ǫndH(xn, x⋆) <∞. Then we have

(22) dH (ω)(xω, xg) = lim
ω
ǫndH(xn, x⋆) .

Moreover, for any other sequence (yn) such that limω ǫndH(xn, yn) = 0, we
have yω = xω.

When limω ǫndH(xn, x⋆) = ∞, then Step 3 implies µω is supported on
a Type-1 point xω. If yn ∈ H3 satisfies limω ǫndH(xn, yn) = 0, then by
the triangle inequality we obtain limω ǫndH(x⋆, yn) = ∞, and for n in an
ω-big set then dH(yn, xn) is much smaller than dH(x⋆, xn). This implies
yn ∈ H(xn) (see (17)), and since H(xn) and H(yn) are convex it follows
that D̄(xn) ∩ D̄(yn) 6= ∅. Choose any sequence of points zn ∈ Ĉ in this
intersection. It follows from Step 3 that zω = xω = yω, which concludes the
proof of the theorem. �

Proof of Lemma 5.7. Write xn = Mn(x⋆) with Mn(z) = anz + bn. By (16),
we have

(23) cosh dH(xn, x⋆) = cosh dH(Mn(x⋆), x⋆) = 1 +
|bn|2 + (|an| − 1)2

2|an|
.

Observe that xω is the image of the Gauss point under the affine map aωz+bω
so that dH (ω)(xω, xg) = 2 logmax{|aω|, |bω|, 1} − log |aω|.

If limω dH(xn, x⋆) <∞, then a±1
n and bn are ω-bounded, and |aω| = 1 and

|bω| ≤ 1 which implies dH (ω)(xω, xg) = 0. The result follows since we have
limω ǫndH(xn, x⋆) = 0.

Suppose limω dH(xn, x⋆) = ∞. Then

L = lim
ω
ǫndH(xn, x⋆) = lim

ω
ǫn log

( |bn|2 + (|an| − 1)2

|an|
+ 2

)

= lim
ω
ǫn log

( |bn|2 + |an|2 + 1

|an|

)

.

Observe that

ǫn logmax{|bn|2, |an|2, 1} ≤ ǫn log
(

|bn|2 + |an|2 + 1
)

≤ ǫn logmax{3|bn|2, 3|an|2, 3}.

Hence limω ǫn log
(

|bn|2 + |an|2 + 1
)

= 2 logmax{1, |aω |, |bω|}. It follows that
L = dH (ω)(xω, xg).

Pick another sequence yn ∈ H3 such that limω ǫndH(xn, yn) = 0. Write
yn = M ′

n(xg), with M ′
n(z) = a′nz + b′n. Since Möbius transformations are

isometries for dH, we have limω ǫndH(x⋆,M
−1
n (yn)) = 0. By what precedes,

we get xg =M−1
ω yω. Since we proved xω =Mω(xg), we have yω = xω. �
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5.3. Convergence of equilibrium measures on the hybrid space.
Note that every quasi-model function is integrable with respect to the equi-
librium measure µfω of fω, since the potentials are continuous, see, e.g., [31,
Lemmes 2.3 et 4.2]).

Theorem 5.8. Pick ǫ ∈ (0, 1]N, and let f ∈ Ratd(A
ǫ) for some d ≥ 2. For

each ω ∈ βN ≃ M(Aǫ), denote by µfω the equilibrum measure of fω.
Then (µfω)ω∈βN defines a continuous family of positive measures on P

1,an
Aǫ .

Moreover, for any quasi-model function ϕ : P1,an
Aǫ → [−∞,∞),

(24) Iϕ(ω) =

∫

P
1,an
H (ω)

ϕdµfω

is finite for any ω ∈ βN, and the function ω 7→ Iϕ(ω) is continuous.

Recall the definition of the pushforward of a continuous function from (14).
The rest of this section is devoted to the proof of Theorem 5.8.

Proof of Theorem 5.8. Since model functions are dense in the space of con-
tinuous functions, (24) implies the family of measures µfω to be continuous.

Let us prove (24). By Theorem 3.6, the function Iϕ : βN → R is continuous
if and only if limω Iϕ(n) = Iϕ(ω) for any non-principal ultra-filter ω. For
any integers n and m, write

∣

∣

∣

∣

∫

ϕdµfn −
∫

ϕdµfω

∣

∣

∣

∣

≤ I1 + I2 + I3

where

I1 =

∣

∣

∣

∣

∫

ϕ

(

µfn − 1

dm
fm∗
n µncan

)∣

∣

∣

∣

I2 =

∣

∣

∣

∣

∫

ϕ

(

1

dm
fm∗
n µncan −

1

dm
fm∗
ω µωcan

)∣

∣

∣

∣

I3 =

∣

∣

∣

∣

∫

ϕ

(

µfω − 1

dm
fm∗
ω µωcan

)∣

∣

∣

∣

Here µncan (resp. µωcan) denotes the canonical measure µcan on π−1(n) (resp.
π−1(ω)). Pick η > 0. Write f = [P : Q] with Res(P,Q) ∈ (Aǫ)×, so that the
function

gf,0(z) =
1

d
log

max{|P |, |Q|}
max{|z0|, |z1|}d

is continuous on P
1,an
Aǫ .

Observe that µfn −d−mfm∗
n µncan = ∆gn,m with gn,m =

∑

k≥m d
−kgf,0 ◦fkn .

Choose m large enough such that sup |gn,m| ≤ η for all n. It follows that

I1 =

∣

∣

∣

∣

∫

ϕ∆gn,m

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

gn,m∆ϕ

∣

∣

∣

∣

≤ η ×Mass(∆ϕ|π−1(n)) ≤ Cη ,

for some C > 0 by Lemma 4.6. The same argument gives I3 ≤ Cη as well.
It remains to check that I2 → 0 as n tends to ∞ along ω. Suppose first that

ϕ is a model function. Then it is continuous, hence fm∗ ϕ is also continuous on
P
1,an
Aǫ by Proposition 4.13. Since µncan → µωcan by Corollary 5.4, we conclude

that limω I2 = 0. This proves (24) in the case ϕ is a model function. In
particular, we have limω f

m∗µncan = fm∗µωcan.
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We next treat the case ϕ = ψP is a quasi-model function associated with
a single section P ∈ H0(P1

Aǫ ,O(l)). By Proposition 4.16, we are reduced to
the case m = 0. We assume that P [1 : 0] 6= 0, and work in the affine chart
[z : 1]. Jensen’s formula (over C) yields
∫

π−1(n)
ψP dµcan = ǫn

∫

C

log |Pn(z, 1)|dµcan = ǫn(log |an|+
∑

log+ |zi,n|)

where Pn(z, 1) = an
∏

(z− zi,n). The result follows since Jensen’s formula is
also valid over H (ω).

We now suppose ϕ = maxψPi is an arbitrary quasi-model function, where
Pi ∈ Aǫ[z0, z1] are homogeneous polynomials of degree l. First observe that
for any large A > 0, the function max{ϕ,−A} is continuous hence

lim
ω

∫

max{ϕ,−A}fm∗µncan =

∫

max{ϕ,−A}fm∗µωcan ,

and the monotone convergence theorem implies

(25) lim
ω

∫

ϕfm∗µncan ≤
∫

ϕfm∗µωcan.

To prove the converse inequality, we fix δ > 0. Let w1, · · · , wk ∈ P1(H (ω))

be the base points of σ, i.e., the common zeroes of Pi,ω. Write Pi,ω = QωP̂i,ω
such that P̂i,ω have no common factors, and Q−1

ω (0) = {w1, · · · , wk}. It
follows from Proposition 3.11, that we have a decomposition Pi,n = Qi,nP̂i,n
where (Qi,n) (resp. (P̂i,n)) represents Qω (resp. Pi,ω) for all i.

Choose any finite open cover U1, · · · , Up of P1,an
Aǫ satisfying the following

properties for each i ∈ {1, · · · , k}:
(1) Ui contains no zeroes of P̂j,n for all j and all n;
(2) Ui ∩Q−1

ω (0) = {wi};
(3) there exists j(i) such that |P̂j(i)| ≥ (1− δ)maxi |P̂i| on Ui.

Pick any partition of unity associated with this cover, i.e., continuous func-
tions ρj : P

1,an
Aǫ → [0, 1] supported in Uj and such that

∑

j ρj = +1. We
further assume that ρj = 1 in a neighborhood of wj for all j.

Observe that the upper bound (25) is still valid for the function ρjψPi for
any i and j. It follows from the previous step that

∫

ψPif
m∗µωcan ≥

p
∑

j=1

lim
ω

∫

ρjψPif
m∗µncan

= lim
ω

∫

ψPif
m∗µncan =

∫

ψPif
m∗µωcan

so that limω

∫

ρjψPif
m∗µncan =

∫

ρjψPif
m∗µωcan for all i, j.

Now fix any j ∈ {1, · · · , k}. From Property (3) of the open cover, we have

lim
ω

∫

ρjϕf
m∗µncan ≥ lim

ω

∫

ρjψPi(j)
fm∗µncan

=

∫

ρjψPi(j)
fm∗µωcan ≥

∫

ρjϕf
m∗µωcan + log(1− δ)

Letting δ → 0, we get limω

∫

ρjϕf
m∗µncan ≥

∫

ρjϕf
m∗µωcan.
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Now, the function ϕ(1−∑k
j=1 ρj) is continuous in π−1(E) for some ω-big

set E, and we have limω f
m∗µncan = fm∗µωcan, hence

lim
ω

∫

ϕfm∗µncan = lim
ω

∫

ϕ(1 −
k
∑

j=1

ρj)f
m∗µncan + lim

ω

k
∑

j=1

∫

ρjϕf
m∗µωcan

≥
∫

ϕfm∗µωcan

which concludes the proof. �

5.4. Convergence of Lyapunov exponents. Let (k, | · |) be an alge-
braically closed complete metric field of characteristic 0. Recall from §1.2.3
that we defined the projective distance dP1(k) on P1(k).

For any rational map f = [P : Q] ∈ Ratd(k), and any z ∈ P1(k) define

|df |(z) = lim
w→z

dP1(k)(f(w), f(z))

d(w, z)
.

A direct computation shows

|df |[z0 : z1] =







1
d

∣

∣

∣

∂P
∂z0

∂Q
∂z1

− ∂P
∂z1

∂Q
∂z0

∣

∣

∣

max{|z0|2/e+|z1|2/e}e
max{|P |2/e+|Q|2/e}e , if k = Ce;

1
d

∣

∣

∣

∂P
∂z0

∂Q
∂z1

− ∂P
∂z1

∂Q
∂z0

∣

∣

∣

max{|z0|2,|z1|2}
max{|P |2,|Q|2} , if k is non-Archimedean,

which proves that |df | extends continuously function to P
1,an
k . Observe that

|df(z)| = 0 if and only if z ∈ P1(k) is a critical point in the sense that
degz(f) ≥ 2. By the Riemann-Hurwitz formula, there are exactly 2d − 2
such points (counted with multiplicity). Finally, log |df | is the difference of
a quasi-model function and a model function in the terminology of §4.2.

Recall the definition of the equilibrium measure µf from §2.3. Since this
measure integrates any quasi-model functions by §5.3, we can define the
Lyapunov component of f as follows:

χf =

∫

log |df |dµf ,

and Theorem 5.8 immediately implies

Corollary 5.9. For any ǫ ∈ (0, 1]N, and for any rational map f ∈ Ratd(A
ǫ)

the function ω 7→ χfω is continuous on M(Aǫ) ≃ βN.

Remark 5.10. The proof of Theorem 0.1 (3) is now complete: the continuity
of equilibrium measures follows from Theorem 5.8, and the continuity of the
Lyapunov exponents from the previous corollary.

6. Luo’s approach to degeneration

In this section, we compare the sequential hybridation of §3.3 with the
degeneration constructed by Luo in [52], and prove in particular Theorem 0.3
from the introduction.
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6.1. The asymptotic cone. We recall the construction of the asymptotic
cone in the context of the hyperbolic 3-space, see, e.g., [43, §9] for a general
reference on this construction. Recall from §5.1 that we let x⋆ = (0, 1) ∈ H3.

Let rn ∈ R∗
+ be a sequence of positive real numbers such that rn → ∞

and let ω ∈ βN \ N be a non-principal ultrafilter.
Let X(ω) ⊂ (H3)N be the subset of all sequences x in H3 such that

lim
ω

1

rn
dH(x⋆, xn) <∞

The asymptotic cone H3
ω of the sequence of pointed metric spaces

(

H3, x⋆, r
−1
n dH

)

is by definition the quotient of X(ω) by the equivalence relation (xn) ∼ (yn)
if and only if limω dH(xn, yn) = 0.

We endow H3
ω with the distance

d([xn], [yn]) = lim
ω

1

rn
dH(xn, yn) ,

for which it is complete. Also since H3 is log 2-hyperbolic in the sense of
Gromov, the metric space (H3, r−1

n dH) is log 2/rn-hyperbolic, therefore H3
ω

is 0-hyperbolic. In other words, H3
ω is a complete metric R-tree.

Set ǫn = 1
rn

. Recall that H (ω) is the residue field of ω viewed as a point
in M(Aǫ) ≃ βN .

Choose any sequence of points xn ∈ X(ω). By Theorem 5.2 (2a) and (2b),
the sequence of conformal measures (sǫn)∗µ(xn) converges to a Dirac mass
at a Type-2 point ψ(x) ∈ HH (ω).

Moreover, if y ∈ X(ω) is another sequence, then ψ(y) = ψ(x) by Theo-
rem 5.2 (3) so that we have a well-defined map ψ : H3

ω → HH (ω).

Theorem 6.1. The map ψ : H3
ω → HH (ω) is a bijective isometry.

Proof. The fact that ψ is an isometry follows from Lemma 5.7. Pick x ∈
HH (ω). By [3, Remark 7.11], the group PGL2(H (ω)) acts transitively on
Type-2 points. By Proposition 3.9, H (ω) is spherically complete, and its
value group is R+ hence x is a Type-2 point. It follows that we can find a
Möbius transformation Mω ∈ PGL2(H (ω)) such that x = Mω(xg). Recall
from the discussion in §3.2.2 that H (ω) = Aǫ/ ker(ω), hence we may suppose
that Mω is determined by some M ∈ PGL2(A

ǫ). By Step 1 of Theorem 5.2,
ψ(p⋆) = δxg , where p⋆ = (x⋆) ∈ (H3)N. Since M is defined over Aǫ, the
sequence yn := Mn(x⋆) belongs to X(ω) ⊂ (H3)N.

Now observe that M induces a homeomorphism P
1,an
Aǫ → P

1,an
Aǫ commuting

with the canonical morphism P
1,an
Aǫ → M(Aǫ). It follows that

lim
ω
µ(yn) = lim

ω
µ(Mn(x⋆)) = lim

ω
Mn∗µ(x⋆) = (Mω)∗δxg = δx,

so that ψ(yn) = x. This proves ψ is surjective. �

6.2. Barycentric extension of a rational map. Luo’s work is based on
the notion of barycenter of a probability measure µ on Ĉ which is a point
in H3. We follow the approach of [62] for its definition which uses the unit
ball model B3 = {x ∈ R3 | |x| < 1} of the hyperbolic space where | · | is the
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standard Euclidean norm on R3. Recall that the Riemannian metric dB is
induced by ds2 = dx2

(1−|x|2)2 . The map φ̄ defined by ∞ 7→ (0, 1), and

(z, h) −→
(

2z

|z|2 + (h+ 1)2
,
|z|2 + h2 − 1

|z|2 + (h+ 1)2

)

∈ C× R = R3

is homeomorphism from H̄3 onto B̄3 which restrict to an isometry (H3, dH) →
(B3, dB) and a biholomorphism Ĉ → S2 where S2 is endowed with the unique
structure of Riemann surface for which ds2 is conformal.

For each w ∈ B3, define

gw(x) =
x(1− |w|2) + w(1 + |x|2 + 2〈w, x〉)

1 + |w|2|x|2 + 2〈w, x〉 ,

where 〈·, ·〉 denotes the standard scalar product. Then gw is an isometry of
(B3, dB).

Let µ be any probability measure on S2 having no atoms. Introduce the
vector field on B3:

Vµ(w) =
1− |w|2

2

∫

S2

g−w(x)dµ(x).

According to [62, Proposition 1 and 2], Vµ(w) has a unique zero, and this
point is called the barycenter of µ. One can transport this definition using φ̄.
Any probability measure µ on Ĉ having no atoms thus admits a barycenter
B(µ) ∈ H3 which is the image by φ̄−1 of the unique zero of φ̄∗µ. For
any isometry M of (B3, dB), we have VM∗µ(M(w)) = DwM(Vµ(w)), so that
B(M∗µ) =M(B(µ)) for all M ∈ PGL2(C).

It is not difficult to see that the map µ 7→ B(µ) is continuous in the weak-∗
topology of measures since Vµ depends continuously on µ.

Recall from §5.1 that we can attach to any point x ∈ H3 a unique probabil-
ity measure µ(x) associated with a Riemannian metric of constant curvature
and invariant by the (compact) subgroup G of PGL2(C) fixing the point x.
The barycentric extension of f ∈ Ratd(C) is then defined as follows:

E(f)(x) =
{

f(x) if x ∈ Ĉ

B(f∗µ(x)) if x ∈ H3.

The next theorem is a combination of [62] and [51, Theorem 1.1, Proposition
5.7].

Theorem 6.2. For any f ∈ Ratd(C) and for any M1,M2 ∈ PGL2(C) we
have

(26) E(M1 ◦ f ◦M2) =M1 ◦ E(f) ◦M2.

Moreover, the barycentric extension E(f) is proper, surjective and continuous
on H̄3. It is real analytic and Lipschitz on (H3, dH), with Lipschitz bounded
by C deg(f) where C is a universal constant.

6.3. Asymptotic cone and Luo’s degeneration map. For any f ∈
Ratd(C), we set

rL(f) = sup
E(f)(x)=0

dH(x, 0) ∈ R+ .
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It follows from [51, Proposition 8.1] that rL : Ratd(C) → R+ is proper (i.e.,
rL(fn) → ∞ as fn → ∞ in Ratd(C)). It is not known whether rL is continu-
ous (see [51, §8.6]). Write C ′

d = e supRatd(C) |Res |. Using Luo’s degeneration
techniques, we shall prove that

Theorem 6.3. There exists a constant C > 1 such that

(27)
1

C
≤ 1 + rL(f)

− log
(

|Res(f)|/C ′
d

) ≤ C

for all f ∈ Ratd(C).

For any f ∈ Ratd(C), we set

rL([f ]) = inf
M∈PGL2(C)

rL(M · f) = inf
x∈H3

sup
E(f)(y)=x

dH(x, y) .

This defines a function rL : ratd(C) → R+ which is proper, and the previous
result implies Theorem 0.3 from the introduction.

Proof of Theorem 6.3. It is sufficient to prove that for any sequence fn ∈
Ratd(C) and for any non principal ultra-filter ω ∈ βN there exists a constant
C > 1 such that

(28)
1

C
≤ 1 + rL(fn)

− log(|Res(fn)|/Cd)
≤ C

for all integer n lying in an ω-big set.
Indeed suppose (27) is not true. Then we can find a sequence fn ∈ Ratd(C)

such that the quantity 1 + rL(fn)/− log(|Res(fn)|/Cd) either tends to 0 or
to ∞ which contradicts (28).

So pick any degenerating sequence fn ∈ Ratd(C). We consider the ultra-
product of H3 as defined in §6.1 using the sequence rL(fn) → ∞. Pick any
sequence of points (xn) ∈ X(ω) ⊂ (H3)N such that dH(xn, x⋆) ≤ M rL(fn)
for some M <∞. By Theorem 6.2, there exists C > 0 such that for all n

dH(E(fn)(xn), E(fn)(x⋆)) ≤ CdH(xn, x⋆) ≤ CM rL(fn)

and the sequence (E(fn)(xn)) also belongs to X(ω). The uniform Lipschitz
property on (H3, dH) also implies that if limω dH(xn, yn)/ rL(fn) = 0 for some
sequence (yn) ∈ (H3)N, then

lim
ω
dH(E(fn)(xn), E(fn)(yn))/ rL(fn) = 0

so that we get a natural map F : H3
ω → H3

ω defined by F (xn) = (E(fn)(xn)).
Set ǫn = rL(fn)

−1, and consider the Banach ring Aǫ. For a given ω ∈ βN,
H (ω) is the quotient of Aǫ by ker(ω) = {(zn) ∈ C | limω |zn|ǫn = 0}.

For each n, pick any normalized representation fn = [Pn : Qn]. Write
Pn(z0, z1) =

∑d
0 ak,nz

k
0z

d−k
1 and Qn(z0, z1) =

∑d
0 bk,nz

k
0z
d−k
1 . Consider the

rational map fω : P
1
H (ω) → P1

H (ω) so that in homogeneous coordinates we

have fω = [Pω : Qω] with Pω(z0, z1) =
∑d

0 ak,ωz
k
0z

d−k
1 , and Qn(z0, z1) =

∑d
0 bk,ωz

k
0z

d−k
1 , where ak,ω = (ak,n) and bk,ω = (bk,n) ∈ H (ω). Note that

deg(fω) ∈ {0, · · · , d}.
A key result is the following lemma, see [52, 7.3].
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Lemma 6.4. The following diagram is commutative:

(29)

H3
ω HH (ω)

H3
ω HH (ω).

F

ψ

fω

ψ

By [51, Lemma 8.8], one can find a point y ∈ Hω which admits exactly
d preimages by F (in fact it follows from Theorem 1.2 in op.cit that F is a
covering map of degree d on the real tree H3

ω). From Lemma 6.4, we infer
that fω has degree at least d which implies deg(fω) = d. As a consequence
Pω and Qω have no common factor hence

lim
ω

|Res(Pn, Qn)|1/rn = |Res(Pω, Qω)| > 0 ,

and we conclude that − log |Res(Pn, Qn)|/rL(fn) is bounded from above and
from below for all n in an ω-big set, proving (28). �

Proof of Lemma 6.4. The proof is due to Luo and uses various results scat-
tered in two papers [51, 52]. We include a streamlined version of his argu-
ments for convenience of the reader. Observe first that the diagram is com-
mutative when fn is a sequence of Möbius transformations since an element
of PGL2(C) preserves the space of conformal metrics of constant curvature.

Denote by p∗ the point in H3
ω defined by (x∗) ∈ (H3)N. Suppose we know

that F (p⋆) = p⋆ if fω(xg) = xg. Then, pick any sequence x = (xn) ∈ X(ω) ⊂
H3 and choose a sequence y = (yn) ∈ X(ω) such that fω(ψ(x)) = ψ(y). We
want to show that F (x) = y.

Choose sequencesMn, Ln ∈ PGL2(C) such thatMn(x⋆) = xn and Ln(yn) =
x⋆ for all n. Then, ψ(x) = Mω(xg) and ψ(y) = Lω(xg). We obtain
L−1
ω ◦ fω ◦ Mω(xg) = xg, hence G(x⋆) = x⋆ where G is obtained as the

limit of E(L−1
n ◦fn ◦Mn) = L−1

n ◦E(fn)◦Mn. Therefore, F (x) = y, implying
that fω ◦ ψ = ψ ◦ F .

So, suppose that fω(xg) = xg. We will apply the following lemma.

Lemma 6.5. There exists a sequence Mn ∈ PGL2(C) such that the trans-
formation Mω ∈ PGL2(H (ω)) fixes xg and deg(g∞) ≥ 1 where gn =Mn◦fn
and g∞ is obtained by taking the ω-limit of gn in Ratd(C).

As observed by Luo [51, §5], it follows from the proof of [18, Lemma 4.5
and 4.6] that deg(g∞) ≥ 1 if and only if limω gn∗µFS is a smooth measure.
Since deg(g∞) ≥ 1, the sequence of measures gn∗µFS converges to a smooth
measure on Ĉ hence E(gn)(x⋆) = B(gn∗µFS) converges to some point y ∈ H3.
Since rL(fn) → ∞, it follows that limω dH(E(gn)(x⋆), x⋆)/ rL(fn) = 0 so that
G(p⋆) = p⋆. But since Mω(xg) = xg we have limω dH(Mn(x⋆), x⋆)/ rL(fn) =
0 and

lim
ω

1

rL(fn)
dH(E(fn)(x⋆), x⋆) ≤ lim

ω

1

rL(fn)
dH(M

−1
n ◦ E(gn)(x⋆),M−1

n (x⋆))

+ lim
ω

1

rL(fn)
dH(M

−1
n (x⋆), x⋆) = 0

as required. �
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Proof of Lemma 6.5. It remains to prove the claim. We may suppose that
f∞ = [1: 0]. Let I ⊂ {0, · · · , d} be the set of indices k such that limω ak,n 6=
0. Then Pn = P+

n + pn where P+
n =

∑

I ak,nz
k
0z

d−k
1 and pn is a sequence of

polynomials converging along ω to 0. By assumption, Qn is also converging
along ω to 0. Set cn = maxk |bk,n| and let J be the set of indices j such
that limω bk,n/cn 6= 0. Observe that limω cn = 0 but |cω| = 1 (i.e., that
limω c

1/ rL(fn)
n > 0) since fω = [Pω : Qω] fixes the Gauss point.

Set Ln[z0 : z1] = [z0 : c
−1
n z1]. Then Lω(xg) = xg and gn = Ln ◦ fn =

[P+
n + pn : Q

+
n + qn] where Q+

n =
∑

J
bk,n
cn
zk0z

d−k
1 and qn is converging to 0

along ω. If Q+
∞ is not proportional to P+

∞, then we are done. Otherwise,
we have I = J , and we set tn = ak0,n/bk0,n for some fixed k0 ∈ I, and
Tn[z0 : z1] = [z0 : z1 − tnz0]. Since limω tn 6= 0, we have Tω(xg) = xg and
Tn ◦ gn = [P+

n + pn : (Q
+
n − tnP

+
n ) + (qn − tnpn)].

The polynomial

Rn = (Q+
n − tnP

+
n ) + (qn − tnpn) =

∑

k

γk,nz
k
0z

d−k
1

tends to 0 along ω, and the key observation is that its coefficient γk0,n in
the monomial zk00 z

d−k0
1 is 0 for all n. We repeat the process as above.

Set dn = maxk |γk,n|. Since fω has degree d, we again have dn → 0 and
|dω| = 1. Introduce Dn[z0 : z1] = [z0 : d

−1
n z1], and let K = {k ∈ {0, · · · , d} |

limω γk,n/dn 6= 0}. Then Dω fixes xg, and we can write d−1
n Rn = R+

n + rn
where all coefficients of rn tend to 0 along ω, and R+

n =
∑

k∈K
γk,n
dn
zk0z

d−k
1 .

Since
hn = Dn ◦ Tn ◦ Ln ◦ fn = [P+

n + pn : R
+
n + rn] ,

we have h∞ = [P+
∞ : R+

∞] which is a non-constant map since k0 /∈ K so that
P+
∞ and R+

∞ cannot be proportional. �
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