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Lower Limbs 3D Joint Kinematics Estimation
From Force Plates Data and Machine Learning

Kahina Chalabi1, Mohamed Adjel1,2, Thomas Bousquet1,
Maxime Sabbah1, Bruno Watier1,3, Vincent Bonnet1,4

Abstract— This study investigated the possibility of using
machine learning to estimate 3D lower-limb joint kinematics
during a rehabilitation squat exercise from force plate data, that
can be collected very simply outside of a laboratory and does
not pose privacy issues. The proposed approach is based on a
bidirectional-Long-Short-Term-Memory (Bi-LSTM) associated
to a Multi-Layer-Perceptron (MLP) model. The use of MLP
allows fast training and evaluation time. The model was trained
and validated on nineteen healthy young volunteers using a
stereophotogrammetric motion capture system to collect ground
truth data. Volunteers performed squats in normal conditions
and using an ankle brace to simulate pathological motion.
Also additional loads were added onto lower limbs segments
to study the influence atypical mass distribution. The root
mean square differences between the estimated joint angles
and those reconstructed with the stereophotogrammetric system
were lower than 6deg with correlation coefficients higher than
0.9 in average. Furthermore, the inference time of the proposed
approach was as low as 12µs paving the way of future reliable
real-time measurement tools.

I. INTRODUCTION
The challenge of devising the least invasive instrumented

clinical and sport protocols for the accurate assessment of
an individual’s motor capacity and performance is receiving
growing attention with the recent development of affordable
consumer electronics devices such as RGB, RGB-depth
cameras or Inertial Measurement Units (IMU). All of these
affordable sensors suffer from inaccuracies, noise, drift or
occlusion issues. With the rapid development of machine
learning algorithms, the last decade has seen numerous
studies trying to compensate each sensor flaw to maximize
the functional information extracted from low cost and easy-
to-use instruments. This was done either by fusing different
modalities into adaptive filters [1], [2], optimisation based
approaches [3], [4], [5] or more recently and more suc-
cessfully using data-driven approaches [6], [7]. For lower
limbs specifically most of the studies focus on walking. For
walking IMU are the most suitable as they allow ambulatory
motion assessment. When using IMU suit and model-based
approach the Root Mean Square Error (RMSE) ranges from 5
to 10deg depending on the investigated joint, retained biome-
chanical model and its calibration method [8], [9], [10].
Model-based approaches usually require numerous tuning
of parameters, the cumbersome definition and calibration of
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a biomechanical model [4], [5], [8] but they generalise to
any type of motions. Recently, data-driven approaches have
been proposed to simplify motion analysis while preserving
a good accuracy. Using solely RGB cameras, markerless
human pose estimation algorithms [11], [12] and a Long-
Short-Term-Memory (LSTM) network, OpenCap [7] was
able to efficiently estimate joint angles during walking,
squatting and jumping with an average accuracy of 4.5deg.
Their LSTM augments the joint center position data given
by the markerless algorithm. To do so, they collected hun-
dred of hours of reference joint center position using a
stereophotrogrammetic marker-based Motion Capture Sys-
tem (MCS) to learn the position of virtual markers from
joint center positions. Using this augmented dataset of 3D
marker positions inverse kinematics was performed using a
classical Multibody Kinematics Optimization (MKO) [13]
process implemented in OpenSim [14]. Another recent and
fully opensource study [6] proposed to fuse visual and IMU
data within a convolutional neural network. They assess the
quality of their joint angle estimates with normal healthy
motion and by simulating impaired motion using joint braces.
They show that their approach was able to estimate joint
angles with an accuracy of 5.9deg while being very robust
to calibration errors that could be up to 30deg.

Commercial markerless system such as Theia3D (Theia
Markerless, Kingston, Ontario, Canada) achieved a reliable
RMSE inferior to 6deg for walking [15]. However, they
require the use of several high quality videos and are
relatively expensive. Such setup is not desirable for in-home
or clinical settings in daily practice. Camera-based systems
are also affected by the type and the number of cameras,
the lighting conditions and their pose in the scene. Thus,
the generalization of training data obtained in laboratories to
data collected during in-home or clinical setting still have to
be demonstrated. Finally, camera based system might pose
privacy issues. This is specially the case for OpenCap that
requires the use of proprietary cameras and the authors cloud
service therefore limiting to sequence to 1min.

Interestingly, these observations were made 20 years ago
by Mazzà and Cappozzo [16] that proposed to use solely
6D Ground Reaction Forces and Moments (GRFM) from
force plates, to estimate joint angles during squat exercises.
They postulate that it is possible, making biomechanical
assumption over the constrained human motion, to determine
with an optimization process the coefficients of B-splines,
used to represent joint trajectories, that will fit the measured
force plate data. Doing so they obtained, an estimate of
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Fig. 1: Overview of the proposed method for estimating lower limbs motions using 6D GRFM data combined with a Bi-
LSTM and MLP architecture. MCS data was used to determine ground truth joint angles further used for model training.

sagittal plane joint angles below 3% of error when com-
pared to reference joint angles. Nowadays there exist several
commercial [17] or research [18] 3D force plates that are
affordable but accurate making such approach accessible to
a larger number.

More recently, Choffin et al. [19] proposed to use embed-
ded insoles data and a Gaussian process linear regression
algorithm to estimate joint kinematics during a squat exer-
cise. They obtained a stunning RMSE of 1deg. However,
the paper lacked implementation details about the hyper
parameters of the model. It was also unclear if the reported
results were obtained with training or cross validation data.
Moreover, the retained model was not really in 3D as
it excluded ankle and hip external and internal rotational
angles and most importantly an Xsens (Xsens Technologies,
Netherlands) IMU suit was used as reference system. As
previously mentioned such systems are not as accurate as
MCS.

To the best of our knowledge these two studies were the
only ones trying to estimate joint kinematics from force data
only. Both studies do not consider real-time estimation of
joint angles and use computationally ineffective methods.
One relies on an optimization process applied to the entire
data trajectory [16], while the other uses a computationally
intensive Gaussian process regression [19]. Furthermore,
they did not consider impaired motions and dealt only with
healthy subjects.

The squat exercise engages multiple joints and muscles in
one motion, making it highly effective for enhancing lower-
limb muscle function [20]. It is essential for daily activities
like picking up items, descending stairs, and rising from
a chair. Consequently, squatting is frequently included in
numerous rehabilitation protocols [20].

In this context, this paper aims to assess the feasibility of
using only force plate data (6D GRFM) and a data-driven
approach for real-time estimation of 3D lower limbs joint
angles. The data-driven model was trained and validated for
both normal and impaired squatting, incorporating segment
mass modifications typically observed in patients. The over-
all pipeline of the paper is presented in Fig. 1.

II. METHODS

A. Mechanical model

To determine the ground truth joint angles, a mechanical
model of the human body comprising 7 rigid segments
connected by n = 18 joints was constructed. The recommen-
dations of the International Society of Biomechanics were
followed to define the orientation of segment frames and
the sequence of joint rotations [21]. Specifically, the thigh
segment was connected to the pelvis via three successive
revolute joints, the shank was connected to the thigh through
a single revolute joint, and the foot was connected to the
shank with two revolute joints (see Fig. 2). The pelvis
position and orientation relative to the world frame were
defined through three prismatic and three revolute joints.

Fig. 2: Mechanical model of the human lower limbs. The
model consists of 18 degrees of freedom: 6 for the position
and orientation of the pelvis, and 12 for the rotations of the
lower limb joints.

B. Dataset and experimental setup

Eight healthy female and eleven healthy male participants
(73±15kg, 26±2years, 1.76±0.1m) gave written informed
consent prior to engaging in the experimental procedures
which consisted in carrying out 24 repetitions of squat during
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2min trials, with 5s of standing position between each squat.
Participants Participants ensured that their feet remained at
the exact same positions, indicated by two areas drawn on
both force plates (see Fig. 4). The entirety of both feet
remained in contact with the ground throughout the whole
experiment.

The participants performed the squat under three different
conditions: (1) a normal squat, (2) a squat with an ankle
brace, and (3) a squat with the ankle brace and additional
loads on the opposite leg. The condition 2 and 3 were used to
simulate impaired motions, typically observed among post-
stroke patients [22]. Obviously the brace will reduce the
range of motion of the ankle as in other studies [6], [23].
The additional masses were of 1.5kg and 0.5kg for the
tight and the shank, respectively. For a stroke patient, on its
paretic leg, the muscular loss of the thigh and shank were
estimated to 13% and 5% [22], respectively. In average, for
a person weighting 75kg the masses of the tight and of the
shank are 7.5kg and 4.5kg approximately [24]. This leads
to asymmetrical segment mass of 1kg and 0.25kg. Thus, the
added weights were representative of the inertial asymmetry
observed in patients.

A reference MCS composed by 22 cameras (Vero v2.2,
Vicon Nexus v2 [25], Oxford, UK) was used to experi-
mentally validate the proposed approach. Reflective markers
were placed on 18 anatomical landmarks on both left and
right side of the lower limbs (c.f. Fig. 4). This marker
set is very classical in the literature and is similar to the
popular plugin-gait one [26]. From markers data, a classical
MKO was used to calculate the reference joint angles [13].
Ground reaction forces and moments measurements were
collected using two commercially available laboratory-grade
force plates (Sensix).

Thus, the dataset was composed of 6D GRFM measured
from two force plates corresponding to the left and right foot,
labelled with the ground truth joint angles. 19 participants
were asked to perform 3 trials of squats, with each trial
lasting 2 minutes. Both data sources were acquired at 100Hz,

Fig. 4: Experimental setup used to acquire MCS and force
plates data. The brace and additional loads were used for the
impaired squat condition.

and the dataset was composed of a total of 693 240 data
points. Data of 15 participants (which approximately corre-
sponded to 80% of the total dataset) was used for the training
set, and data of 4 participants was used for the validation set
(which approximately corresponded to 20% of the dataset).
GRFM and joint angles data points were filtered using a
fifth-order zero-phase lag Butterworth filter with a cutoff
frequency set at 10Hz. The dataset was completed by five
additional features, representing weight and segments lengths
of each subject, determined from the reflective markers
and force plates, respectively. These features were added to
account for the differences in morphology between subjects,
such as variations in body proportions and mass distribution.

C. Inverse kinematics from GRFM and neural networks

In this study, we estimated joint angles from GRFM
measurements using a neural network architecture. The ar-
chitecture took as input 17 features corresponding to the 6D
GRFM from two force plates, the segments lengths, and the
weight of the participant. The output corresponded to the 12
lower limbs joint angles. The retained architecture combines
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Fig. 5: Lower limbs joint angles estimated during an impaired squat, showing different phases of the movement (from left
to right), and different planes of movement.

Bi-LSTM layers with MLP layers, and is particularly adapted
for inference from time series data as shown in recent studies
[9]. The architecture was composed by three Bi-LSTM layers
of 32 units each, followed by two fully connected MLP
layers, the first one composed by 64 neurons, the second
one by 256 neurons. Each MLP layer was followed by ReLU
activations, and batch normalization layer (see Fig. 3). The
input features corresponded to 0.4s horizon time sequences
of force plate data, that were standardized to have zero mean
and unit standard deviation. The Mean Squared Error (MSE)
between ground-truth and predicted joint angles was used as
the loss function, and a regularization term was added with
a weight λ = 1e−3:

L =
1

n

m∑
i=1

n∑
j=1

(
θij − θ̂ij

)2

+ λθij
2

(1)

with m the number of data points of the training set, n
the number of joint angles. θij and θ̂ij represent the inferred
and ground truth j − th joint angle, respectively, of the
i − th data point. The model was trained and validated
using the dataset described in Section II-B. The training and
validation processes were conducted on a CUDA-enabled
Nvidia RTX4070 GPU, on nepochs = 2800 epochs, with
a training lasting approximately 1 hour. A gradient descent
optimization was employed for the learning process. An
adaptive learning rate was managed through a sequence
of two schedulers. The first one, an exponential scheduler,
allowed to start the learning rate at 0.1, and to exponentially
reduce it to 1e−3 until nepochs/3. Then a linear scheduler
was used to decrease the learning rate from 1e−3 to 1e−4

until nepochs. A dropout rate of 25% was set to avoid
overfitting.

The computational effectiveness of the model was assessed
with our GPU, and with an Intel Core i5 14400F CPU.
The average inference time for a sequence of 40 data
points (corresponding to 0.4s of data at 100Hz) on GPU
was 12µs, varying between 4µs and 20µs. On CPU, the

average inference time for the same sequence was 240µs,
varying between 200µs and 280µs. This demonstrates the
possibility of using this model to infer joint angles in real-
time scenarios.

III. RESULTS

Fig. 6a and Fig. 6b show representative joint angles from a
randomly selected subject, that was not present in the training
set. Joint angles were estimated using the proposed Bi-
LSTM-MLP model and their reference values obtained from
MCS for 6 normal and for 5 impaired squats, respectively.
The corresponding RMSE were 2.71deg and 3.22deg in
average. It was expected from the literature that the proposed
approach will work well for planar squat. Moreover, one
can see that the impaired squat modifies the motion with
more motion in the mediolateral plane as it involves different
patterns for the ankle pronation/supination and of the hip
internal/external joint than for the normal motion. This is
well shown in Fig. 5 that shows a snapshot animation of the
estimated motion during the impaired squat. Despite these
modifications the proposed approach is capable of estimating
relatively accurately 3D lower limbs joint angles.

Table I, that presents the results obtained for 4 subjects of
the validation set, support these statements. For all modalities
the RMSE was below 6deg. The largest RMSE was observed
for the normal condition but it can be explained by the
fact that unconstrained squat motions are of larger amplitude
than the impaired one. Similarly, the flexion-extension angles
display the largest RMSE but always with a very good Corre-
lation Coefficient (CC) above 0.87. This was expected as the
learning process will focus preferentially on the joint angles
displaying large variation, i.e. having the largest influence in
the dataset. The poorest correlation were observable for the
ankles pronation/supination angles for all modalities. This is
due to the fact that these joint display motion of relatively
small amplitude. Thankfully, the inertial asymmetry and
ankle motion constraint modified very little the accuracy of
the proposed approach. It can be explained by the fact that



Time [s]

H
ip

 
fle

x.
/e

xt
. 

[d
eg

]

K
ne

e 
fle

x.
/e

xt
. 

[d
eg

]

A
nk

le
 

fle
x.

/e
xt

. 
[d

eg
]

H
ip

 
ab

d.
/a

dd
. 

[d
eg

]

A
nk

le
 

pr
on

./s
up

. 
[d

eg
]

H
ip

  i
nt

./e
xt

. 
ro

t [
de

g]

0 30 Time [s]0 30 Time [s]0 30 Time [s]0 30

Left legRight leg Left legRight leg

(a) (b)

MCS
Bi-LSTM-MLP

80

22

-7

-15

30

–12

-15

-105

30

-5
15

6

H
ip

 
fle

x.
/e

xt
. 

[d
eg

]

K
ne

e 
fle

x.
/e

xt
. 

[d
eg

]

A
nk

le
 

fle
x.

/e
xt

. 
[d

eg
]

H
ip

 
ab

d.
/a

dd
. 

[d
eg

]

A
nk

le
 

pr
on

./s
up

. 
[d

eg
]

H
ip

  i
nt

./e
xt

. 
ro

t [
de

g]

80

22

15

7

12

–30

-15

-105

30

-5

-15

 
-6

80

22

-7

-15

30

–12

-15

-105

30

-5
15

6

80

22

15

7

12

–30

-15

-105

30

-5

-15

 
-6

Fig. 6: Lower limbs joint angles estimated from reference MCS data (black) and from Bi-LSTM-MLP (red). (a) for a normal
squat exercise and (b) for an impaired participant using brace and additional loads.

Brace Brace and Load Normal
- - RMSE [deg] CC RMSE [deg] CC RMSE [deg] CC

Right

Hip flex./ext. 4.2± 0.8 0.96 7.8± 1.5 0.91 9.29± 2.2 0.94
Hip abd./add 2.5± 0.5 0.91 5.3± 0.9 0.18 2.5± 0.4 0.75

Hip int./ext. rot. 3.5± 0.6 0.76 3.7± 0.5 0.75 3.7± 0.5 0.8
Knee flex./ext. 5.9± 0.9 0.95 6.2± 1.3 0.94 11.4± 2.8 0.92
Ankle flex./ext. 1.9± 0.3 0.92 2.4± 0.4 0.87 3.9± 0.9 0.89

Ankle pron./sup. 2.2± 0.4 0.85 2.9± 0.4 0.91 4.2± 0.6 0.2

Left

Hip flex./ext. 4.5± 0.9 0.96 8.1± 1.5 0.92 9.1± 2.1 0.94
Hip abd./add 2.5± 0.5 0.93 5.1± 0.9 0.45 2.5± 0.4 0.76

Hip int./ext. rot. 2.6± 0.5 0.86 2.9± 0.6 0.75 3.4± 0.5 0.73
Knee flex./ext. 6.6± 0.9 0.96 6.9± 1.2 0.96 11.1± 2.7 0.92
Ankle flex./ext. 2.4± 0.4 0.95 3.1± 0.5 0.94 4.2± 0.8 0.91

Ankle pron./sup. 1.6± 0.2 0.83 2.9± 0.4 0.91 2.8± 0.5 0.67
Average 3.4± 0.6 0.90 4.8± 0.8 0.79 5.7± 1.2 0.78

TABLE I: Comparison of joint angles obtained from Bi-LSTM-MLP, with respect to joint angles obtained from MCS data

for human motion most of the dynamics can be explained
by kinematics factor rather than by the relatively minor
modifications of inertial properties of the musculoskelettal
system between two subjects. This was previously shown
by our group, that proposed a sensitivity analysis of the
influence of inertial parameters on the estimate of ground
reaction forces and moments [27]. Reinbolt et al. [28] also
drawn similar conclusion but with patients.

The proposed approach is compatible with real-time ap-
plication, thanks to the MLP layers simplicity, as the average

inference time of 12µs with GPU and 240µs with CPU. The
training time of the overall architecture was relatively fast
thanks to the MPL layers, as it requires only 1h of training.

IV. CONCLUSION

This paper shows the possibility of using only force plate
data to estimate lower limbs 3D joint kinematics during
normal and asymmetrical squat exercises. With accuracy
below or very close to 5deg and different types of motions,
the proposed approach could be used for a valid motion



assessment. Five degrees of error is usually considered as
reliable enough in clinical applications [29]. Even if it was
not the case in this study the proposed approach based on a
Bi-LSTM-MLP model can be used in real-time. This is due
to the relative simple structure of the MLP that is much faster
than the Gaussian process regression used previously in the
literature [19]. This and the simple required experimental
apparatus, requiring only two force plates, could pave the
way to interactive in-home rehabilitation. Nowadays, plenty
of affordable force plates or even embedded insoles can be
found on the market [17], [18], [30]. Thus, the key challenge
will be to use the proposed approach with less accurate
embedded insoles, which could broaden its use for in-home
rehabilitation. As mentioned in the introduction using force
plate data is not invasive nor pose privacy issues. Thus, we
believe that, the proposed approach could impact a larger
number of patients or people training for muscular reinforce-
ment using squat exercise. While it is crucial in the future
to test with real patients data and to fine tune the models
for those data, our proof-of-concept tested with impaired
squat motions indicates that the models could generalize
well to atypical mass distributions and squat movements. To
ensure broader generalization, it will be essential to train
the model on other types of motions, with a larger dataset
including unhealthy subjects data. Also it will be interesting
to analyse if the proposed approach performs for other
rehabilitation tasks such as ankle/hip strategy analysis or
hula-hoop motions [30]. For these analyses, transfer learning,
that will be simplified by the MLP computational low cost,
could be used to improve the proposed model if needed.

ACKNOWLEDGEMENT

The authors acknowledge the ANR – FRANCE (French
National Research Agency) for its financial support of the
ANR HERCULES project n°ANR-23-CE33-0010.

REFERENCES

[1] R. Mallat, V. Bonnet, M. Khalil, and S. Mohammed, “Upper limbs
kinematics estimation using affordable visual-inertial sensors,” IEEE
Trans. Autom. Sci., 2020.

[2] R. Mallat, V. Bonnet, R. Dumas, M. Adjel, G. Venture, M. Khalil, and
S. Mohammed, “Sparse visual-inertial measurement units placement
for gait kinematics assessment,” IEEE TNSRE, 2021.

[3] T. Li and T. Dong, “Monocular camera-based online sensor-to-segment
calibration for upper body pose estimation,” Sens Actuator A Phys,
2023.

[4] O. Pearl, S. Shin, A. Godura, S. Bergbreiter, and E. Halilaj, “Fusion
of video and inertial sensing data via dynamic optimization of a
biomechanical model,” J. Biomechs, 2023.

[5] M. Adjel, M. Sabbah, R. Dumas, M. Mirkov, N. Mansard, S. Mo-
hammed, and V. Bonnet, “Lower limbs human motion estimation from
sparse multi-modal measurements,” IEEE BioRob, 2024.

[6] S. Shin, Z. Li, and E. Halilaj, “Markerless motion tracking with noisy
video and imu data,” IEEE transactions on bio-medical engineering,
2023.

[7] S. D. Uhlrich, A. Falisse, L. Kidzinski, J. Muccini, M. Ko, A. S.
Chaudhari, J. L. Hicks, and S. L. Delp, “Opencap: Human movement
dynamics from smartphone videos,” PLOS Computational Biology,
2023.

[8] S. Cai, M. Shao, M. Du, G. Bao, and B. Fan, “A binocular-camera-
assisted sensor-to-segment alignment method for inertial sensor-based
human gait analysis,” IEEE Sens. J., 2022.

[9] L. Xiang, Y. Gu, Z. Gao, P. Yu, V. Shim, A. Wang, and J. Fernandez,
“Integrating an lstm framework for predicting ankle joint biomechan-
ics during gait using inertial sensors,” Computers in Biology and
Medicine, 2024.

[10] F. Wang, W. Liang, H. M. R. Afzal, A. Fan, W. Li, X. Dai, S. Liu,
Y. Hu, Z. Li, and P. Yang, “Estimation of lower limb joint angles and
joint moments during different locomotive activities using the inertial
measurement units and a hybrid deep learning model,” Sensors, 2023.

[11] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose:
Realtime multi-person 2D pose estimation using Part Affinity Fields,”
arXiv:1812.08008 [cs], 2018.

[12] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution repre-
sentation learning for human pose estimation,” CVPR, 2019.

[13] T.-W. Lu and J. O’Connor, “Bone position estimation from skin
marker co-ordinates using global optimisation with joint constraints,”
J. Biomechs, 1999.

[14] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T.
John, E. Guendelman, and D. G. Thelen, “Opensim: Open-source
software to create and analyze dynamic simulations of movement,”
IEEE Transactions on Biomedical Engineering, 2007.

[15] T. A. Wren, P. Isakov, and S. A. Rethlefsen, “Comparison of kine-
matics between theia markerless and conventional marker-based gait
analysis in clinical patients,” Gait Posture, 2023.
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