Finite rotations on \mathbb{Z}^2 : hierarchical structure and bijectivity analysis

Nicolas Passat, Phuc Ngo, Yukiko Kenmochi

Journée du GT GDMM@GeoComp at CIRM, October 24, 2024

Definition (Rotation)

A rotation on \mathbb{R}^2 is defined by a mapping:

$$\begin{array}{rcccc} \mathcal{R}_{\theta} & : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & & & & & \\ & & & & & M_{\theta} \cdot \mathbf{x} \end{array}$$

where M_{θ} is a rotation matrix:

$$M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Any \mathcal{R}_{θ} is **bijective**, **isometric** and **orientation-preserving**.

Definition (Discretized rotation)

A discretized rotation on \mathbb{Z}^2 is defined as

$$R_{\theta} := D \circ \mathcal{R}_{\theta \mid \mathbb{Z}^2}$$

where $D : \mathbb{R}^2 \to \mathbb{Z}^2$ is a discretization (rounding) function.

Remark: Most often, $\mathcal{R}_{\theta}(\mathbf{x}) \notin \mathbb{Z}^2$ for $\mathbf{x} \in \mathbb{Z}^2$.

Loss of the bijectivity

Those defects would be caused by the **loss of the bijectivity** of the discretized function:

$$\mathsf{R}_{ heta} := \mathsf{D} \circ \mathcal{R}_{ heta ert \mathbb{Z}^2}$$

Bijective rotations on \mathbb{Z}^2

Proposition (Nouvel, Rémila, 2004)

A discrete rotation R_{θ} is bijective iff $\theta \in \mathbb{B}$ with

$$\mathbb{B} = \left\{ \theta \in \mathbb{U} \mid \sin \theta \in \left\{ \pm \frac{2p(p+1)}{2p^2 + 2p + 1}, \pm \frac{2p + 1}{2p^2 + 2p + 1} \mid p \in \mathbb{N} \right\} \right\}$$

where $\mathbb U$ is the set of all rotation angles.

$$B^{
ho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leqslant
ho
ight\}$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ -rotation.

$$B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leq \rho \right\}$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ -rotation.

Questions:

• What are the bijective ρ -rotations?

Are there rotation angles that are not in \mathbb{B} (i.e. bijective discrete rotations), whose ρ -rotations are bijective?

$$B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leq \rho \right\}$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ -rotation.

Questions:

- What are the bijective ρ-rotations?
 Are there rotation angles that are not in B (i.e. bijective discrete rotations), whose ρ-rotations are bijective?
- What is the combinatorial structure of ρ -rotations?

$$B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leq \rho \right\}$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ -rotation.

Questions:

- What are the bijective ρ-rotations?
 Are there rotation angles that are not in B (i.e. bijective discrete rotations), whose ρ-rotations are bijective?
- What is the combinatorial structure of bijective ρ -rotations?

Hinge angles

Definition (Nouvel, 2006)

An angle α is a **hinge angle** for a discrete point $(p, q) \in \mathbb{Z}^2$ if the result of its rotation by α is a point on the half-grid.

We say that α is a hinge angle if there exist $p, q, k \in \mathbb{Z}$ such that

$$p \cos \alpha - q \sin \alpha = k + \frac{1}{2}$$

or
$$p \sin \alpha + q \cos \alpha = k + \frac{1}{2}$$

Property (Nouvel, 2006; Thibault, 2009)

• Hinge angles are **dense** in \mathbb{R} .

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in \mathbb{R} .
- Hinge angles are not rational rotation angles.

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in \mathbb{R} .
- Hinge angles are not rational rotation angles.
- Each hinge angle α is represented by a triple of integers
 (p, q, k) such that

$$\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2}$$
$$\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2}$$

where
$$\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}$$
 and $k < \sqrt{p^2 + q^2}$

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in \mathbb{R} .
- Hinge angles are not rational rotation angles.
- Each hinge angle α is represented by a triple of integers
 (p, q, k) such that

$$\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2}$$
$$\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2}$$

where $\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}$ and $k < \sqrt{p^2 + q^2}$.

• The **comparison** between hinge angles (and rational rotation angles) can be made in constant time by using only integers.

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in \mathbb{R} .
- Hinge angles are not rational rotation angles.
- Each hinge angle α is represented by a triple of integers
 (p, q, k) such that

$$\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2}$$
$$\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2}$$

where $\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}$ and $k < \sqrt{p^2 + q^2}$.

- The **comparison** between hinge angles (and rational rotation angles) can be made in constant time by using only integers.
- For a discretized ball Bⁿ, we have 8n³ hinge angles.

Definition

Rational rotations are defined by **primitive Pythagorean triples** $(p^2 - q^2, 2pq, p^2 + q^2)$ where $p, q \in \mathbb{Z}, p > q$ and p - q is odd, such that they are pairwise coprime. Then $\cos \alpha = \frac{p^2 - q^2}{p^2 + q^2}$ and $\sin \alpha = \frac{2pq}{p^2 + q^2}$.

Rotation space subdivision by hinge angles

Let us consider the (finite) subset of hinge angles h_j^{ρ} induced by the discretized ball B^{ρ} :

 $\mathbb{H}^{\rho} = \left\{h_{j}^{\rho}\right\}_{j=0}^{\sigma^{\rho}-1}$

The set $\ensuremath{\mathbb{U}}$ of all rotation angles is subdivided by

$$\begin{split} \mathbb{S}_{\bullet}^{\rho} &= \left\{ \left\{ h_{j}^{\rho} \right\} \right\}_{j=0}^{\sigma^{\rho}-1} \\ \mathbb{S}_{\sim}^{\rho} &= \left\{ \left(h_{j}^{\rho}, h_{(j+1)[\sigma^{\rho}]}^{\rho} \right) \right\}_{j=0}^{\sigma^{\rho}-1} \\ \mathbb{S}_{\bullet}^{\rho} &= \left\{ \left[h_{j}^{\rho}, h_{(j+1)[\sigma^{\rho}]}^{\rho} \right] \right\}_{j=0}^{\sigma^{\rho}-1} \end{split}$$

Hierarchical structure of finite rotations on \mathbb{Z}^2

Each segment of $\mathbb{S}_{\frown}^{\rho}$ (resp. $\mathbb{S}_{\bullet}^{\rho}$) models a specific ρ -rotation R_{θ}^{ρ} .

Let

$$\mathbb{S}_{\sim \circ} = \left\{ \{\theta\} \mid \theta \in \mathring{\mathbb{U}} \right\} \qquad \qquad \mathbb{S}_{\sim \circ}^{\star} = \mathbb{S}_{\sim \circ} \cup \bigcup_{\rho \in \mathbb{N}^{\frac{1}{2}}} \mathbb{S}_{\sim \circ}^{\rho}$$

 $\mathbb{S}_{\leadsto} \text{ is in bijection with } \mathring{\mathbb{U}} = \mathbb{U} \setminus \mathbb{H} \text{ and is a partition of } \mathring{\mathbb{U}}.$

The Hasse diagram $(\mathbb{S}_{\infty}^{\star}, \triangleleft)$ of the ordered set $(\mathbb{S}_{\infty}^{\star}, \subseteq)$ is a **partition tree**.

Combinatorial space of finite rotations on \mathbb{Z}^2 : Watershed tree

The combinatorial space of all the ρ -rotations for $0 \le \rho \le \mu$ can be seen as the watershed tree (Najman, Schmitt, 1996) of the saliency graph ($\mathfrak{G}^{\mu}, \Delta$).

There are two types of **bijective** ρ **-rotations** R_{θ}^{ρ} :

- B₁: the restrictions to B^ρ of bijective discrete rotations R_θ
- B₂: the injective mappings from B^ρ to R_θ(B^ρ) which are not in B₁

Definition

A ρ -rotation R^{ρ}_{θ} is bijective iff $\theta \in \mathbb{B}^{\rho}$ with

$$\mathbb{B}^{\rho} = \left\{ \theta \in \mathbb{U} \mid \sin \theta \in \left\{ \pm \frac{2p(p+1)}{2p^2 + 2p + 1}, \pm \frac{2p + 1}{2p^2 + 2p + 1} \mid p \in \mathbb{N} \land \mathbf{p} \leq \mathbf{2}\rho \right\} \right\}$$

Remark: $\mathbb{B}^{\rho} \cap \mathbb{H}^{\rho} = \emptyset$.

Remark: $|\mathbb{B}^{\rho}| = O(\rho)$ while $|\mathbb{H}^{\rho}| = O(\rho^3)$.

Remark: The exact comparison of elements of $\mathbb{B}^{\rho} \cup \mathbb{H}^{\rho}$ can be made in constant time.

Injective finite rotations on \mathbb{Z}^2 : $B_1 \cup B_2$

Definition

A ρ -rotation R^{ρ}_{θ} is **injective** iff we have

$$orall \mathbf{p}, \mathbf{q} \in B^
ho, ig(R^
ho_ heta(\mathbf{p}) = R^
ho_ heta(\mathbf{q})ig) \Longrightarrow (\mathbf{p} = \mathbf{q})$$

Example: After ρ -rotation with $\rho = \infty$, $\sqrt{12}$, $\sqrt{13}$, each point is either **injective** (bijective) or **non-injective**.

Building the (bijective) finite rotations on \mathbb{Z}^2 (bottom-up)

- 1. Build the watershed tree of $(\mathbb{S}^{\rho}_{\bullet \to}, \mathbb{S}^{\rho}_{\bullet}), \rho \in \llbracket 0, \mu \rrbracket$ with a time cost $O(\mu^3 \log \mu)$
- 2. Determine the bijective rotations in the tree from the leaves up to the root:
 - B_1 is verified with a time cost $O(\mu^3 \log \mu)$ for the leaves and $O(\mu^3)$ for the other vertices.
 - B₂ cannot be verified efficiently with a bottom-up strategy.

Building the (bijective) finite rotations on \mathbb{Z}^2 (top-down)

Build only the bijective ρ -rotations, from $\rho = 0$ down to $\rho = \mu$ by following an iterative "refine and select" paradigm.

The time cost for building the combinatorial space depends on the family of considered ρ -rotations:

- $O(\mu^3 \log \mu)$ for all the ρ -rotations
- $O(\mu^3)$ for all the bijective ρ -rotations (**B**₁)
- O(μ^{k+2}) for all the injective ρ-rotations (B₂) with 1 ≤ k ≤ 3 (not yet known!)

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0, \sqrt{50}]$: **B**₁ in pink; **B**₂ in blue.

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0, \sqrt{100}]$: **B**₁ in pink; **B**₂ in blue.

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0, \sqrt{500}]$: B_1 in pink; B_2 in blue.

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0, \sqrt{1000}]$: **B**₁ in pink; **B**₂ in blue.

Complexity analysis

Sizes of the families of all ρ -rotations, bijective and injective ones (log-log scale) for $\rho \in [\![\sqrt{1}, \sqrt{1000}]\!]$.

Complexity analysis

Sizes of the families of bijective and injective ρ -rotations for $\rho \in [\sqrt[]{1}, \sqrt{1000}]$.

Conclusion and perspectives

Conclusion

We investigated:

- The hierarchical structure of the finite (and infinite) rotations on \mathbb{Z}^2 based on hinge angles
- The bijective rotations either as the restrictions of bijective rotations on \mathbb{Z}^2 or injective rotations on the Euclidean balls
- Two algorithmic schemes for building the hierarchical structure of finite discrete rotations

Perspectives

- · More study on the evolution of injective cases
- Generalization of the top-down algorithm for a non-Euclidean-ball region