Finite rotations on Z 2 **: hierarchical structure and bijectivity analysis**

Nicolas Passat, Phuc Ngo, Yukiko Kenmochi

Journée du GT GDMM@GeoComp at CIRM, October 24, 2024

Definition (Rotation)

A rotation on \mathbb{R}^2 is defined by a mapping:

 $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\begin{array}{c} \end{array}$ I

$$
\begin{array}{rcl} \mathcal{R}_{\theta} & : & \mathbb{R}^2 \quad \rightarrow \quad \mathbb{R}^2 \\ & x & \mapsto \quad M_{\theta} \cdot x \end{array}
$$

where M_{θ} is a rotation matrix:

$$
M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}
$$

Any R^θ is **bijective**, **isometric** and **orientation-preserving**.

Definition (Discretized rotation)

A discretized rotation on \mathbb{Z}^2 is defined as

$$
R_\theta := D \circ \mathcal{R}_{\theta | \mathbb{Z}^2}
$$

where $D:\mathbb{R}^2\to\mathbb{Z}^2$ is a discretization (rounding) function.

Remark: Most often, $\mathcal{R}_{\theta}(\mathbf{x}) \notin \mathbb{Z}^2$ for $\mathbf{x} \in \mathbb{Z}^2$.

Loss of the bijectivity

Those defects would be caused by the **loss of the bijectivity** of the discretized function:

$$
\mathsf{R}_\theta := \mathsf{D} \circ \mathsf{R}_{\theta|\mathbb{Z}^2}
$$

(non-bijective)

Bijective rotations on \mathbb{Z}^2

Proposition (Nouvel, Rémila, 2004)

A **discrete rotation** R_{θ} is **bijective** iff $\theta \in \mathbb{B}$ with

$$
\mathbb{B} = \left\{ \theta \in \mathbb{U} \mid \sin \theta \in \left\{ \pm \frac{2p(p+1)}{2p^2 + 2p + 1}, \pm \frac{2p+1}{2p^2 + 2p + 1} \mid p \in \mathbb{N} \right\} \right\}
$$

where U is the set of all rotation angles.

$$
B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leqslant \rho \right\}
$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ **-rotation**.

$$
B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leqslant \rho \right\}
$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ **-rotation**.

Questions:

• **What are the bijective** ρ**-rotations?**

Are there rotation angles that are not in $\mathbb B$ (i.e. bijective discrete rotations), whose ρ -rotations are bijective?

$$
B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leqslant \rho \right\}
$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ **-rotation**.

Questions:

• **What are the bijective** ρ**-rotations?**

Are there rotation angles that are not in $\mathbb B$ (i.e. bijective discrete rotations), whose ρ -rotations are bijective?

• What is the combinatorial structure of ρ -rotations?

$$
B^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid ||\mathbf{q}||_2 \leqslant \rho \right\}
$$

defined as $R^{\rho}_{\theta} = (R_{\theta})_{|B^{\rho}}$, called a ρ **-rotation**.

Questions:

• **What are the bijective** ρ**-rotations?**

Are there rotation angles that are not in $\mathbb B$ (i.e. bijective discrete rotations), whose ρ -rotations are bijective?

• **What is the combinatorial structure of bijective** ρ**-rotations?**

Hinge angles

Definition (Nouvel, 2006)

An angle α is a **hinge angle** for a discrete point $(p,q) \in \mathbb{Z}^2$ if the result of its rotation by α is a point on the half-grid.

We say that α is a hinge angle if there exist $p, q, k \in \mathbb{Z}$ such that

$$
p\cos\alpha - q\sin\alpha = k + \frac{1}{2}
$$

or
$$
p\sin\alpha + q\cos\alpha = k + \frac{1}{2}
$$

Property (Nouvel, 2006; Thibault, 2009)

• Hinge angles are **dense** in R.

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in R.
- Hinge angles are **not rational rotation angles**.

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in R.
- Hinge angles are **not rational rotation angles**.
- Each hinge angle α is **represented by ^a triple of integers** (p, q, k) such that

$$
\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2}
$$

$$
\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2}
$$

where
$$
\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}
$$
 and $k < \sqrt{p^2 + q^2}$.

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in R.
- Hinge angles are **not rational rotation angles**.
- Each hinge angle α is **represented by ^a triple of integers** (p, q, k) such that

$$
\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2}
$$

$$
\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2}
$$

where
$$
\lambda = \sqrt{p^2 + q^2 - (k + \frac{1}{2})^2}
$$
 and $k < \sqrt{p^2 + q^2}$.

• The **comparison** between hinge angles (and rational rotation angles) can be made in constant time by using only integers.

Property (Nouvel, 2006; Thibault, 2009)

- Hinge angles are **dense** in R.
- Hinge angles are **not rational rotation angles**.
- Each hinge angle α is **represented by ^a triple of integers** (p, q, k) such that

$$
\cos \alpha = \frac{p\lambda + q(k + \frac{1}{2})}{p^2 + q^2}
$$

$$
\sin \alpha = \frac{p(k + \frac{1}{2}) - q\lambda}{p^2 + q^2}
$$

where $\lambda = \sqrt{p^2 + q^2} - (k + \frac{1}{2})$ $(\frac{1}{2})^2$ and $k < \sqrt{p^2 + q^2}$.

- The **comparison** between hinge angles (and rational rotation angles) can be made in constant time by using only integers.
- For a discretized ball $Bⁿ$, we have $8n³$ hinge angles.

Definition

Rational rotations are defined by **primitive Pythagorean triples**

 $(p^2-q^2,2pq,p^2+q^2)$ where $p,q\in\mathbb{Z},\, p>q$ and $p-q$ is odd, such that they are pairwise coprime. Then $\cos\alpha=\frac{p^2-q^2}{p^2+n^2}$ $\frac{p-q}{p^2+q^2}$ and sin $\alpha = \frac{2pq}{p^2 + q^2}$ $\frac{2pq}{p^2+q^2}$.

Rotation space subdivision by hinge angles

Let us consider the (finite) subset of hinge angles h_i^{ρ} θ_j^{ν} induced by the discretized ball B^{ρ} :

 $\mathbb{H}^\rho = \big\{ \textit{h}^\rho_i \big\}$ $\int_{i=0}^{\rho}$ j=0

The set U of all rotation angles is subdivided by

$$
\mathbb{S}_{\bullet}^{\rho} = \left\{ \left\{ h_{j}^{\rho} \right\}_{j=0}^{\sigma^{\rho-1}}
$$
\n
$$
\mathbb{S}_{\bullet}^{\rho} = \left\{ \left(h_{j}^{\rho}, h_{(j+1)[\sigma^{\rho}]}^{\rho} \right) \right\}_{j=0}^{\sigma^{\rho-1}}
$$
\n
$$
\mathbb{S}_{\bullet}^{\rho} = \left\{ \left[h_{j}^{\rho}, h_{(j+1)[\sigma^{\rho}]}^{\rho} \right] \right\}_{j=0}^{\sigma^{\rho-1}}
$$

Hierarchical structure of finite rotations on \mathbb{Z}^2

Each segment of $\mathbb{S}^{\rho}_{\text{e}}$ (resp. $\mathbb{S}^{\rho}_{\bullet\text{-}}$) models a specific ρ -rotation R^{ρ}_{θ} $\frac{\rho}{\theta}$.

Let

$$
\mathbb{S}_{\text{max}} = \left\{ \{\theta\} \mid \theta \in \mathring{\mathbb{U}} \right\} \hspace{1cm} \mathbb{S}_{\text{max}}^\star = \mathbb{S}_{\text{max}} \cup \bigcup_{\rho \in \mathbb{N}^\frac{1}{2}} \mathbb{S}_{\text{max}}^\rho
$$

 \mathbb{S}_{∞} is in bijection with $\mathbb{U} = \mathbb{U} \setminus \mathbb{H}$ and is a partition of \mathbb{U} .

The Hasse diagram (S [⋆], ◁) of the ordered set (S [⋆], ⊆) is a **partition tree**.

Combinatorial space of finite rotations on Z 2 **: Watershed tree**

The combinatorial space of all the ρ -rotations for $0 \leq \rho \leq \mu$ can be seen as the watershed tree (Najman, Schmitt, 1996) of the saliency graph $(\mathfrak{G}^{\mu}, \Delta)$.

There are two types of **bijective** ρ -rotations R^ρ_ρ $\frac{\theta}{\theta}$:

- \bullet B_1 : the restrictions to B^{ρ} of **bijective discrete rotations** R_{θ}
- B_2 : the *injective mappings* from B^{ρ} to $R_{\theta}(B^{\rho})$ which are not in B_1

Definition

A ρ -rotation R^{ρ}_{θ} $\frac{\rho}{\theta}$ is **bijective** iff $\theta \in \mathbb{B}^{\rho}$ with

$$
\mathbb{B}^{\rho} = \left\{ \theta \in \mathbb{U} \; \middle| \; \sin \theta \in \left\{ \pm \frac{2p(p+1)}{2p^2 + 2p + 1}, \pm \frac{2p+1}{2p^2 + 2p + 1} \; \middle| \; p \in \mathbb{N} \land \mathbf{p} \leq \mathbf{2}\rho \right\} \right\}
$$

Remark: $\mathbb{B}^{\rho} \cap \mathbb{H}^{\rho} = \emptyset$.

Remark: $|\mathbb{B}^{\rho}| = O(\rho)$ while $|\mathbb{H}^{\rho}| = O(\rho^3)$.

Remark: The exact comparison of elements of B^p ∪ HP can be made in constant time.

Injective finite rotations on \mathbb{Z}^2 : $B_1 \cup B_2$

Definition

A ρ -rotation R^{ρ}_{ρ} $_{\theta}^{\nu}$ is **injective** iff we have

$$
\forall {\mathsf{p}}, {\mathsf{q}} \in B^\rho, \left(R^\rho_\theta({\mathsf{p}}) = R^\rho_\theta({\mathsf{q}}) \right) \Longrightarrow ({\mathsf{p}} = {\mathsf{q}})
$$

Example: After ρ -rotation with $\rho = \infty$, √ 12, √ 13, each point is either **injective (bijective)** or **non-injective**.

Building the (bijective) finite rotations on \mathbb{Z}^2 (bottom-up)

- 1. Build the watershed tree of $(\mathbb{S}^{\rho}_{\infty}, \mathbb{S}^{\rho}_{\bullet}), \rho \in [\![0, \mu]\!]$ with a time cost $O(\mu^3 \log \mu)$
- 2. Determine the bijective rotations in the tree from the leaves up to the root:
	- B_1 is verified with a time cost $O(\mu^3 \log \mu)$ for the leaves and $O(\mu^3)$ for the other vertices.
	- \bullet $B₂$ cannot be verified efficiently with a bottom-up strategy.

Building the (bijective) finite rotations on \mathbb{Z}^2 (top-down)

Build only the bijective ρ -rotations, from $\rho = 0$ down to $\rho = \mu$ by following an iterative "refine and select" paradigm.

The time cost for building the combinatorial space depends on the family of considered ρ-rotations:

- $\bullet \,\ O(\mu^3 \log \mu)$ for all the ρ -rotations
- $O(\mu^3)$ for all the bijective ρ -rotations (B_1)
- $O(\mu^{k+2})$ for all the injective ρ -rotations (B_2) with 1 \leqslant K \leqslant 3 (not yet known!)

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0,$ √]: B_1 in pink; B_2 in blue.

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0,$ √]: B_1 in pink; B_2 in blue.

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0,$ √]: B_1 in pink; B_2 in blue.

Bijective and injective ρ -rotations for angles in $[0, \frac{\pi}{4}]$ where $\rho \in [0,$ √]: B_1 in pink; B_2 in blue.

Complexity analysis

Sizes of the families of all ρ -rotations, bijective and injective ones the sum p-rotations, bijective and
(log-log scale) for $\rho \in [\![\sqrt{1}, \sqrt{1000}]\!]$.

Complexity analysis

Sizes of the families of bijective and injective ρ -rotations for $\rho \in \llbracket \sqrt{1}, \sqrt{1000} \rrbracket.$

Conclusion and perspectives

Conclusion

We investigated:

- The hierarchical structure of the finite (and infinite) rotations on \mathbb{Z}^2 based on hinge angles
- The bijective rotations either as the restrictions of bijective rotations on \mathbb{Z}^2 or injective rotations on the Euclidean balls
- Two algorithmic schemes for building the hierarchical structure of finite discrete rotations

Perspectives

- More study on the evolution of injective cases
- Generalization of the top-down algorithm for a non-Euclidean-ball region