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Rotations on R?

Definition (Rotation)
A rotation on R? is defined by a mapping:

Ry : R2 - R?

X B My-x

where My is a rotation matrix:

M, = c?se —sind
sinf cos®

Any Ry is bijective, isometric and orientation-preserving.
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Rotations on 72

Definition (Discretized rotation)
A discretized rotation on Z2 is defined as

Rg =Do RHlZZ
where D : R? — 7?2 is a discretization (rounding) function.

Remark: Most often, Ry(x) ¢ Z2 for x € Z2.
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Loss of the bijectivity

Those defects would be caused by the loss of the bijectivity of the

discretized function:

RH =Do RH|ZZ
Initial grid Its discretized rotation

(non-bijective)
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Bijective rotations on 72

Proposition (Nouvel, Rémila, 2004)
A discrete rotation Ry is bijective iff 6 € B with

2p(p+1) L 2p+1 | -
202 +2p+1" " 2p2 +2p + 1

B:{86U|sin9€{i

where U is the set of all rotation angles.
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Finite rotations on 72

Instead of Z2, let us consider the discrete rotation Ry restricted to the
discretized Euclidean ball of radius p in 72, i.e.

B’ = {a<Z?|liall: < o}

defined as R} = (Ry)s-, called a p-rotation.
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Hinge angles

Definition (Nouvel, 2006)

An angle a is a hinge angle for a discrete point (p, q) € Z2 if the
result of its rotation by « is a point on the half-grid.

o @ 0 0 0 O
A
M
Q
0o K+1/2 P

We say that « is a hinge angle if there exist p, q, k € Z such that
pcosa —qgsina =k +1§
or psina+qcosa =K + 15
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Properties of hinge angles

Property (Nouvel, 2006; Thibault, 2009)

e Hinge angles are dense in R.
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Properties of hinge angles

Property (Nouvel, 2006; Thibault, 2009)
e Hinge angles are dense in R.
e Hinge angles are not rational rotation angles.

e Each hinge angle « is represented by a triple of integers
(p, g, k) such that

pA+q(k +3)
cosy = ————
. p(k +3)-ga
Ssihae = —————————

where 1 = \/pz +q2—(k+3)2andk < \/p? + 2.
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Properties of hinge angles

Property (Nouvel, 2006; Thibault, 2009)

Hinge angles are dense in R.
Hinge angles are not rational rotation angles.

Each hinge angle « is represented by a triple of integers
(p, g, k) such that

pA+q(k +3)
cosy = ————
. p(k +3)-ga
Ssihae = —————————

where A = \/pz +q2—(k+3)2andk < \/p? + 2.
The comparison between hinge angles (and rational rotation
angles) can be made in constant time by using only integers.

For a discretized ball B", we have 8n° hinge angles.
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Rational rotations

Definition

Rational rotations are defined by primitive Pythagorean triples
(p? - ¢°,2pq, p? + g%) where p,g € Z, p > q and p - gis odd, such
that they are pairwise coprime. Then cosa = S P-% and

2pq
p*+e?”

sina =

2pq
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Rotation space subdivision by hinge angles

Let us consider the (finite) subset of hinge angles hlp induced by the
discretized ball B*: o
o — [P\
B = {hi }j:O

The set U of all rotation angles is subdivided by
o P of -1
o = (<
of -1
0 _ O pP
e = {(# M)l

o -1
s = {7 e
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Hierarchical structure of finite rotations on 72

Each segment of SZ_, (resp. S¢.,) models a specific p-rotation RY.

Let
S.. = {6y 160} S;:SHuUS{;
pEN%

S, is in bijection with U = U \ H and is a partition of U.

The Hasse diagram (Sy., <1) of the ordered set (S¥,, C) is a partition tree.
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Combinatorial space of finite rotations on Z2: Watershed tree

4‘ 1-—-/; Q 1
A_/\

//(Q\..\.\. Rl |

WS ’/// AIATT | |
CALUITAL

(Sf’H,, S?) Partition tree  Saliency graph ~ Watershed tree

p € [0,5]

The combinatorial space of all the p-rotations for 0 < p < u can be
seen as the watershed tree (Najman, Schmitt, 1996) of the saliency
graph (64, A).
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Bijective finite rotations on 72

There are two types of bijective p-rotations Rg :

e Bj: the restrictions to B of bijective discrete rotations Ry

e By: the injective mappings from B to Ry(B*) which are not in
B4
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Bijective finite rotations on 7?: B,

Definition
A p-rotation R} is bijective iff 6 € B* with
2p(p+1) 2p + 1

B = {6 ingel+ L+ NAp<2
{ EU'S'" €{+2p2+2p+1 o rop1IPENAP p}}

Remark: B N H* = 0.
Remark: |B?| = O(p) while [H*| = O(p?).

Remark: The exact comparison of elements of B” U H” can be made in
constant time.
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Injective finite rotations on Z2: B; U B,

Definition

A p-rotation R, is injective iff we have

vp.q € B, (Ry(p) = R)(q)) = (p = q)

Example: After p-rotation with p = oo, V12, V13, each point is either

injective (bijective) or non-injective.
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Building the (bijective) finite rotations on Z? (bottom-up)

1. Build the watershed tree of (S, S%), p € [0, 1] with a time cost
O(® log 1)
2. Determine the bijective rotations in the tree from the leaves up to the
root:
e B is verified with a time cost O(u® log 1) for the leaves and O(u®)
for the other vertices.
e B, cannot be verified efficiently with a bottom-up strategy.

SRR LR
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Building the (bijective) finite rotations on Z? (top-down)

Build only the bijective p-rotations, from p = 0 down to p = u by
following an iterative “refine and select” paradigm.

! ! i A

—+— H————

R
Refine

——F——— ——Ft H-——+

— F — ——t b ——F

Select
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Building the (bijective) finite rotations on Z? (top-down) (cont.)

The time cost for building the combinatorial space depends on the
family of considered p-rotations:

e O(u® log ) for all the p-rotations
e O(u®) for all the bijective p-rotations (By)

e O(u**2) for all the injective p-rotations (Bz) with 1 < k < 3 (not yet
known!

o)&mmﬁﬁ
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Hierarchical structure of the bijective rotations on 72
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Hierarchical structure of the bijective rotations on 72
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Hierarchical structure of the bijective rotations on 72
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Hierarchical structure of the bijective rotations on 72
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Complexity analysis

Number of p-rotations

10¢E —— All p-rotations _
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I
10’
P

(log-log scale) for p € [ V1, ¥1000].
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Complexity analysis

Number of p-rotations
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Conclusion and perspectives

Conclusion

We investigated:

e The hierarchical structure of the finite (and infinite) rotations on Z?
based on hinge angles

e The bijective rotations either as the restrictions of bijective
rotations on Z? or injective rotations on the Euclidean balls

e Two algorithmic schemes for building the hierarchical structure of
finite discrete rotations

Perspectives

e More study on the evolution of injective cases

e Generalization of the top-down algorithm for a non-Euclidean-ball
region
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