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Abstract
We explore an optimal impulse control problem wherein an electronic de-

vice owner strategically calibrates protection levels against cyber attacks. Uti-
lizing epidemiological compartment models, we qualitatively characterize the
dynamics of cyber attacks within the network. We determine the optimal
protective measures against effective hacking by formulating and solving a
stochastic control problem with optimal switching. We demonstrate that the
value function for the cluster owner constitutes a viscosity solution to a sys-
tem of coupled variational inequalities associated with a fully coupled reflected
backward stochastic differential equation (BSDE). Furthermore, we devise a
comprehensive algorithm alongside a verification procedure to ascertain the
optimal timing for network protection across various cyber attack scenarios.
Our findings are illustrated through numerical approximations employing deep
Galerkin methods for partial differential equations (PDEs). We visualize the
optimal protection strategies in the context of two distinct attack scenarios:
(1) a constant cyber attack, (2) an exogenous cyber attack strategy modeled
with a Poisson process.
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1 Introduction
With the widespread deployment of connected systems and the ever-increasing digi-
talization of our economy and society, the risk of cyber failures is omnipresent for in-
dividuals, businesses, and institutions across both public and private sectors. These
cyber failures are diverse and complex, including incidents such as hacking, ran-
somware attacks, and DDoS attacks, and they carry varied consequences like data
corruption, data loss, and business disruptions that can significantly impact supply
chains.
Cyber risks can lead to economic failures through massive, large-scale attacks affect-
ing numerous victims or through more targeted cyber events that weaken networks
of industrial interdependencies. This threat has been amplified by recent health and
geopolitical crises. For instance, the COVID-19 pandemic created additional oppor-
tunities for cybercriminals, resulting in a surge of attacks such as ransomware, as
highlighted in the 2020 activity report by the National Agency for the Security of
Information Systems (ANSSI) [2]. More recently, the war in Ukraine has demon-
strated the power of cyberattacks as instruments of warfare. The costs of cyber-risk
are escalating rapidly. Damages caused by cybercrime, estimated at $1 trillion in
2021 (equivalent to 1% of global GDP), could soar to $10 trillion by 2025.
The evolving nature of cyber-risk, its potential to become systemic, and its behavioral
aspects make it challenging to establish the most effective cyber-risk management
policies. Cyber-risk is inherently a human risk, necessitating a deeper understanding
of the behaviors and motivations of the various actors involved. The COVID-19 crisis
highlights one of the most concerning characteristics of cyber-risk: the adaptability
and opportunism of hackers, as evidenced by the surge in malicious websites and
fraudulent emails exploiting the pandemic. To enhance the resilience of the economy
against this growing threat, it is crucial that users adopt and consistently implement
robust cyber-protection measures. Similar to epidemiology, the approach to cyber-
risk management is twofold: first, to adopt the right measures to avoid becoming a
victim of the disease, and second, to prevent spreading the risk to others. Raising
awareness and implementing effective protection measures are essential, even for the
smallest companies. If these smaller entities are compromised, they can negatively
impact larger organizations, either through a domino effect in the supply chain (as
seen during the COVID-19 pandemic with the shortage of electronic components)
or through a Trojan horse effect (as exemplified by the SolarWinds attack, where a
breach in a supplier’s security enabled the infiltration of large companies and gov-
ernment departments). Prevention policy is a hot topic issue, underscored by the
enactment of Europe’s Digital Operational Resilience Act (DORA), which took ef-
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fect in January 2023, with full implementation slated for January 2025 or the Cyber
Trust Mark in the United States. DORA requires financial entities to demonstrate
the ability to withstand, respond to, and recover from significant operational dis-
ruptions related to information and communication technologies (ICT). Notably, the
regulation mandates the creation of a monitoring mechanism for the service providers
these companies depend on, ensuring a more resilient and secure digital ecosystem.
The U.S. Cyber Trust Mark program has been introduced by the Federal Commu-
nications Commission (FCC) in July 2023. It is designed to help consumers easily
identify smart devices that meet certain cybersecurity standards, ensuring that these
devices are more secure against potential cyber threats.

Recent literature has led to significant advances in the quantification of cyber risk,
particularly in relation to insurance coverage. Notable contributions in this area in-
clude works such as [23, 24], or [6] among others. [26] investigate severe and extreme
cyber claims using a combination of Generalized Pareto modeling and regression tree
approaches. The accumulation and contagion characteristics of cyber events, as high-
lighted by [56], can be modeled using epidemiological network models adapted to the
specific nature of cyber risk, see [47], [35, 36]. Alternatively, self-excited counting
models, such as those proposed by [51], or marked-point processes as in [55] may
also be considered. These models can be used for the pricing of cyber-insurance
contracts, as in [25] or [37]. In this paper, we utilize several of these models, with a
particular emphasis on epidemiological models, to determine optimal switching pro-
tection policies in the context of cybersecurity.

The economics of cybersecurity was formally established in a theoretical framework
by Gordon and Loeb in their seminal 2002 paper [28]. They proposed a model for
determining the optimal allocation of a limited budget across different information
sets, which are characterized by their vulnerability and potential loss in the event of
a successful cyber attack. This influential article has inspired numerous subsequent
studies that have refined and expanded upon its conclusions by incorporating more
specific and concrete hypotheses, as exemplified by [54]. In particular, [29] adapted
this model to determine the optimal level of security within the framework of the
NIST Cybersecurity Framework. The article [46] examines optimal investment deci-
sions in the context of mixed insurance and investment strategies for managing cyber
risk. Additionally, [40] analyzes the response of defense systems to cyber-attacks as
a stochastic game involving a large number of interacting agents.

This study proposes to address the challenge faced by cluster owners in balancing the

3



costs of protecting their computer networks against cyber-attacks. The study focuses
on optimizing the decision-making process regarding whether to regularly update
or purchase security software. The issue at hand involves a trade-off: inadequate
protection can result in substantial financial losses due to cyber incidents, which
affect both the cluster owner and its customers. Conversely, implementing active
protection measures can be very costly.
This work emphasizes the need for dynamic and adaptive protection strategies due
to the rapid evolution of cyber threats and the behavior of both hackers and users.
To address this challenge, the paper proposes a method for defining optimal pro-
tection policies that are implemented continuously over time and involve discrete
sets of strategic choices. These policies are determined through the optimization of
performance-cost criteria, using advanced stochastic impulse control techniques and
regime switching. This approach provides a structured framework for achieving an
effective balance between the costs of cyber protection and the risks of potential
cyber incidents.

The theory of stochastic impulse control has been developed in the 70s’ and early 80s’
[11, 42, 41] by considering verification theorem and quasi-variational-inequality by
using control tools developed by Bensoussan and Lions. We refer to [12] for a review
of the litterature on the topic or to [10] for a general formulation of the problem. It
has then been extended to stochastic diffusion models and mixed controlled-switching
problems in for example [30, 45, 9, 8, 39, 48] and linked to BSDE theory in a non-
Markovian setting in [16, 22]. This kind of problems has been applied in diverse field
of economics: storage systems [33, 34]; decision-making theory with entry and exit
decisions [18, 57, 31]; energy storage [15]; control of portfolio in which an investor
optimally intervenes in order to rebalance his portfolio and consume a nonnegative
amount of money at random chosen times in [19]; optimal investment [52]; price
formation in limit order book [27]; operational flexibility of energy assets [14]; com-
modity market in [5, 17, 44] or more recently [4] in which the price of the commodity
is influenced by firms’ competition.

This study explores a stochastic epidemiological SIRS model that switches between
different dynamics based on two factors: the control exerted by cluster owners (en-
dogenous switching control) and hacking activities (exogenous and uncertain haz-
ards), which are modeled through various attack scenarios. This research addresses
a switching problem within a stochastic epidemiological framework, specifically fo-
cusing on cyber risk management in the presence of external attacks and enlargement
of filtration. Utilizing Itô’s calculus and the verification method, we derive a char-
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acterization of the cluster owner’s value function as a viscosity solution to a system
of quasi-variational inequalities, based on dynamic programming principles. We also
present a practical pseudo-algorithm and a verification theorem with explicit switch-
ing conditions. Our approach includes a detailed method and a pseudo-algorithm to
facilitate switching between protection policies under different attack scenarios.

Finally, we develop numerical approximations to simulate the optimal protection
strategies of the cluster’s owner based on the use of Deep Galerkin Method. The
Deep Galerkin Method (DGM) is a numerical technique that leverages deep learn-
ing to solve partial differential equations (PDEs). It builds on the classic Galerkin
method but uses deep neural networks to approximate the solution to the PDE,
making it particularly well-suited for high-dimensional problems where traditional
methods struggle due to the curse of dimensionality. This method is also known for
its capacity to handle complex domains which makes it a powerful tool for various
applications, particularly in fields such as finance, physics, and engineering.

The paper is organized as follows. Section 2 presents the epidemiological SIRS dy-
namics used to model cyber-attacks contagion through the cluster, and the impact
of a protection campaign. Section 3 states the optimal impulse control problem of a
cluster owner facing exogenous cyber-attacks. It is solved using dynamic program-
ming principle. A detailed numerical study is provided in Section 4.

2 Computer cluster modeling
Throughout the paper, we consider a filtered probability space (Ω, F ,F,P) endowed
with a one-dimensional Brownian motion denoted by W . The Brownian motion is
viewed as an uncertainty to determine precisely the transmission rate of the virus
inside the computers’ cluster.

2.1 Contagion, protection and hacking
The computers or electronic devices in the cluster can be in three different states,
defined below:

• The class of Susceptible (S): St denotes the proportion at time t of non-
sufficiently protected and not-yet-infected computers, thus susceptible to be
attacked.
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• The classes of Infected (I): It denotes the proportion at time t of infected
computers which in turn can contaminate other devices.

• The classes of Removed (R): Rt denotes the proportion at time t of computers
that are recovered after infection or protected by the antivirus software, and
thus can not be infected anymore. If one consider a given cyber-attack, this
protection can be effective forever, thus leading to a SIR model. Alternatively
if one consider different types of cyber-infection, the removed state is transient,
leading to a SIRS model.

The process (St, It, Rt)t≥0 denote the proportions of computers in the corresponding
classes with respect to the total number of computers. At each time t, the system
has to satisfy St + It + Rt = 1.
We assume that the hacker’s strategy, denoted by (at)t ≥ 0, is a binary variable
taking either the value at = 1 if the hacker attacks the cluster or at = 0 if the
hacking is inactive. When there is an attack, the intensity of attack is fixed at ν > 0.
The response of the cluster owner’s to protect its network is also a binary control
variable denoted by (pt)t≥0 such that either he develops a dedicated protection to
this attack, that is pt = 1 or he remains with the benchmark level of protection, that
is pt = 0. The intensity of defense implementation is κ > 0. Therefore the strategy of
the cluster owner (respectively hacker) is equivalently defined by the switching times
from activating dedicated protection to stopping it (respectively from launching an
attack to stopping it).
The evolution of the system is the following:

• Computers in the class (S) can stay in the class (S) or can pass to the class (I)
with fixed rate aν under Hacker’s action a, or by contagion with all infected
computers with parameter β.

• Computers in the class (S) can pass to the class (R) under the action of the
cluster owner p by downloading the antivirus software with a proportion pκ of
computers in the class (S).

• Computers in the class (I) are replaced with rate γ > 0 to pass to the class
(R).

• Computers in the class (R) can pass to the class (S) with rate ρ ≥ 0 as the
protection measure becomes obsolete.
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Note that if one want to model a given attack on a short horizon, ρ could be taken
as zero. The evolution of the system under protection, hacking and contagion is
summarized in the following graph.

Susceptible Infected

Removed

β
(contagion)

aν
(hacking)

γ

ρ
pκ

(protection)

Figure 1: Cluster evolution

We assume that the infection rate, rather than being constant, is subject to random
shocks which are modeled by a Brownian motion W as in [43, Equation (5)]. Hence,
the dynamics of the SIRS system evolves as

dSt =
(
ρRt − St (atν + Itβ + ptκ)

)
dt − σItStdWt.

dIt = atνStdt + βStItdt − Itγdt + σItStdWt

dRt = ptκStdt + γItdt − ρRtdt

, (2.1)

where a and p are switching processes taking values into {0, 1} and specified hereafter.

Hacker’s strategy. The strategy a of the hacker is defined by α̃ := (a0, (τ̃n)n≥0)
where a0 ∈ {0, 1} is the initial state and (τ̃n)n≥0 are the switching-times of the attack
level, with τ̃0 := 0. The sequence (τ̃n)n≥0 is an increasing sequence of random times
such that τ̃n −→ +∞ when n goes to +∞. Starting with the initial state a0 ∈ {0, 1},
then the state of attack at time t is

at =
∑
n≥0

1τ̃2n+1−a0 ≤t<τ̃2n+2−a0

and the intensity at time t of the attack of the hacker is equal to νat. The random
times (τ̃n)n≥0 are assumed exogenous random times independent to the filtration F.
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Cluster owner’s strategy. The initial state of protection p0 ∈ {0, 1} being given,
the strategy p of the cluster owner is then characterized by the sequence α of the
switching-times of the protection level α := (τn)n≥0 with τ0 := 0. The cluster
owner observes the current state of the system (St, It, Rt) and we assume that he
has set up a monitoring system to identify the current state of attack at, while
not being able to anticipate the strategy of the hacker. In other words, the cluster
owner is subjected to random switch of the environment. On each random time
interval [τ̃n, τ̃n+1[ characterized by the constant attack level aτ̃n , the cluster owner
strategy pt is an F-adapted process depending on this attack level aτ̃n . In terms
of switching times, the cluster owner’s strategy consists in the sequence (τn)n≥0 of
increasing F-stopping times, depending on the random environment of attack, such
that τn −→ +∞ when n goes to +∞. Starting with the initial state p0 ∈ {0, 1},
then the state of protection at time t is

pt =
∑
n≥0

1τ2n+1−p0 ≤t<τ2n+2−p0

and the intensity at time t of the cluster owner defense is equal to κpt.
We denote by Ap(α̃) the set of admissible switching control of the cluster owner for
a given strategy α̃ of the hacker. For a protection strategy α ∈ Ap(α̃), the dynamics
of the system is given by

Sα,α̃
t = s0 +

∫ t

0
ρRα,α̃

s ds −
∫ t

0
Sα,α̃

s Iα,α̃
s (βds + σdWs)

− ∑
τn≤t

∫ τn+1∧t

τn

Sα,α̃
s κpsds −

∑
τ̃n≤t

∫ τ̃n+1∧t

τ̃n

Sα,α̃
t νasds

Iα,α̃
t = i0 +

∫ t

0
Iα,α̃

s

(
(βSα,α̃

s − γ)ds + σSα,α̃
s dWs

)
+

∑
τ̃n≤t

∫ τ̃n+1∧t

τ̃n

Sα,α̃
t νasds

Rα,α̃
t = r0 +

∫ t

0
(Iα,α̃

s γ − ρRα,α̃
s )ds +

∑
τn≤t

∫ τn+1∧t

τn

κpsS
α,α̃
s ds,

S0 = s0, I0 = i0, R0 = r0,

(2.2)

where s0 + i0 + r0 = 1 and (s0, i0, r0) ∈ [0, 1]3.

3 Impulse control, switching and cluster owner’s
optimization

In this section, an exogenous strategy α̃ of the attacks is fixed and we deal with the
optimal response strategy for the cluster owner. More precisely, the cluster owner has
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to solve a two regime switching controlled SIRS system, by choosing an admissible
switching control α = (τn)n≥0 ∈ Ap(α̃) that optimizes the following criteria with
initial state (s0, i0) and initial regime p0 for the cluster owner

V α̃(s0, i0; p0) = inf
α∈Ap(α̃)

E

∫ +∞

0
e−δt(cIIα,α̃

t + f(Sα,α̃
t , pt))dt +

∑
n≥1

e−δτngpτn−1 , pτn


(3.1)

where the cost of the vaccination is f(s, p) = cV κ s p, with cV the marginal cost of
the vaccination, cI the marginal cost of the infected and g0,1, g1,0 > 0 are some fixed
switching costs. Here, δ > 0 is a positive discount factor, and we use the convention
that e−δτn = 0 when τn = ∞. Since S and I are valued in [0, 1], the expectation
defining V α̃ is well defined. Note moreover that V α̃(s0, i0; p0) is a real number for
any α̃ chosen by the hacker. Following the lines of [50, Lemma 3.1] we state a first
regularity result on V α̃ that will be used hereafter to set the dynamic programming
principle.

Lemma 3.1. The value function V α̃ defined by (3.1) is continuous. More precisely,
there exists some positive constant C such that for any couple of any conditions
(s0, i0), (s′

0, i′
0)

|V α̃(s0, i0; p0) − V α̃(s′
0, i′

0; p0)| ≤ C (|s0 − s′
0| + |i0 − i′

0|) .

3.1 Dynamic programming, Viscosity Solutions and value
function properties

In this part, we state the dynamic programming principle which is a well-known
property in stochastic optimal control and allows us to derive the PDE properties of
the value function.

3.1.1 Dynamic Programming Principle and Viscosity solutions

Following [50], the dynamic programming principle is formulated in our context in
this way:

For any initial state (s0, i0) and initial regime (a, p0)

V α̃(s0, i0; p0) = inf
α∈Ap(α̃)

E
[ ∫ θ

0
e−δt(cIIα,α̃

t + f(Sα,α̃
t , pt))dt + e−δθV α̃(Sα,α̃

θ , Iα,α̃
θ ; pθ)

+
∑

τn≤θ

e−δτngpτn−1 ,pτn

]
, (3.2)
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where θ is any stopping time, possibly depending on α ∈ Ap(α̃).

The dynamic programming principle combined with the notion of viscosity solutions
are known to be a general and powerful tool for characterizing the value function of
a stochastic control problem via a PDE representation.

We define now the operator La,p by

La,pv(s, i; a, p) = (ρ(1−s−i)−s(pκ+aν+βi))∂sv+(aνs−γi+βsi)∂iv+σ2

2 s2i2(∂ssv+∂iiv−2∂isv).

From now on we define p by p̄ = 0 if p = 1, or p̄ = 1 if p = 0. We thus introduce
the following system of variational inequalities together with the switching and the
continuations regions, for any p, a ∈ {0, 1}

min[−δv(s, i; a, p) + La,pv(s, i; a, p) + cIi + f(s, p), v(s, i; a, p̄) + gp,p̄ − v(s, i; a, p)] = 0,
(3.3)

on the set D := {(s, i) ∈ [0, 1]2, s + i ≤ 1}.

Remark 3.1. Note that for a SIR model (that is for the special case ρ = 0), s0 = 0
implies St = 0 at any time t and consequently It = i0e

−γt, for any time t ≥ 0. In
this case, the system of variational inequalities (3.3) admits the initial value

v(0, i; a, p) = cIi

δ + γ
.

Given a fixed value a in {0, 1} of the hacker’s strategy, we define the following
switching and continuation regions for any p ∈ {0, 1}

• Switching region from p to p:
Sa

p,p := {(s, i) ∈ D, v(s, i; a, p) = v(s, i; a, p) + gp,p};

• Continuation region in p: Ca
p := {(s, i) ∈ D, v(s, i; a, p) < v(s, i; a, p) + gp,p}.

Theorem 3.1. For each p ∈ {0, 1}, the value function V α̃ is a continuous viscosity
solution on D to the variational inequality (3.3). This means that for all p ∈ {0, 1},
V α̃ verifies both supersolution and subsolution properties.

Proof of the supersolution property:
First, for any (s, i, p) ∈ D × {0, 1}, we obtain, thanks to (3.2), and by choosing the
immediate switching control τ1 = 0, pτ1 = p̄, τn = ∞, n ≥ 2 and θ = 0

V α̃(s, i; p) ≤ V α̃(s, i; p̄) + gp,p̄. (3.4)
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Now, let φ ∈ C2,2(D,R) such that

φ(s, i) − V α̃(s, i; p) = min
D

(φ − V α̃(., .; p)) = 0 (3.5)

It remains to show that

−δφ(s, i) + La,pφ(s, i) + cIi + f(s, p) ≥ 0. (3.6)

By using the dynamic programming principle (3.2) for θ = h and taking the no-
switching control τn = ∞, we get

V α̃(s, i; p) ≤ E
[∫ θ

0
e−δt(cIIα,α̃

t + f(Sα,α̃
t , pt))dt + e−δθV α̃(Sα,α̃

θ , Iα,α̃
θ ; pθ)

]
. (3.7)

Applying Itô’s formula to e−δtφ(Sα,α̃
t , Iα,α̃

t ) between 0 and θ and since
(∂sφ + ∂iφ) (Sα,α̃

t , Iα,α̃
t )σSα,α̃

t Iα,α̃
t is bounded, we obtain

1
h
E

[∫ θ

0
e−δt

(
−δφ(Sα,α̃

t , Iα,α̃
t ) + La,pφ(Sα,α̃

t , Iα,α̃
t ) + cIIα,α̃

t + f(Sα,α̃
t , pt)

)
dt

]

= 1
h
E

[
e−δθφ(Sα,α̃

θ , Iα,α̃
θ ) − φ(s, i) +

∫ θ

0
e−δt(cIIα,α̃

t + f(Sα,α̃
t , pt))dt

]
≥ 0,

(3.8)

where we have used for the last line inequalities (3.5) and (3.7).
From the dominated convergence theorem, this yields by sending h to zero

−δφ(s, i) + La,pφ(s, i) + cIi + f(s, p) ≥ 0.

By combining with (3.4), we get

min{−δφ(s, i)+La,pφ(s, i)+cIi+f(s, p), −V α̃(s, i; p)+V α̃(s, i; p̄)+gp,p̄} ≥ 0. (3.9)

□

Proof of the subsolution property:
Let (s, i, p) ∈ [0, 1] × [0, 1] × {0, 1} and φ ∈ C2,2(D,R) such that

φ(s, i) − V α̃(s, i; p) = max
D

(φ − V α̃(., .; p)) = 0 (3.10)

We argue by contradiction by assuming in the contrary that

−δφ(s, i) + La,pφ(s, i) + cIi + f(s, p) > 0 ,

and − V α̃(s, i; p) + V α̃(s, i; p̄) + gp,p̄ > 0 .
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By continuity of V α̃, φ and its derivatives, there exists some ϵ > 0 such that

−δφ(s′, i′) + La,pφ(s′, i′) + cIi′ + f(s′, p) ≥ ϵ , ∀(s′, i′) ∈ Bϵ(s, i)
(3.11)

−V α̃(s′, i′; p) + V α̃(s′, i′; p̄) + gp,p̄ ≥ ϵ , ∀(s′, i′) ∈ Bϵ(s, i).
(3.12)

For any α = (τn)n≥1 ∈ Ap(α̃), consider the exit time τϵ := inf{t ≥ 0, (Sα,α̃
t , Iα,α̃

t ) /∈
Bϵ(s, i)}. By applying Itô’s formula to e−δtφ(Sα,α̃

t , Iα,α̃
t ) between 0 and θ = τ1 ∧ τϵ,

we have by noting that before θ, (Sα,α̃, Iα,α̃) stays in regime p and in the ball Bϵ(s, i):

V α̃(s, i; p) = φ(s, i)=E
[
e−δθφ(Sα,α̃

θ , Iα,α̃
θ )+

∫ θ

0
e−δt(δφ(Sα,α̃

t , Iα,α̃
t )−La,pφ(Sα,α̃

t , Iα,α̃
t ))dt

]

≤ E
[
e−δθV α̃(Sα,α̃

θ , Iα,α̃
θ ; p)+

∫ θ

0
e−δt(δφ(Sα,α̃

t , Iα,α̃
t )−La,pφ(Sα,α̃

t , Iα,α̃
t ))dt

]

Now, since θ = τ1 ∧ τρ, we have

e−δθV α̃(Sα,α̃
θ , Iα,α̃

θ ; pθ) +
∑

τn≤θ

e−δτngpτn−1 ,pτn

= e−δτ1(V α̃(Sα,α̃
τ1 , Iα,α̃

τ1 ; p̄) + gp,p̄)1τ1≤τϵ+e−δτϵV α̃(Sα,α̃
τϵ

, Iα,α̃
τϵ

; p)1τϵ<τ1

≥ e−δτ1(V α̃(Sα,α̃
τ1 , Iα,α̃

τ1 ; p) + ϵ)1τ1≤τϵ+e−δτϵV α̃(Sα,α̃
τϵ

, Iα,α̃
τϵ

; p)1τϵ<τ1

= e−δθV α̃(Sα,α̃
θ , Iα,α̃

θ ; p) + ϵe−δτ11τ1≤τϵ ,

where the inequality follows from (3.12). By plugging into (3.13) and using (3.11),
we get

V α̃(s, i; p) ≤ E

∫ θ

0
e−δt(cIIα,α̃

t +f(Sα,α̃
t , pt))dt + e−δθV α̃(Sα,α̃

θ , Iα,α̃
θ ; pθ)+

∑
τn≤θ

e−δτngpτn−1 ,pτn


−ϵE

[∫ θ

0
e−δtdt + e−δτ11τ1≤τϵ

]
. (3.13)

On the other hand we note from the result shown in the proof of Theorem 3.1 [50]
that there exists some positive constant c0 > 0 such that

E
[∫ θ

0
e−δtdt + e−δτ11τ1≤τϵ

]
≥ c0, ∀α ∈ Ap(α̃).
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Finally, by including this last inequality (uniform in α) into (3.13), we obtain :

V α̃(s, i; p) ≤ inf
α∈Ap(α̃)

E
[∫ θ

0
e−δt(cIIα,α̃

t +f(Sα,α̃
t , pt))dt + e−δθV α̃(Sα,α̃

θ , Iα,α̃
θ ; pθ)

+
∑

τn≤θ

e−δτngpτn−1 ,pτn

]
− ϵ c0,

which is in contradiction with dynamic programming principle (3.2). □

In a manner similar to Lemma 4.1 in [49], we state that V α̃ is a viscosity solution of
the variational system on D, and a regular solution of a PDE on each continuation
region (for a constant strategy of the hacker), satisfying smooth fit condition on the
boundary.

Lemma 3.2. For all p ∈ {0, 1}, and constant hacker’s strategy a, the value function
V α̃(., .; p) is smooth C2,2 on Ca

p , and satisfies in a classical sense the following PDE:

−δv(s, i; a, p) + La,pv(s, i; a, p) + cIi + f(s, p) = 0, (s, i) ∈ Ca
p . (3.14)

We can also derive the smooth-fit property of the value function V α̃ through the
boundaries of the switching regions by following Theorem 4.1 in [50].

Lemma 3.3. For all p ∈ {0, 1}, and constant hacker’s strategy a, the value function
V α̃(., .; p) is continuously differentiable on D. Moreover, at (s, i) ∈ Sa

p,p̄, we have

∂sV
α̃(s, i; p) = ∂sV

α̃(s, i; p̄) and ∂iV
α̃(s, i; p) = ∂iV

α̃(s, i; p̄).

3.1.2 Link with a system of reflected BSDE

In this section, we give the probabilistic representation of the value function V α̃

solving (3.1) as a system of reflected BSDE with infinite horizon. We introduce the
following spaces.

• S2(R) is the set of R-valued adapted and càdlàg processes (Yt)t≥0 such that

E[sup
t≥0

|Yt|2] < ∞,

• H2(R) is the set of R-valued, progressively measurable processes (Zt)t≥0 such
that

E
[ ∫ ∞

0
|Zt|2dt

]
< ∞,
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• K2(R) is the set of non-decreasing processes K in S2(R) with K0 = 0.

We set for any (a, p) ∈ {0, 1} × {0, 1}



e−δtY a,p
t =

∫ ∞

t
e−δs[cIIα,α̃

t + f(Sα,α̃
t , pt)]ds −

∫ ∞

t
e−δsZa,p

s dWs + Ka,p
∞ − Ka,p

t

lim
t→∞

e−δtY a,p
t = 0

Y a,p
t ≤ Y a,p

t + gp,p∫ ∞

0
e−δs[Y a,p

s − (Y a,p
s + gp,p)]dKa,p

s = 0.

(3.15)
Reflected BSDEs with finite horizon have been widely investigated in the literature,
see for example [21, 38, 16], and [32, 3, 20, 1] for the link with switching problem.
Applying the result in the references mentioned, we directly get the following result.

Proposition 3.1. The reflected BSDE (3.15) admits a unique solution (Y a,p, Za,p, Ka,p) ∈
S2(R) × H2(R) × K2(R) for any regime (a, p) and for any initial regime (a0, p0) ∈
{0, 1} × {0, 1}, we have

Y a0,p0
0 = V α̃(s0, i0; p0).

3.2 Verification argument
3.2.1 Verification procedure

In this section, we formally prove that a smooth solution to the variational inequal-
ities (3.3) provides a solution to the optimization problem (3.1). This section fol-
lows [13, 10] extended to a two competitive players model and [7, 4] adapted to
our problem assuming that the strategy of one player is outlined and anticipated
as a cyber attack scenario. Assume that there is a family of smooth functions
{v(., .; a, p), a ∈ {0, 1}, p ∈ {0, 1}} which solves (3.3). We fix the initial data (s0, i0),
the initial regime p0 and a hacker’s strategy α̃, that is the state of attack at time t
is at =

∑
n≥0

1τ̃2n+1−a0 ≤t<τ̃2n+2−a0
.

Attack scenarios. We detail below two attack scenarios for the hacker’s strategy
α̃ we are studying.

1. Constant attack from the hacker. We assume that the hacker constantly attack
the cluster, that is τ̃n = ∞ for any n > 1 and a0 = 1.
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2. Random attack sequence from the hacker. Let N be a Poisson process modeling
the number of switches of the cyber-attack level. Then, τ̃k is the kth event time
of N such that at = a0 for t ∈ [τ̃2k, τ̃2k+1) and at = a0 for t ∈ [τ̃2k+1, τ̃2k+2).

We define (S∗, I∗, R∗) the solution of the SDEs system (2.2) characterized by the
switching sequence α∗ := (τ ∗

n)n≥0 that contains both the switching times of the
hacker (that is α̃) and the optimal switching times of the cluster owner (that is α̂)
defined by induction as follow
Initialization. Starting at a0 for the hacker and p0 for the cluster owner, we set

τ ∗
1 = inf{t > 0, v(S∗

t , I∗
t ; a0, p0) = v(S∗

t , I∗
t ; a0, p̄0) + gp0,p̄0} ∧ τ̃1.

Induction. For n > 1.

τ ∗
n = inf{t > τ ∗

n−1, v(S∗
t , I∗

t ; at, pτ∗
n−1

) = v(S∗
t , I∗

t ; at, p̄τ∗
n−1

)+gpτ∗
n−1

,p̄τ∗
n−1

}∧min
k≥1

{τ̃k, s.t. τ̃k ≥ τ ∗
n−1}.

Theorem 3.2. Let (a, p) ∈ {0, 1} × {0, 1} and v(. . . ; a, p) be the solution to (3.14)
recalled below

−δv(s, i; a, p) + La,pv(s, i; a, p) + cIi + f(s, p) = 0, (s, i) ∈ Ca
p .

We set

v⋆(S∗
t , I∗

t ) =
v(S∗

t , I∗
t ; at, pt) if (S∗

t , I∗
t ) ∈ Cat

pt

v(S∗
t , I∗

t ; at, pt) if (S∗
t , I∗

t ) ∈ Sat
pt,pt

We define ((τ̂n)n, p̂) where

τ̂1 = inf{t > 0, v(S∗
t , I∗

t ; at, p0) = v(S∗
t , I∗

t ; at, p̄0) + gp0,p̄0},

p̂1 :=
p0 if τ ∗

1 = τ̂1

p0 otherwise

and

τ̂n = inf{t > τ̂n−1, v(S∗
t , I∗

t ; at, p̂t) = v(S∗
t , I∗

t ; at, ¯̂pt) + gp̂t, ¯̂pt
},

p̂n :=
p̄τ̂n−1 if τ ∗

n = mink≥1{τ̂k, s.t. τ̂k ≥ τ ∗
n−1}

pτ̂n−1 otherwise
.

Then α̂ = (τ̂n)n∈N is optimal for the cluster owner problem and V α̃(S0, I0; p0) =
v⋆(S0, I0).

15



Proof. We prove the following claim by induction:

Pn : E[e−δτ̂nv⋆(Sτ̂n , Iτ̂n) +
∑
j≤n

e−δτ̂j gpτ̂j−1 ,pτ̂j
+

∫ τ̂n

0
(cIIs + f(Ss, p∗

s))ds] = v⋆(S0, I0).

Base case. We start by proving directly P1. Let τ < τ̂1 be a stopping time.
Case a. Assume that τ̃1 > τ̂1, i.e. the hacker’s strategy remains unchanged on [0, τ̂1].
We apply Itô’s formula between t = τ and t = 0.

e−δτ v⋆(Sτ , Iτ ) = e−δτ v(Sτ , Iτ ; a0, p0)

= v(S0, I0; a0, p0) +
∫ τ

0
e−δs[−δv(Ss, Is; a0, p0) + La,pv(Ss, Is; a0, p0)]ds

+
∫ τ

0
[∂I − ∂S]v(Ss, Is; a0, p0)σSsIsdWs

= v(S0, I0; a0, p0) −
∫ τ

0
e−δs[cIIs + f(Ss, p0)]ds

+
∫ τ

0
[∂I − ∂S]v(Ss, Is; a0, p0)σSsIsdWs.

Therefore,

E
[
e−δτ v(Sτ , Iτ ; a0, p0) +

∫ τ

0
e−δs[cIIs + f(Ss, p0)]ds

]
= v(S0, I0; a0, p0).

Since τ < τ̂1, we deduce

v⋆(S0, I0) ≤ E
[
e−δτ v(Sτ , Iτ ; a0, p0) + gp0,p0 +

∫ τ

0
e−δs[cIIs + f(Ss, p0)]ds

]
,

so that

v⋆(S0, I0) ≤ inf
τ<τ̂1

E
[
e−δτ v⋆(Sτ , Iτ ) + gp0,p0 +

∫ τ

0
e−δs[cIIs + f(Ss, p0)]ds

]
,

with equality for τ = τ̂1. Consequently

v⋆(S0, I0) = E
[
e−δτ̂1(v(Sτ̂1 , Iτ̂1 ; a0, p0) + gp0,p0) +

∫ τ̂1

0
e−δs[cIIs + f(Ss, p0)]ds

]
.

Case b. For the sake of simplicity, we only assume now that the hacker switches once
before τ , that is

0 < τ̃1 < τ < τ̂1.

The proof is similar if we assume that there exists k such that 0 < τ̃1 < · · · < τ̃k <
τ < τ̂1 and by applying Itô’s formula between each change of strategy of the hacker.
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Going back to the case 0 < τ̃1 < τ , we note that at = a0 for t < τ̃1 and at = a0 for
t ∈ [τ̃1, τ ]. We first apply Itô’s formula between 0 and τ̃1.

e−δτ̃1v⋆(Sτ̃1 , Iτ̃1)

= v⋆(S0, I0) +
∫ τ̃1

0
e−δs[−δv(Ss, Is; as, p0) + La,pv(Ss, Is; as, p0)]ds

+
∫ τ̃1

0
[∂I − ∂S]v(Ss, Is; as, p0)σSsIsdWs

= v⋆(S0, I0) −
∫ τ̃1

0
e−δs[cIIs + f(Ss, p0)]ds +

∫ τ̃1

0
[∂I − ∂S]v(Ss, Is; as, p0)σSsIsdWs,

we get

v⋆(S0, I0) = E[e−δτ̃1v⋆(Sτ̃1 , Iτ̃1) +
∫ τ̃1

0
e−δs[cIIs + f(Ss, p0)]ds]. (3.16)

We now apply Itô’s formula between τ̃1 and τ . We get

e−δτ v⋆(Sτ , Iτ )

= e−δτ̃1v⋆(Sτ̃1 , Iτ̃1) +
∫ τ

τ̃1
e−δs[−δv(Ss, Is; as, p0) + La,pv(Ss, Is; as, p0)]ds

+
∫ τ

τ̃1
[∂I − ∂S]v(Ss, Is; as, p0)σSsIsdWs

= e−δτ̃1v⋆(Sτ̃1 , Iτ̃1) −
∫ τ

τ̃1
e−δs[cIIs + f(Ss, p0)]ds +

∫ τ

τ̃1
[∂I − ∂S]v(Ss, Is; as, p0)σSsIsdWs,

therefore

e−δτ̃1v⋆(Sτ̃1 , Iτ̃1) = E
[
e−δτ v(Sτ , Iτ ; a0, p0) +

∫ τ

τ̃1
e−δs[cIIs + f(Ss, p0)]ds

∣∣∣∣Fτ̃1

]
Since τ < τ̂1, we deduce

e−δτ̃1v⋆(Sτ̃1 , Iτ̃1) ≤ inf
τ<τ̂1

E
[
e−δτ (v(Sτ , Iτ ; a0, p0)+gp0,p0)+

∫ τ

τ̃1
e−δs[cIIs+f(Ss, p0)]ds

∣∣∣∣Fτ̃1

]
with equality for τ = τ̂1. Combining this inequality with (3.16) we get

v⋆(S0, I0) = E
[
e−δτ̂1v⋆(Sτ̂1 , Iτ̂1) + gp0,p0 +

∫ τ̂1

0
e−δs[cIIs + f(Ss, p0)]ds

]
.
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Induction Step. Assume that Pn is satisfied for some n ≥ 1. Reproducing the proof
of the base case above by applying Itô’s between τ̂n−1 and τ < τ̂n we similarly obtain

E[e−δτ̂n(v⋆(Sτ̂n , Iτ̂n)+gp∗
τ̂n−1

,p∗
τ̂n−1

)+
∫ τ̂n

τ̂n−1
(cIIs+f(Ss, p∗

s))ds] = E[e−δτ̂n−1v⋆(Sτ̂n−1 , Iτ̂n−1)].

By induction hypothesis, we get

E[e−δτ̂nv⋆(Sτ̂n , Iτ̂n) +
∑
j≤n

e−δτ̂j gpτ̂j−1 ,pτ̂j
+

∫ τ̂n

0
(cIIs + f(Ss, p∗

s))ds] = v⋆(S0, I0).

By taking n → +∞ since v is continuous on a bounded domain with τ̂n → +∞, we
get

v(S0, I0; a0, p0) = E[
∫ ∞

0
(cIIs + f(Ss, p∗

s))ds +
∞∑

j=1
e−δτ̂j gpτ̂j−1 ,pτ̂j

].

□

4 Numerical studies

4.1 Numerical approximation by Deep Galerkin Method
In this part, we are interested in developing the numerical algorithm to determine
the optimal strategy of a cluster owner. Indeed, we need to solve numerically the
PDE (3.3) by using the method of Deep Galerkin. The main idea behind solving
PDEs using the Deep Galerkin Method (DGM) described in the work of Sirignano
and Spiliopoulos [53] is to represent the unknown function of interest using a deep
neural network. Noting that the function must satisfy a known PDE, the network is
trained by minimizing losses related to the differential operator acting on the function
along with any initial, terminal and/or boundary conditions the solution must satisfy.
The training data for the neural network consists of different possible inputs to the
function and is obtained by sampling randomly from the region on which the PDE
is defined. One of the key features of this approach is the fact that, unlike other
commonly used numerical approaches such as finite difference methods, it is mesh-
free. Simulations indicate that the DGM may not suffer (as much as other numerical
methods) from the curse of dimensionality associated with high-dimensional PDEs

18



and PDE systems. A discussion of DGM and its applications can be found in Al-
Aradi et al. (2018). On a related note, the work of Hutzenthaler et al. (2019)
proves that deep learning-based algorithms overcome the curse of dimensionality in
the numerical approximation of solutions for a class of nonlinear PDEs.
In this section we fix the parameter a and p and we consider the following PDE:

−δv(s, i) + La,pv(s, i) + cIi + f(s, p) = 0, on D. (4.1)
where

La,pv(s, i) = (ρ(1−s−i)−s(pκ+aν+βi))∂sv+(aνs−γi+βsi)∂iv+σ2

2 s2i2(∂ssv+∂iiv−2∂isv).

The DGM algorithm approximates v(s, i) with a deep neural network v̂(s, i; θ) where
θ ∈ Rk are the neural network’s parameters. Note that the differential operators in
Lv̂(s, i; θ) can be calculated analytically. Construct the objective function:

J (v̂) = ∥−δv̂(s, i; θ) + La,pv̂(s, i; θ) + cIi + f(s, p)∥2
D,ν1

.

Notice that ∥v̂(y)∥2
Y,ν =

∫
Y

|v̂(y)|2ν(y)dy where ν(y) is a positive probability density
on y ∈ Y . J (v̂) measures how well the function v̂(s, i; θ) satisfies the PDE differential
operator and initial condition. If J (v̂) = 0, then v̂(s, i; θ) is a solution to the PDE
(4.1).
The goal is to find a set of parameters θ such that the function v̂(s, i; θ) minimizes
the error J (v̂). If the error J (v̂) is small, then v̂(s, i; θ) will closely satisfy the
PDE differential operator and initial condition. Therefore, a θ which minimizes
J (v̂(.; θ)) produces a reduced-form model v̂(s, i; θ) which approximates the PDE
solution v(s, i). To estimate θ, one can minimize J (v̂) using stochastic gradient
descent on a sequence space points drawn at random from D. This avoids ever
forming a mesh.
The DGM algorithm is:

1. Generate random points (sn, in) from D and (xn, yn) from {0}× [0, 1] according
to respective probability densities ν1 and ν2.

2. Calculate the squared error G(θn, rn) at the randomly sampled points rn =
{(sn, in), (xn, yn)} where

G(θn, rn) =
(

−δv̂(sn, in; θ)+La,pû(sn, in; θ)+cIin+f(sn, p)
)2

+
(

v̂(0, yn; θ)− cIyn

δ + γ

)2
.
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3. Take a descent step at the random point rn:

θn = θn+1 − αn∇θG(θn, rn).

4. Repeat until convergence criterion is satisfied.

4.2 Optimal protection under different attack scenarios
This section illustrates Theorem 3.2 for the two attack scenarios developed above: (1)
constant attack of the hacker a = 1; (2) exogenous attacks switches given by a Poisson
process. We are studying the evolution of the SIRS systems under optimal attack
on a time period of T = 30 days (one month). We discretize the DGM algorithm
with a time step h = 0.125 corresponding to 3 hours in a day. In each scenario, the
contagion rate is β = 0.04, the recovery rate is γ = 0.02, the replacement rate is
ρ = 0.002, the intensity of the attack is ν = 0.05, the volatility of the SIRS system is
σ = 0.2, the actualisation parameter is δ = 0.2. We start with only susceptible and
no corrupted devices, S0 = 1, I0 = 0.

4.2.1 Scenario 1: constant attack

We illustrate Theorem 3.2 when the hacker attack stays in the state a = 1, corre-
sponding to the first scenario above. We start with only susceptible and no corrupted
devices, S0 = 1, I0 = 0. We choose the efficiency of the protection κ = 0.03, the
marginal cost of protection is cV = 0.05 while the marginal cost of infected device is
cI = 0.01. The switching costs to reinforce or relax the protection, that is going from
p = 0 to p = 1 or conversely are proportional to the value function in the current
state and given by g01 = 0.001v(s, i, 1, 0) and g10 = 0.001v(s, i, 1, 1) respectively.
We apply the DGM algorithm and get one path of S, I without protection and with
optimal protection in Figure 2, for ω fixed. Starting with p = 0, we observe that
the cluster owner let the attack spreading a little bit before reinforcing the system’s
protection until time τ̂1 = 9.289 = 9 days and 7 hours (first green vertical line). It is
explained by the switching cost to protect the system which is too high comparing
to the cost of the infection at the beginning. Then, the cluster owner reinforces the
protection until time τ̂2 = 22, 374 =22 days and 9 hours (second green vertical line).
During this period, we observe that the cluster owner effectively manages the number
of infected devices (represented by the yellow curve) much more efficiently than in
scenarios without any protection (shown by the blue curve). As a result, the number
of susceptible devices that have not yet been compromised by the attack (illustrated
by the red curve) declines at a slower rate compared to the no-protection strategy
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Figure 2: Optimal trajectory of S and I with protection and switching v.s. no
protection strategy. Scenario 1: constant attack.

(depicted by the pink curve). However, when the cost of maintaining protection be-
comes prohibitively high at time τ̂2 = 22.374, the cluster owner decides to reduce the
protection level to p = 0. This optimal strategy has successfully kept the number of
corrupted devices at a lower level after one month, in stark contrast to the outcomes
observed under the no-protection approach.

4.2.2 Scenario 2: exogenous Poisson attacks

We now illustrate Theorem 3.2 when the attack engaging/disengaging times occur
with a Poisson process of intensity λ = 0.1, starting with an attack strategy at time
0 in the state a = 1 and no protection p = 0. We choose the efficiency of the
protection κ = 0.02, the marginal cost of protection is cV = 0.04 while the marginal
cost of infected device is cI = 0.01. The switching costs to reinforces or relax the
protection, that is going from p = 0 to p = 1 or conversely are g01 = 0.01v(s, i, a, 0)
while g10 = 0.001v(s, i, a, 0) for any a ∈ {0, 1}. It means that there is a factor 10
of switching from no protection to protection strategy compared with the cost of
the converse switch. We apply the DGM algorithm and get a path of S, I without

21



protection and with optimal protection in Figure 3. We observe similarly that the
cluster owner let the attack spreading a little bit before enhancing protection systems
until time τ̂1 = 7.155 = 7 days and 4 hours (first pink dotted vertical line). It is again
explained by the switching cost to protect the system which is too high comparing
to the cost of the infection at the beginning. Then, at time τ̂1 = 7.155 the cluster
owner enforces the protection. Randomly, at time τ̃1 = 13.2 = 13 days and 5 hours,
the hacker disengages the attack (first blue dotted vertical line). After this time,
the system stays in a state where there is no attack and the cluster owner is still
protecting the system to contain even more efficiently the spread of the attack among
the network. Then, the cluster owner disengages the protection system at time
τ̂2 = 19.105 = 19 days and 2 hours, before the next random attack at τ̃2 = 22.35 =
22 days and 8 hours (last blue dotted line). We see that despite the last attack at
time τ̃2 =, the cluster owner does not reengage the protection system. It is explained
by the successful management of the switching between protection and no protection
strategy along time under the random attacks of the hacker, so that the attack and
its spread is efficiently monitored. We observe that the final number of corrupted
devices (red curve) is significantly lower (around 60%) than without any protection
strategy (brown curve).

Robustness of protection efficiency faced with attack scenarios. We ob-
serve that in the two scenarios, the cluster owner contains the corrupted devices
efficiently at a final level around 30% instead of 60% (factor 0.5). We also observe a
kind of robustness in the terminal value of I when the system is optimally protected
independently of the scenario. It suggests for future study to investigate more the
behavior of the hacker, by finding a Nash equilibrium for the system hacker-cluster
owner and the optimal attack/protection strategies chosen along the time period.
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Figure 3: Optimal trajectory of S and I with protection and switching v.s. no
protection strategy. Scenario 2: Poisson attacks.

23



References
[1] Aazizi, S., and Fakhouri, I. Optimal switching problem and system of reflected

multi-dimensional FBSDEs with random terminal time. Bulletin des Sciences Math-
ématiques 137, 4 (2013), 523–540.

[2] Adams, N., and Heard, N. Data analysis for network cyber-security. World Sci-
entific, Agence Nationale de la Sécurité des Systèmes d’Information, 2021. Etat de la
menace rançongiciel. (2021).

[3] Aïd, R., Campi, L., Langrené, N., and Pham, H. A probabilistic numerical
method for optimal multiple switching problems in high dimension. SIAM Journal on
Financial Mathematics 5(1) (2014), 191–231.

[4] Aïd, R., Campi, L., Li, L., and Ludkovski, M. An impulse-regime switching
game model of vertical competition. Dynamic Games and Applications (2021), 1–39.

[5] Alizadeh, A. H., Nomikos, N. K., and Pouliasis, P. K. A Markov regime
switching approach for hedging energy commodities. Journal of Banking & Finance
32, 9 (2008), 1970–1983.

[6] Awiszus, K., Knispel, T., Penner, I., Svindland, G., Voß, A., and Weber,
S. Modeling and pricing cyber insurance: idiosyncratic, systematic, and systemic
risks. European Actuarial Journal (2023), 1–53.

[7] Basei, M., Cao, H., and Guo, X. Nonzero-sum stochastic games and mean-field
games with impulse controls. Mathematics of Operations Research 47, 1 (2022), 341–
366.

[8] Bayraktar, E., Cosso, A., and Pham, H. Robust feedback switching control:
dynamic programming and viscosity solutions. SIAM Journal on Control and Opti-
mization 54, 5 (2016), 2594–2628.

[9] Bayraktar, E., and Egami, M. On the one-dimensional optimal switching prob-
lem. Mathematics of Operations Research 35, 1 (2010), 140–159.

[10] Belak, C., Christensen, S., and Seifried, F. T. A general verification result
for stochastic impulse control problems. SIAM Journal on Control and Optimization
55, 2 (2017), 627–649.

[11] Bensoussan, A., and Lions, J.-L. Nouvelles méthodes en contrôle impulsionnel.
Applied Mathematics and Optimization 1 (1975), 289–312.

[12] Bensoussan, A., and Lions, J.-L. Applications of variational inequalities in
stochastic control. Elsevier, (2011).

24



[13] Bouchard, B., Dang, N.-M., and Lehalle, C.-A. Optimal control of trading
algorithms: a general impulse control approach. SIAM Journal on financial mathe-
matics 2 (1), (2011), 404–438.

[14] Carmona, R., and Ludkovski, M. Pricing asset scheduling flexibility using optimal
switching. Applied Mathematical Finance 15, 5-6 (2008), 405–447.

[15] Carmona, R., and Ludkovski, M. Valuation of energy storage: An optimal switch-
ing approach. Quantitative Finance 10, 4 (2010), 359–374.

[16] Chassagneux, J. F., Elie, R., and Kharroubi, I. A note on existence and
uniqueness for solutions of multidimensional reflected BSDEs.

[17] Chen, S., and Insley, M. Regime switching in stochastic models of commodity
prices: An application to an optimal tree harvesting problem. Journal of Economic
Dynamics and Control 36, 2 (2012), 201–219.

[18] Dixit, A. Entry and exit decisions under uncertainty. Journal of political Economy
97, 3 (1989), 620–638.

[19] Eastham, J. F., and Hastings, K. J. Optimal impulse control of portfolios.
Mathematics of Operations Research 13, 4 (1988), 588–605.

[20] El Asri, B. Optimal multi-modes switching problem in infinite horizon. Stochastics
and Dynamics 10, 02 (2010), 231–261.

[21] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., and Quenez, M.-C.
Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. The
Annals of Probability 25, 2 (1997), 702–737.

[22] Elie, R., and Kharroubi, I. BSDE representations for optimal switching problems
with controlled volatility. Stochastics and Dynamics 14, 03 (2014), 1450003.

[23] Eling, M., and Loperfido, N. Data breaches: Goodness of fit, pricing, and risk
measurement. Insurance: mathematics and economics 75 (2017), 126–136.

[24] Eling, M., and Schnell, W. Capital requirements for cyber risk and cyber risk
insurance: An analysis of Solvency II, the US risk-based capital standards, and the
Swiss Solvency Test. North American Actuarial Journal 24, 3 (2020), 370–392.

[25] Fahrenwaldt, M. A., Weber, S., and Weske, K. Pricing of cyber insurance
contracts in a network model. ASTIN Bulletin: The Journal of the IAA 48, 3 (2018),
1175–1218.

25



[26] Farkas, S., Lopez, O., and Thomas, M. Cyber claim analysis using Generalized
Pareto regression trees with applications to insurance. Insurance: Mathematics and
Economics 98 (2021), 92–105.

[27] Gayduk, R., and Nadtochiy, S. Endogenous formation of limit order books:
dynamics between trades. SIAM Journal on Control and Optimization 56, 3 (2018),
1577–1619.

[28] Gordon, L. A., and Loeb, M. P. The economics of information security investment.
ACM Transactions on Information and System Security (TISSEC) 5, 4 (2002), 438–
457.

[29] Gordon, L. A., Loeb, M. P., and Zhou, L. Integrating cost–benefit analysis
into the NIST Cybersecurity Framework via the Gordon–Loeb Model. Journal of
Cybersecurity 6, 1 (2020).

[30] Guo, X. An explicit solution to an optimal stopping problem with regime switching.
Journal of Applied Probability 38, 2 (2001), 464–481.

[31] Guo, X., and Pham, H. Optimal partially reversible investment with entry decision
and general production function. Stochastic Processes and their Applications 115, 5
(2005), 705–736.

[32] Hamadène, S., Lepeltier, J.-P., and Wu, Z. Infinite horizon reflected backward
stochastic differential equations and applications in mixed control and game problems.
Probability and Mathematical Statistics-Wroclaw University. 19, 2 (1999), 211–234.

[33] Harrison, J. M., Sellke, T. M., and Taylor, A. J. Impulse control of brownian
motion. Mathematics of Operations Research 8, 3 (1983), 454–466.

[34] Harrison, J. M., and Taksar, M. I. Instantaneous control of brownian motion.
Mathematics of Operations research 8, 3 (1983), 439–453.

[35] Hillairet, C., and Lopez, O. Propagation of cyber incidents in an insurance
portfolio: counting processes combined with compartmental epidemiological models.
Scandinavian Actuarial Journal (2021), 1–24.

[36] Hillairet, C., Lopez, O., d’Oultremont, L., and Spoorenberg, B. Cyber-
contagion model with network structure applied to insurance. Insurance: Mathematics
and Economics 107 (2022), 88–101.

[37] Hillairet, C., Réveillac, A., and Rosenbaum, M. An expansion formula for
Hawkes processes and application to cyber-insurance derivatives. Stochastic Processes
and their Applications 160 (2023), 89–119.

26



[38] Hu, Y., and Tang, S. Multi-dimensional BSDE with oblique reflection and optimal
switching. Probability theory and related fields 147 (2010), 89–121.

[39] Kharroubi, I. Optimal switching in finite horizon under state constraints. SIAM
Journal on Control and Optimization 54, 4 (2016), 2202–2233.

[40] Kolokoltsov, V. N., and Bensoussan, A. Mean-field-game model for botnet
defense in cyber-security. Applied Mathematics & Optimization 74 (2016), 669–692.

[41] Kushner, H. J. Approximations and computational methods for optimal stopping
and stochastic impulsive control problems. Applied Mathematics and Optimization 3,
2 (1976), 81–99.

[42] Lepeltier, J., and Marchal, B. Techniques probabilistes dans le contrôle impul-
sionnel. Stochastics: An International Journal of Probability and Stochastic Processes
2, 1-4 (1979), 243–286.

[43] Lesniewski, A. Epidemic control via stochastic optimal control. arXiv preprint
arXiv:2004.06680 (2020).

[44] Ludkovski, M. Stochastic switching games and duopolistic competition in emissions
markets. SIAM Journal on Financial Mathematics 2, 1 (2011), 488–511.

[45] Ly Vath, V., and Pham, H. Explicit solution to an optimal switching problem
in the two-regime case. SIAM Journal on Control and Optimization 46, 2 (2007),
395–426.

[46] Mazzoccoli, A., and Naldi, M. Robustness of optimal investment decisions in
mixed insurance/investment cyber risk management. Risk analysis 40, 3 (2020), 550–
564.

[47] Nguyen, B. Modelling cyber vulnerability using epidemic models. In SIMULTECH
(2017), pp. 232–239.

[48] Øksendal, B., and Sulem, A. Stochastic control of jump diffusions. In Applied
Stochastic Control of Jump Diffusions. Springer, 2019, pp. 93–155.

[49] Pérez-Hernández, L. On the existence of an efficient hedge for an American con-
tingent claim within a discrete time market. Quant. Finance 7, 5 (2007), 547–551.

[50] Pham, H. On the Smooth-Fit Property for One-Dimensional Optimal Switching Prob-
lem. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 187–199.

[51] Roland, Y. B., Boumezoued, A., and Hillairet, C. Multivariate Hawkes pro-
cess for cyber insurance. Annals of Actuarial Science, 15(1), 14-39 (2020).

27



[52] Savku, E., and Weber, G.-W. Stochastic differential games for optimal investment
problems in a Markov regime-switching jump-diffusion market. Annals of Operations
Research 312, 2 (2022), 1171–1196.

[53] Sirignano, J., and Spiliopoulos, K. DGM: A deep learning algorithm for solving
partial differential equations. Journal of Computational Physics 375 (2018), 1339–
1364.

[54] Skeoch, H. R. Expanding the Gordon-Loeb model to cyber-insurance. Computers
& Security 112 (2022), 102533.

[55] Zeller, G., and Scherer, M. Risk mitigation services in cyber insurance: optimal
contract design and price structure. The Geneva Papers on Risk and Insurance. Issues
and Practice 48, 2 (2023), 502.

[56] Zeller, G., and Scherer, M. A. Is accumulation risk in cyber systematically
underestimated? European Actuarial Journal, 14(17) (2024).

[57] Zervos, M. A problem of sequential entry and exit decisions combined with discre-
tionary stopping. SIAM Journal on Control and Optimization 42, 2 (2003), 397–421.

28


	Introduction
	Computer cluster modeling
	Contagion, protection and hacking

	Impulse control, switching and cluster owner's optimization
	Dynamic programming, Viscosity Solutions and value function properties
	Dynamic Programming Principle and Viscosity solutions
	Link with a system of reflected BSDE

	Verification argument 
	Verification procedure


	Numerical studies
	Numerical approximation by Deep Galerkin Method
	Optimal protection under different attack scenarios
	Scenario 1: constant attack
	Scenario 2: exogenous Poisson attacks


	Acknowledgment.

