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Abstract. This paper addresses challenges in domain-specific data ac-
quisition for NLP, particularly where real-world data is limited due to
privacy or availability constraints. Two primary approaches are explored:
synthetic data generation using models like GANs and VAEs, and ad-
vanced data cleaning techniques to maximize existing datasets. Addition-
ally, the role of large language models (LLMs) and multimodal models in
automating data tagging, filtering, and preprocessing is discussed. Case
studies in healthcare, finance, and cybersecurity demonstrate the effec-
tiveness of these methods. The paper concludes by highlighting future
directions, including scalability, privacy concerns, and the integration of
LLMs in domain-specific applications.

1 Introduction

In specific domains, the scarcity of domain-specific data is a pervasive challenge
that has significantly impacted several of our experimental endeavors, as in [5] or
in the study of cataphoras. This issue is not confined to academic research; it is
also a prevalent problem in industrial applications, one that I have encountered
frequently in my professional work. Addressing this challenge has pushed me
to look for potential solutions, two of which have shown considerable promise
depending on the specific goals and expected outcomes.

The first approach involves the generation of synthetic data [37, 18, 17] to
compensate for the deficiencies in available domain-specific datasets. This method
allows for the creation of controlled, contextually relevant datasets that can mit-
igate the limitations posed by the absence of sufficient real-world data.

The second approach focuses on the comprehensive utilization of all accessi-
ble data, regardless of its initial quality or completeness. This strategy includes
the application of advanced data cleaning techniques, chunking methods with
overlapping segments to preserve context, and the use of late-chunking with long-
context embeddings. Additionally, this approach integrates the use of metadata
such as tags [27], and the deployment of multimodal models for data extraction
and processing, complemented by sophisticated information classification tech-
niques to filter out irrelevant data. These techniques, along with the concept of
unlearning [10] are crucial for preventing the degradation of model performance
due to the inclusion of non-essential or noisy data.
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2 Creation, Filtering, and Cleansing of Synthetic Data

introduction

Synthetic data generation [37, 18, 17] involves creating artificial data that closely
resembles real-world data, which is particularly useful for training LLMs in do-
mains where labeled data is scarce or sensitive, difficult to acquire or use due
to legal, ethical, or logistical challenges, making it a viable solution in situa-
tions where obtaining authentic data is problematic. This process is essential
for expanding the variety and volume of training data by mirroring the statis-
tical properties of real data, enabling models to learn from a broader range of
scenarios.

In fields such as healthcare, finance, or cybersecurity, access to real data is
often restricted. For instance, healthcare data is protected by regulations like
HIPAA in the U.S. and GDPR in the EU, which limit the sharing of identifiable
patient information [1]. Similarly, financial transaction data is proprietary, and
cybersecurity threat intelligence is sensitive, making it challenging to share such
data for research purposes [44]. In these contexts, synthetic data generation
plays a crucial role in creating datasets that replicate the properties of real data
while maintaining privacy and security. This enables the training, testing and
validation of models in environments where real data is scarce or inaccessible.

However, to ensure the effectiveness of synthetic data, it must be meticulously
filtered and cleansed, ensuring that it meets quality and relevance standards.
Techniques such as data augmentation, noise injection, and domain adaptation
are commonly used to enhance the quality and applicability of synthetic datasets.

The primary purpose of synthetic data generation is to augment training
datasets, especially when real-world data is either insufficient, like in our exper-
imentations [5], or unavailable due to privacy concerns. By using techniques like
data augmentation, where existing data is modified to create new examples, and
generative models like Generative Adversarial Networks (GANs) [11] that can
create entirely new data instances for neural models and especially LLMs to be
trained more effectively. These methods improve the robustness and specializa-
tion capabilities of models, ensuring they perform well across the domain-specific
tasks they are trained for.

Effective data exploitation involves strategically selecting, preprocessing, and
augmenting large-scale datasets to maximize the performance of models. This
process includes fine-tuning models on domain-specific data and leveraging tech-
niques such as transfer learning and domain adaptation to ensure that models
can generalize well across various tasks. The goal is to fully utilize available data
to train models that are both versatile and robust, capable of handling a wide
range of applications.

Techniques for Generating Synthetic Data

Generating synthetic data involves various techniques, each with its own set of
advantages and challenges. Below, we explore some of them.
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Generative Adversarial Networks Generative Adversarial Networks (GANs)
[11], have become one of the most popular methods for generating synthetic data.
GANs consist of two competing neural networks: a generator that produces syn-
thetic data and a discriminator that attempts to distinguish between real and
synthetic data. Over time, the generator learns to produce data that is increas-
ingly realistic.

In domain-specific contexts, GANs have been used extensively. For example,
in healthcare, GANs have been used to generate synthetic medical images for
training diagnostic models or health records [43, 6]. In finance, GANs have been
applied to create synthetic stock market data, which helps in testing trading
algorithms under different market conditions [34]. In cybersecurity, GANs have
been utilized to generate synthetic network traffic that mimics both normal and
malicious behaviors, aiding in the development of intrusion detection systems
[33, 28].

However, GANs have limitations, including the requirement for large amounts
of training data and computational power. Additionally, GANs can sometimes
suffer from mode collapse, where the generator produces limited diversity in the
synthetic data [14].

Variational Autoencoders Variational Autoencoders (VAEs) are another
type of generative model, first introduced in [15]. VAEs work by encoding the
input data into a latent space and then decoding this representation back into
the original data space. The model learns to generate new data by sampling from
the latent space, which is assumed to follow a known distribution, typically a
Gaussian distribution.

VAEs are particularly effective for generating structured data. In healthcare,
they have been used to generate synthetic Electronic Health Records (EHR) [16]
that preserve the correlations and relationships between variables, allowing for
the testing of predictive models. VAEs have also been applied in other domains,
such as generating synthetic sensor data in IoT applications [22].

A notable advantage of VAEs is their ability to generate diverse datasets with
relatively small amounts of training data. However, VAEs can struggle with cap-
turing highly complex dependencies, especially in high-dimensional data, which
may limit their effectiveness in certain applications.

Synthetic Data Generators Based on Rule-Based Systems Rule-based
systems are often employed in domains where the data generation process is
well understood and can be described by a set of rules or heuristics [20]. These
systems are particularly useful for generating data that must adhere to specific
constraints or distributions.

For instance, in finance, synthetic data for algorithmic trading simulations
can be generated using rules derived from historical market behaviors, such as
price movements, trading volumes, and market events [2].

While rule-based systems offer precise control over the data generation pro-
cess, they are less flexible than machine learning-based approaches. They require
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extensive domain knowledge and may not generalize well to new or unexpected
scenarios.

Hybrid Approaches A hybrid approache may combine multiple techniques to
leverage their respective strengths. For example, a rule-based system might be
used to generate an initial synthetic dataset, which is then refined using a GAN
or VAE to introduce variability and complexity.

These hybrid methods might be particularly valuable in domains with both
structured and unstructured data. For example, in the healthcare domain, a
hybrid approach might generate synthetic patient records by first creating a
structured dataset using rules based on medical guidelines, and then enhancing
it with a GAN to include realistic variability in patient outcomes.

Hybrid approaches, might be complex to implement and require careful tun-
ing to balance the contributions of each component. Their effectiveness often
depends on deep domain-specific knowledge and the careful integration of dif-
ferent models.

Impact of LLMs on Synthetic Data Generation The advent of LLMs,
starting with GPT-3 then GPT-4 [25], has introduced new possibilities in the
realm of synthetic data generation. LLMs are pre-trained on vast amounts of text
data and are capable of generating highly coherent and contextually relevant
text. Their impact on synthetic data generation is multi-faceted:

– Text Data Generation: LLMs can generate large volumes of synthetic
text data that mimic the style, structure, and content of domain-specific
texts, such as legal documents, medical records, or financial reports. This is
particularly valuable in domains where textual data is prevalent and access
to real-world data is restricted due to privacy concerns.

– Data Augmentation for NLP: LLMs can be used to augment existing
datasets by generating paraphrases, summaries, or expansions of existing
data. This can help in creating more diverse and robust datasets for training
NLP models.

– Enhancing Rule-Based Systems: LLMs can be integrated into rule-based
synthetic data generation systems to introduce natural language understand-
ing and generation capabilities. This can improve the realism of synthetic
data by allowing the generation of text that better reflects human language
patterns.

– Cross-Domain Applications: LLMs, due to their general-purpose nature,
can be adapted to generate synthetic data across multiple domains, thereby
reducing the need for domain-specific models. This is particularly useful
in scenarios where developing separate models for each domain would be
resource-intensive.

– Automated Data Generation Pipelines: LLMs can be used to create
automated pipelines for synthetic data generation by understanding instruc-
tions or prompts given in natural language. This lowers the barrier to entry
for non-experts who need to generate synthetic data for specific use cases.
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Reverse Prompting Using LLMs for Dataset Generation

Introduction to Reverse Prompting Reverse prompting is an innovative ap-
proach to generating datasets using LLMs. In traditional prompting, the model
is given a prompt or question and is expected to generate a corresponding
answer. However, in reverse prompting, the process is inverted: given an an-
swer or a statement, the model generates a corresponding question or prompt.
This method is particularly useful when working with pre-existing data that are
straightforward declarative sentences. For example, if we have a dataset consist-
ing of company data in the form of statements or facts, reverse prompting can
be employed to generate a conversation-like format where these statements are
converted into a dialogue structure such as [User: Question, Agent: Answer].

Methodology The primary objective of utilizing reverse prompting was to
transform the existing straightforward data into a question-answer format that
aligns with the discussion style often required in natural language processing
tasks. Given the declarative statements from the company’s data, the challenge
was to formulate relevant questions that would lead to these statements as an-
swers. This format is not only more suitable for training dialogue models but
also enhances the dataset’s utility across various applications.

To achieve this, a few-shot learning approach was employed. Few-shot learn-
ing involves providing the LLM with a limited set of examples to guide its output.
The examples provided to the model illustrated the desired input-output format,
showing how a straightforward statement (which acts as the answer) could be
transformed into a corresponding question. By carefully selecting and crafting
these few-shot examples, the model was able to learn the pattern required to
generate appropriate questions for the given answers in the demanded format.

Implementation The implementation involved the following steps:

– Data Preparation: The initial dataset consisted of declarative sentences
from the company’s data. These sentences were selected and analyzed to
understand their structure and content, which informed the crafting of few-
shot examples.

– Few-Shot Example Creation: A small set of examples was created man-
ually. Each example consisted of a declarative statement (the answer) paired
with a relevant question that would lead to that answer. These examples were
designed to capture various types of questions—such as “wh‘’ questions—to
ensure the model could generalize across different scenarios.

– Model Few Shot prompting: The few-shot examples were fed into a pre-
trained LLM. Using these examples, the model was prompted to generate
questions for the remaining statements in the dataset. The model’s outputs
were then reviewed and adjusted as necessary to ensure they matched the
desired format and quality.

– Data Validation: The generated question-answer pairs were rigorously
tested to ensure their accuracy and relevance. This involved comparing the
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generated questions to the original statements to confirm that the questions
were logically consistent and contextually appropriate.

Results and Impact on Dataset Generation The use of reverse prompting
with an LLM (Mixtral [12] in our case) proved to be highly effective in converting
straightforward declarative sentences into question-answer pairs. The generated
datasets now align with the desired discussion format, enabling their direct ap-
plication in training dialogue systems and other conversational AI models.

The results of this approach significantly enhanced the quality and usability
of the generated datasets. The reverse-prompted data showed improved contex-
tual relevance and variety in the generated questions, which not only enriched the
datasets but also improved the performance of downstream models that utilized
this data for training.

Additionally, the implementation of reverse prompting as part of the data
preprocessing pipeline demonstrated its utility in large-scale dataset generation.
It allowed for the efficient transformation of existing data into more versatile
formats, reducing the need for extensive manual curation and enabling quicker
iterations in model development.

Overall, reverse prompting using LLMs has proven to be a valuable technique
in the preprocessing and generation of high-quality datasets, particularly in sce-
narios where the data needs to be converted into a dialogue-friendly format. This
approach is now integrated into the company’s standard preprocessing workflow
for dataset generation, underscoring its effectiveness and adaptability in various
applications.

Evaluation of Synthetic Data Quality

Evaluating the quality of synthetic data is critical to ensuring that it can ef-
fectively replace or complement real-world data in domain-specific applications.
Several metrics and methodologies are used to assess the quality of synthetic
data.

Statistical Similarity Statistical similarity between synthetic and real data
is often assessed using metrics such as means, variances, correlations, and dis-
tribution shapes of key variables [30]. Tools like the Kolmogorov-Smirnov (K-S)
test [24], Earth Mover’s Distance (EMD) [19], and Maximum Mean Discrepancy
(MMD) [32] are commonly employed to quantitatively assess the similarity.

For instance, in finance, the statistical properties of synthetic time series
data, such as volatility clustering and autocorrelation, are compared to those
of real financial data to ensure realism [2]. In healthcare, the distributions of
synthetic patient demographics and clinical outcomes are compared with those
of real patient data to ensure that synthetic EHR are representative [40].
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Utility for Models The utility of synthetic data for models is often evaluated
by training models on synthetic data and testing them on real-world data. If the
models trained on synthetic data perform comparably to those trained on real
data, it suggests that the synthetic data captures the essential features of the
domain.

For example, in cybersecurity, synthetic network traffic is used to train Intru-
sion Detection Systems (IDS). The performance of the IDS on real traffic data
provides a measure of the quality of the synthetic data [7]. Similarly, in health-
care, models trained on synthetic medical images are tested on real images to
validate the utility of the synthetic data in diagnostic applications [26].

Privacy and Security Considerations In domains where privacy and secu-
rity are critical, it is essential to ensure that synthetic data does not inadvertently
expose sensitive information. Differential privacy is a common framework used
to quantify and guarantee privacy in synthetic data generation [13]. It ensures
that the inclusion or exclusion of any single individual in the original dataset
does not significantly affect the generated synthetic data.

For instance, synthetic health records are evaluated for privacy risks using
differential privacy techniques to ensure that no individual’s health information
can be reconstructed from the synthetic dataset [23]. In finance, synthetic trans-
action data is assessed to ensure that it does not reveal patterns that could be
traced back to real trading strategies [2].

Challenges and Future Directions Despite the advances in synthetic data
generation, several challenges remain. One significant challenge is ensuring the
diversity and realism of synthetic data across different scenarios within a domain.
For example, generating synthetic data that accurately reflects rare events, such
as medical complications or financial crises, remains a difficult task.

Another challenge is the computational cost associated with generating high-
quality synthetic data. Techniques like GANs and VAEs require substantial
computational resources, which can be a barrier in resource-constrained envi-
ronments [14].

The integration of LLMs into synthetic data generation presents both oppor-
tunities and challenges [35]. On the one hand, LLMs can significantly enhance
the quality and diversity of synthetic data, particularly in text-heavy domains.
On the other hand, the reliance on LLMs may introduce new challenges re-
lated to the interpretability and bias of the generated data. Moreover, the high
computational demands of LLMs may exacerbate existing resource constraints,
particularly for small organizations or research teams.

Future research is likely to focus on improving the efficiency and scalability
of synthetic data generation techniques, including those that incorporate LLMs.
Advances in unsupervised learning and transfer learning may offer new ways to
generate high-quality synthetic data with fewer resources. Additionally, devel-
oping more sophisticated methods for evaluating synthetic data quality, partic-
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ularly in terms of privacy and utility, will be crucial for the continued adoption
of synthetic data in domain-specific applications.

Conclusion The combination of data synthesis, exploitation, and cleansing
ensures that models are trained on high-quality, diverse datasets, leading to
more robust and reliable models. These processes are fundamental in developing
AI systems that can operate effectively in specialized domains, providing more
accurate and contextually relevant outputs while reducing the dependency on
large quantities of real-world data. Through these techniques, AI models become
more adaptable, scalable, and capable of delivering high performance across
various domain-specific applications.

3 Data Extraction and Cleansing, An Approach Using
Multimodal Models

Data extraction and cleansing are crucial processes in data-driven research, par-
ticularly in the era of big data [9], where the quality of data significantly im-
pacts the reliability and validity of analytical outcomes. Traditional data ex-
traction techniques often rely on structured databases and predefined schemas,
making them less effective when dealing with unstructured or semi-structured
data. Moreover, data cleansing—ensuring that the extracted data is accurate,
complete, and consistent—often involves labor-intensive processes that require
domain expertise.

Data cleansing [31], the process of ensuring that the extracted data is ac-
curate, complete, and consistent—often involves labor-intensive processes that
require domain expertise, as detecting and correcting (or removing) corrupt or in-
accurate records from a dataset, is a crucial step in the data preparation pipeline.
High-quality data is essential for producing reliable and accurate insights in data-
driven research and applications. Traditionally, data cleansing has been handled
using a combination of rule-based methods, statistical techniques, and manual
interventions.

However, as datasets grow in complexity and heterogeneity, these traditional
approaches face significant challenges. With the advent of LLMs and particularly
Multimodal Language Models (MLM) [29, 42], new opportunities have arisen
to enhance and automate data extraction and cleansing processes, especially in
environments where data is derived from various modalities such as text, images,
and structured tabular data as these models can integrate and analyze multiple
types of data—text, images, audio, and even video.

MLMs can help automate the extraction and cleansing process by identify-
ing and correcting errors, removing noise, and ensuring that the data is totally
extracted from documents and is of high quality. This step is crucial for main-
taining the reliability and effectiveness of AI models, especially in technical and
commercial applications where data accuracy is of high importance
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Traditional Data Extraction Techniques

Traditional data extraction techniques have long served as the backbone for re-
trieving and processing data from structured and semi-structured sources. These
methods include the use of Structured Query Language (SQL) for querying rela-
tional databases, Extract, Transform, Load (ETL) [39] processes for data ware-
housing, web scraping for collecting data from websites, and API (Application
Programming Interface) for structured data retrieval from online services. Each
of these approaches has proven effective in specific contexts, particularly when
dealing with well-organized data that fits neatly into predefined schemas. For in-
stance, SQL excels in environments where data is stored in relational databases,
offering powerful querying capabilities, while ETL processes are widely used to
consolidate data from multiple sources into data warehouses.

However, these traditional methods are not without their limitations. SQL
and ETL processes are heavily dependent on structured data, making them
less effective for unstructured or semi-structured data sources such as free-text
documents, multimedia content, or irregularly formatted datasets. Web scrap-
ing, while versatile, often faces legal, ethical, and technical challenges, including
issues with data quality and site access restrictions. APIs provide a more struc-
tured way to extract data but come with constraints such as rate limits, access
restrictions, and the need for continuous adaptation due to versioning and dep-
recation. These challenges have become more pronounced as the volume and
variety of data have increased, highlighting the need for more advanced extrac-
tion methods.

As data grows more complex and diverse, encompassing various forms such
as text, images, audio, and video, the limitations of traditional data extraction
techniques become increasingly evident. These methods often struggle to effec-
tively handle unstructured data or integrate information from different modali-
ties. Furthermore, the scalability of these techniques is a concern, as processing
large volumes of data can be computationally intensive and time-consuming. The
need for more sophisticated data extraction methods has led to the exploration
of new technologies, particularly those involving AI and machine learning.

In response to these challenges, the development and application of LLMs,
especially MLMs, have emerged as a promising solution. Unlike traditional tech-
niques, MLMs are capable of processing and integrating data across multiple
modalities [4], such as text, images, and audio, within a single framework. This
approach not only automates the extraction process but also enhances the accu-
racy and efficiency of data handling, making it a powerful tool for modern data
extraction and cleansing tasks.

Data Extraction Using MLMs

The use of MLMs in data extraction [4] involves several steps.

Data Ingestion MLMs begin by ingesting data from various sources. These
sources can include text documents, scanned images of handwritten notes, au-
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dio recordings of interviews, or even videos containing both audio and visual
data. The LLM processes these different modalities simultaneously, enabling it
to extract information that spans across multiple data types.

Feature Extraction For each modality, the LLM identifies and extracts rel-
evant features. For text, this might include keywords, named entities, or senti-
ment. For images, it could involve object detection, image classification, or even
text extraction using Optical Character Recognition (OCR). Audio data may be
transcribed into text, followed by speech sentiment analysis, while video data can
be dissected into individual frames and analyzed for both visual and auditory
features.

Contextual Integration One of the key strengths of MLMs is their ability
to integrate context across different data types. For example, when extracting
data from a research paper that includes both text and images (such as charts
or tables), the LLM can correlate the textual description with the visual data,
ensuring a more accurate and contextually relevant extraction.

Data Structuring Once the relevant data has been extracted, the LLM struc-
tures it into a format suitable for further analysis. This might involve converting
unstructured text into structured datasets, categorizing images, or aligning au-
dio transcripts with corresponding visual data. The structured data can then be
stored in databases or directly used for analysis.

Challenges

Despite their advanced capabilities, MLMs face several challenges in data extrac-
tion. Accurately integrating data from different modalities—such as text, images,
and audio—requires sophisticated algorithms to understand the nuanced rela-
tionships between these diverse data types, and any misinterpretation or mis-
alignment can result in incorrect extraction [41]. Additionally, the quality of
input data plays a crucial role in the LLM’s performance, as noisy data like low-
resolution images, poor-quality audio, or incomplete text can significantly hinder
the model’s ability to accurately extract and interpret information. Furthermore,
processing large volumes of multimodal data is computationally intensive, mak-
ing it a significant challenge to ensure that the LLM can scale efficiently while
maintaining high levels of accuracy.

Traditional Data Cleansing Techniques

.
Conventional data cleansing techniques [31] primarily involve several steps,

including the detection of missing values, outlier identification, data dedupli-
cation, inconsistency resolution, and standardization. These methods often rely
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on predefined rules or heuristics that may not generalize well across different
datasets. For instance, regular expressions can be employed to validate email
addresses, while statistical models might detect outliers in numerical data. How-
ever, these approaches are typically limited by their dependence on domain-
specific knowledge and the inability to handle unstructured data or multimodal
inputs efficiently.

The Role of MLMs in Data Cleansing

MLMs, such as those that combine text, image, and structured data understand-
ing [42], are trained on diverse datasets, enabling them to process and integrate
information from various modalities. This capability is particularly valuable in
data cleansing, where datasets may include complex and unstructured elements
such as textual descriptions, images, and numerical data.

Textual Data Cleansing In the context of textual data, LLMs excel at un-
derstanding and generating human-like text, which can be leveraged to identify
and correct errors in textual datasets. For example, LLMs can be employed to
detect and suggest corrections for spelling and grammatical errors, standardize
textual data (e.g., transforming different date formats into a unified format),
and even infer missing values based on context. The ability of these models to
comprehend context allows them to outperform traditional rule-based methods,
particularly in detecting and correcting subtle errors that might be missed by
simpler algorithms.

Image Data Cleansing For image data, MLMs can be used to detect anoma-
lies or inconsistencies by comparing the visual content of images against expected
patterns or by cross-referencing image data with associated textual descriptions.
For instance, in a dataset containing product images and descriptions, an LLM
can flag images that do not match their descriptions, thereby identifying po-
tential errors in the dataset. This approach is particularly useful in large-scale
datasets where manual inspection would be prohibitively time-consuming.

Structured Data Cleansing When dealing with structured data, such as ta-
bles or databases, MLMs can assist in identifying inconsistencies across different
data types. For example, an LLM might be used to check for logical inconsisten-
cies in a dataset where numerical, categorical, and textual data are intertwined.
By leveraging the model’s understanding of context and semantics, it can detect
discrepancies that might not be evident through traditional rule-based cleansing
techniques.

Integration of MLMs in the Data Cleansing Pipeline Integrating MLMs
into the data cleansing pipeline involves several key steps:
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– Data Ingestion: The raw data from various sources and modalities is in-
gested into the system. This data can include text, images, structured tables,
and more.

– Data Preprocessing: The data is preprocessed to a format suitable for the
LLM, involving steps like tokenization for text, resizing and normalization
for images, and encoding for structured data.

– Error Detection: The MLM is used to identify potential errors in the
dataset. For textual data, this could involve detecting anomalies in grammar
or syntax. For images, it could involve flagging visually inconsistent data. For
structured data, it could involve identifying outliers or logical inconsistencies.

– Error Correction: Based on the model’s output, corrections are either
suggested to the user or applied automatically. The corrections are informed
by the model’s understanding of context and are validated against existing
data to ensure accuracy.

– Post-Processing and Validation: After the corrections have been made,
the data is reprocessed to ensure that no new errors have been introduced.
This step may involve additional validation against external datasets or
domain-specific rules.

Advantages and Challenges MLMs offer significant advantages in data cleans-
ing by automating the process, thereby reducing the need for time-consuming
and error-prone manual interventions. Their ability to understand the context of
data enables more accurate detection and correction of errors compared to tradi-
tional methods. Moreover, their versatility in handling multiple data modalities
simultaneously allows these models to effectively cleanse complex datasets that
include a combination of text, images, and structured data.

However, MLMs, while powerful, come with challenges such as high compu-
tational requirements, making them resource-intensive and potentially limiting
their use in environments with constrained resources. Additionally, the decision-
making process of these models is often opaque, complicating the understanding
of why specific corrections are made, which can be problematic in domains where
transparency is essential. Furthermore, these models can inherit biases from their
training data, leading to biased error detection and correction, making it crucial
to address these biases to ensure fair and accurate data cleansing.

Conclusion

MLMs represent a transformative approach to data cleansing, offering the ability
to automate and enhance the accuracy of the process across diverse datasets.
By leveraging the contextual and multimodal understanding of these models,
it is possible to address some of the limitations of traditional data cleansing
methods. However, the integration of these models into data cleansing workflows
must be done thoughtfully, considering the challenges of computational demands,
interpretability, and bias. As these technologies continue to evolve, they hold the
potential to significantly improve the quality and reliability of data in a wide
range of applications.
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4 Data tagging and filtering for RAG applications

In domain-specific applications, where the precision and relevance of information
retrieval are critical, the implementation of RAG demands meticulous attention
to data preprocessing to which we wanted to add the tagging and filtering op-
tions to obtain better performances for our domain-specific application. This
section provides an in-depth exploration of the methodologies, tools, and frame-
works utilized in our project to optimize data extraction, cleaning, and filtering,
ensuring that the RAG model performs at its best within the specific context of
our domain.

Data Extraction and Cleaning Techniques

The initial stages of our project involved rigorous experimentation with various
data extraction and cleaning techniques to prepare the dataset for RAG applica-
tion. We began by evaluating several tools and frameworks that offered diverse
approaches to data preprocessing, each with its strengths and limitations, we
aimed to ensure that the data fed into our RAG system was not only relevant
but also preserved the contextual integrity necessary for accurate information
retrieval and generation.

One of the key challenges we encountered was maintaining the semantic co-
herence of documents, especially when dealing with lengthy texts that could be
fragmented during the chunking process.

Apache Tika We initially used Apache Tika for data extraction from a wide
range of file formats, including PDFs, Word documents, and HTML pages. Tika’s
ability to extract metadata and text content from different formats proved ben-
eficial in standardizing the input data. However, Tika’s limitations in handling
complex document structures led us to explore more sophisticated extraction
methods.

SpaCy and NLTK For NLP tasks, including tokenization, lemmatization,
and Named Entity Recognition (NER), we integrated SpaCy [38] and NLTK
[3]. These tools were essential in the early stages for cleaning and structuring
the text data. However, these tools primarily operate at the token level, which
sometimes resulted in fragmented context when dealing with larger text blocks.

LangChain Framework To overcome the challenges posed by traditional
chunking methods, we adopted LangChain [36], a powerful framework designed
for managing long documents in NLP tasks. LangChain’s ability to handle chunk-
ing with overlap was particularly valuable in preserving the semantic continuity
of the text. By configuring the overlap between chunks, after multiple tests, we
mitigated the risk of losing context when concepts were mentioned in one chunk
and referred to in another. This overlap ensures that the RAG model receives
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a continuous stream of relevant information, improving its ability to generate
contextually accurate responses.

– Chunk Size Optimization: We experimented with different chunk sizes
and overlap parameters using LangChain’s built-in tools. This iterative pro-
cess involved fine-tuning the balance between chunk size and overlap to max-
imize the retention of context without excessively increasing the input size
to the model, which could degrade performance or increase computational
costs.

Exploration of Late Chunking with Long-Context Models Recogniz-
ing the potential of long-context models like GPT-4 [25] and Claude, we have
been exploring late chunking strategies. These models are capable of handling
extended sequences of text, allowing for chunking at a later stage in the pro-
cessing pipeline. Late chunking helps maintain a more extensive context within
a single chunk, reducing the need for frequent context switching and potentially
improving the model’s ability to understand and generate responses that are se-
mantically richer and more coherent. This approach is particularly promising for
documents that require a deep understanding of complex relationships between
different sections.

Classification Models for Optimizing Data Exploitation for RAG and
Finetuning

In the development of our RAG system, we recognized the importance of effi-
ciently managing and filtering input prompts and datasets to ensure the system
operates with optimal performance. To achieve this, we trained two distinct clas-
sification models: one designed to determine when RAG should be applied, and
another aimed at automating the filtering of unusable data from large datasets.
This section outlines the methodologies, datasets, and outcomes associated with
these models, highlighting their roles in enhancing the overall efficiency and
effectiveness of our RAG application.

Detecting the Need for RAG: Small Talk vs. Domain-Specific Ques-
tions One of the critical challenges in deploying a RAG system within a domain-
specific application is ensuring that the system only engages its computationally
intensive retrieval mechanisms when necessary. To address this, we trained a clas-
sification model to distinguish between prompts that required RAG and those
that did not. Specifically, the model was designed to identify whether a given
prompt was a domain-specific question that necessitated RAG or if it was a small
talk or out-of-topic query that could be handled with a simpler, more efficient
response mechanism.

Dataset and Model Training:

– Handcrafted Small Talk Dataset: We curated a custom dataset of “small
talk‘’ examples, which included common conversational phrases, greetings,
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and out-of-topic questions. This dataset was essential in training the model
to recognize non-domain-specific queries that did not require RAG.

– Domain-Specific Dataset: In contrast, we compiled a dataset of domain-
specific questions derived from the company’s internal knowledge base and
user interactions. This dataset represented the type of prompts that would
necessitate the use of RAG for accurate and contextually appropriate re-
sponses.

– Model Architecture: We used a fine-tuned version of a pre-trained transformer
model (BERT [8] and RoBERTa [21]) for text classification. The model was
trained on a balanced combination of the small talk and domain-specific
datasets, allowing it to learn the nuanced differences between conversational
queries and those that required in-depth retrieval from the domain-specific
knowledge base.

– Training Process: The model underwent several iterations of training and
validation to optimize performance metrics such as accuracy, precision, and
recall. We are planning to employ data augmentation to address class im-
balance issues in the dataset.

Outcome and Integration
The resulting classification model demonstrated high accuracy in distinguish-

ing between small talk and domain-specific questions. By integrating this model
into the RAG system’s query preprocessing pipeline, we were able to signifi-
cantly reduce unnecessary computational overhead. The model efficiently routed
small talk queries to a lightweight response generator while reserving the RAG
system’s resources for prompts that truly required domain-specific retrieval and
generation.

This approach not only improved system efficiency but also enhanced the
user experience by delivering faster responses to trivial queries while maintaining
high-quality, contextually rich responses for more complex questions.

Automated Data Filtering for Finetuning: Usable vs. Unusable Data
As part of our efforts to optimize the training and fine-tuning processes of models,
we identified the need to filter out unusable data from large datasets. Unusable
data—such as irrelevant, outdated, or low-quality content—can adversely affect
model performance by introducing noise and leading to an unlearning process
where the model starts to lose the ability to accurately retrieve and generate
relevant information [10].

To address this challenge, we trained a second classification model aimed at
automating the detection and removal of unusable data from our datasets.

Dataset and Model Training

– Large-Scale Company Dataset: We utilized a vast dataset owned by the com-
pany, which included both usable (high-quality, relevant information) and
unusable data. The unusable data comprised content that was irrelevant
to the domain, contained significant errors, or was otherwise unsuitable for
fine-tuning.
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– Annotation and Labeling: A portion of this dataset was manually labeled to
create a ground truth for training. Usable and unusable data were clearly
defined, with specific guidelines developed to ensure consistent labeling. This
labeled data formed the basis for training the classification model.

– Model Architecture: For this task, we employed a BERT [8] model, similar
to the one used in the first classification task, but fine-tuned specifically for
binary classification of usable versus unusable data. The model was designed
to understand the context and quality of text, learning to identify patterns
that distinguished high-value content from noise.

– Training Process: The model was trained on a subset of the labeled dataset,
with validation performed on a separate holdout set to ensure generaliza-
tion. We applied techniques such as cross-validation, regularization, and
early stopping to prevent overfitting and to ensure that the model could
accurately classify data across various contexts and content types.

Outcome and Integration
The trained model achieved robust performance in classifying usable and un-

usable data, with high precision and recall metrics indicating its reliability in
filtering out low-quality content. By integrating this model into our data pre-
processing pipeline, we automated the process of cleaning large datasets before
they were used for fine-tuning purposes.

This automation proved to be a significant time-saver, enabling the team to
process and prepare large volumes of data with minimal manual intervention,
especially for Proof-of-Concepts (PoC) and prototyping. Moreover, by ensur-
ing that only high-quality, relevant data was used in the fine-tuning process,
we mitigated the risks associated with unlearning and hallucinations [10] and
maintained the integrity and performance of the models over time.

Automatic Tagging of Documents and Queries for RAG Filters

In the context of modern information retrieval systems, particularly those uti-
lizing RAG models, the effective and efficient tagging of documents and their
associated queries is critical. This section outlines the design and implementa-
tion of an automatic tagging system that accelerates document access, facilitates
precise filtering, and minimizes the loss of contextual meaning during chunk pro-
cessing.

Overview of the Automatic Tagging System The system’s primary func-
tion is to automatically generate and assign tags to documents and their cor-
responding chunks. These tags are derived from the subject matter and key
concepts identified within the text. By leveraging advanced natural language
processing models, specifically a BERT classifier, the system analyzes each doc-
ument to determine the most relevant tags. These tags encompass a broad spec-
trum of attributes, including the document’s subject, specific keywords, and any
user-defined tags that may be manually added.
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These tags, once assigned, are stored in a vector database, allowing for effi-
cient retrieval and filtering processes. The inclusion of both automatically gener-
ated and user-specified tags ensures that the system remains flexible and adapt-
able to various use cases and user preferences. The tags are not only instrumental
in categorizing the documents but also play a crucial role during the retrieval
phase, where they help to surface the most relevant content based on user queries.

Tagging Process and Vector Database Storage The tagging process be-
gins with the decomposition of the document into smaller, contextually coherent
chunks. Each chunk is then analyzed individually to determine its key themes
and concepts. The BERT classifier, trained on a diverse corpus, is employed to
generate a set of tags for each chunk, reflecting its content and context within
the larger document.

In addition to the automatically generated tags, users can manually indicate
specific tags that are particularly relevant to their needs or the organizational
context. These manually added tags are integrated with the automatically gen-
erated tags to form a comprehensive tagging profile for each document and its
chunks.

Once the tags are assigned, they are stored in a vector database. The vector
representation of these tags allows for efficient similarity comparisons during
the retrieval process, enabling the system to quickly identify and rank the most
pertinent documents based on the tags and the contextual embeddings generated
for both the documents and the queries.

Retrieval Process and Filtering Mechanism When a user initiates a search,
the system begins by tagging the user’s query using the same BERT classifier
that was utilized for the documents. The tagging of the query is informed by
the user’s profile, which may include predefined tags such as brand, country, or
other contextual attributes. This ensures that the query is enriched with relevant
metadata, enhancing the precision of the retrieval process.

The system then filters the stored documents by comparing the tags associ-
ated with the query to those assigned to the documents and chunks. This filter-
ing mechanism narrows down the search space to the most relevant documents,
effectively prioritizing those with the highest similarity scores.

To further refine the retrieval, the system evaluates the similarity between
the query and the document chunks using two key methods:

– Title Similarity: An LLM is employed to generate a summary title for each
chunk, capturing its essence based on the content of the chunk, the overall
document, and preceding context. The similarity between this title and the
user query is assessed, contributing to the relevance score.

– Chunk Embeddings: The system also calculates the similarity between the
query and the chunk embeddings. These embeddings capture the semantic
content of the chunks, allowing for a nuanced comparison that considers both
explicit and implicit meanings within the text.



18 Nabil Moncef Boukhatem, Davide Buscaldi, and Leo Liberti

Fig. 1: An illustration of the RAG process including the RAG detector and tag
filtering functions

Performance and User Satisfaction The implementation of this automatic
tagging system has resulted in significant improvements in both the speed and
accuracy of document retrieval. Users have reported high levels of satisfaction,
particularly appreciating the system’s ability to surface highly pertinent docu-
ments quickly. The categorization and tagging of documents have become more
streamlined, reducing the manual effort required and ensuring that the most
relevant content is always accessible.

Moreover, the integration of automatic and manual tags within a unified sys-
tem has provided a balanced approach, combining the strengths of algorithmic
precision with the flexibility of user input. The reduction in retrieval time, cou-
pled with the enhanced relevance of results, underscores the effectiveness of this
approach in managing large document repositories within a RAG framework.

This automatic tagging system not only enhances the user experience but
also lays a robust foundation for further advancements in the field of information
retrieval, particularly in scenarios involving complex and diverse document sets.

Conclusion

The development and integration of these two classification models into our RAG
application pipeline have been instrumental in enhancing the system’s overall ef-
ficiency and effectiveness. The first model, by accurately identifying when RAG is
necessary, reduces unnecessary computational loads and ensures that resources
are allocated appropriately. The second model, by automating the filtering of
unusable data, safeguards the quality of the training datasets, preventing degra-
dation in model performance and supporting the long-term sustainability of the
system while also simplifying prototyping tasks.

These advancements underscore the importance of targeted classification
models, instead of using abusively LLMs, in optimizing complex AI systems,
particularly in domain-specific applications where precision, efficiency, and data
quality are paramount. As we continue to refine these models and explore new
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techniques, we anticipate further improvements in the performance and scalabil-
ity of our RAG system.
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