
HAL Id: hal-04748770
https://hal.science/hal-04748770v1

Submitted on 22 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic verification of Finite Variant Property
beyond convergent equational theories

Vincent Cheval, Caroline Fontaine

To cite this version:
Vincent Cheval, Caroline Fontaine. Automatic verification of Finite Variant Property beyond conver-
gent equational theories. 2025 IEEE 38th Computer Security Foundations Symposium (CSF 2025),
IEEE, Jul 2025, Santa Cruz, United States. �hal-04748770�

https://hal.science/hal-04748770v1
https://hal.archives-ouvertes.fr

Automatic verification of Finite Variant Property
beyond convergent equational theories

Vincent Cheval∗ and Caroline Fontaine†
∗ University of Oxford, United Kingdom

† Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, France

Index Terms—Rewriting, Equational Theory, Finite Vari-
ant Property, Verification, Unification, Cryptographic protocols,
Symbolic models

Abstract—Computer-aided analysis of security protocols heav-
ily relies on equational theories to model cryptographic prim-
itives. Most automated verifiers for security protocols focus on
equational theories that satisfy the Finite Variant Property (FVP),
for which solving unification is decidable. However, they either
require to prove FVP by hand or at least to provide a repre-
sentation as an E-convergent rewrite system, usually E being at
most the equational theory for an associative and commutative
function symbol (AC). The verifier ProVerif is probably the
only exception amongst these tools as it automatically proves
FVP without requiring a representation, but on a small class
of equational theories. In this work, we propose a novel semi-
decision procedure for proving FVP, without the need for a
specific representation, and for a class of theories that goes
beyond the ones expressed by an E-convergent rewrite system.
We implemented a prototype and successfully applied it on
several theories from the literature.

I. INTRODUCTION

Cryptographic protocols are distributed programs designed
to secure communications. They are used in diverse critical ap-
plications, such as electronic voting, cryptocurrencies, secure
messaging, online payment, etc. Each protocol comes with
its own list of security claims, some of which are common to
all applications (e.g., secrecy and authentication) and others of
which are tailored to specific domains (e.g., coercion resistance
in electronic voting).

The design of such protocols being notoriously error prone,
it is now standard practice to provide formal proofs that the
target security properties are really satisfied. Over the years,
there have been many success stories on the symbolic analysis
of impactful real-life security protocols, for example TLS [1],
[2], [3], ECH [4], Signal [5], 5G-AKA [6], Noise [7], EMV [8]
and IKEv2 [9]. These successes were partly due to advances
in the capabilities of automatic verifiers for cryptographic
properties, as ProVerif [10], [11], Tamarin [12], [13], Maude-
NPA [14], [15], DeepSec [16], [17] and AKiSs [18], [19].

All the above-mentioned tools rely on similar underlying
symbolic models. In particular, messages exchanged over the
network are expressed by terms constructed out of func-
tion symbols (representing cryptographic primitives), names
(representing large numbers such as keys), and variables.

This work received funding from the France 2030 program managed by
the French National Research Agency under grant agreement No. ANR-22-
PECY-0006.

Here, a term enc(m, k) represents the symmetric encryption
of the plain text m with the key k using the encryption
algorithm enc. The algebraic properties of these cryptographic
primitives are expressed by means of an equational theory,
comprising of equations between two terms that indicate that
they correspond to the same message. In our example, an
encryption algorithm comes with an associated decryption
algorithm, denoted here dec. The link between enc and dec
can be expressed by the equation dec(enc(x, y), y) = x. A
set E of such equations is an equational theory and induces
an equivalence relation =E which represents the terms equal
modulo E. For example, dec(enc(h(a), k), k) =E h(a) but
dec(enc(h(a), k), k′) 6=E h(a) as the decryption key k′ is
different from the encryption key k.

Checking equality of two terms modulo an equational theory
E is the most basic problem that these automatic tools must
decide. However, as they consider an active attacker that
controls the network, they need to verify the security claims
for every possible message crafted by the attacker that would
be accepted by honest participants. Among other things, this
entails checking whether two terms can unify modulo the
equational theory E, that is, for terms u and v, checking
whether there exists a substitution σ, i.e. a mapping from
variables to terms, such that uσ =E vσ. Such a σ is called a
unifier. Not only do the tools need to decide whether such
a unifier exists, they also need the ability to compute the
set of most general unifiers. This is a computationally hard
problem that heavily depends on the equations in E and that
is undecidable in general.

The problem of unification modulo an equational theory
has been extensively studied [20], [21], [22], [23], [24]. A
very successful technique consists in finding a representation
of E as a convergent rewrite system and applying basic
narrowing [25], [26]. A rewrite system R is a set of oriented
equations also called rules, which allows rewriting a term u
to another term v through a rewrite step, denoted u →R v.
For example, when R = {dec(enc(x, y), y) → x}, we
have g(dec(enc(h(a), k), k), b) →R g(h(a), b). Convergence
implies that the rewrite system is terminating, i.e., it does
not allow infinite sequences of rewrite steps, and that it is
confluent, i.e., all sequences of rewrite steps from an initial
term t end up in the same term. Basic narrowing does not
always terminate, but it is a generic technique that covers a
large class of cryptographic primitives. This is for instance
the underlying technique used by the verifier DeepSec [16],

1

[17]. However, basic narrowing fails when the equational
theory contains function symbols that are associative and
commutative (AC), such as Exclusive-Or (XOR). Not only
does basic narrowing fail as such equational theory cannot be
represented by a terminating rewrite system, but even basic
AC-narrowing (that is basic narrowing modulo AC) was shown
to be incomplete [27].

Many works have thus developed ad-hoc algorithms solv-
ing the unification problem for specific equational theories:
AC [21], [28], [29], [30], [31], Abelian Groups (AG) [32],
[33], AC plus unit, idempotency (ACUI) and distributiv-
ity [34], Exclusive-Or with homomorphism (XORh) [35],
AG with homomorphism (AGh) [36], etc. However, in the
context of the automated verification of cryptographic proto-
cols, ad-hoc procedures are not sufficient. The ever-increasing
complexity of protocols and their cryptographic primitives
require tools that support user-defined equational theories and
primitives.

In 2005, Comon and Delaune introduced the finite variant
property (FVP) [27] for equational theories. They present a
general technique, showing that when an equational theory E
satisfies the FVP modulo some smaller equational theory E′,
the problem of unification modulo E can be reduced to the
problem of unification modulo E′, using what is now known
as E-variant narrowing. This is why FVP is of particular
interest in the case of protocol analyses, as many user-defined
equational theories can be reduced in practice to unification
modulo AC. Since 2005, and although the definition of FVP
is quite general, most efforts in the literature for proving the
FVP have focused on cases where E can be represented by
a E′-convergent rewrite system either by hand [27], [37] or
automatically [38], [39].

It is important to notice that using the FVP to solve the uni-
fication problem is usually less efficient than using a bespoke
algorithm. This is partly due to the fact that unification modulo
AC is extremely costly, even on small problems, leading
to significant decreases in performance, whereas unification
modulo XOR and AG are much more efficient. As an example,
the unification of x+x+x+x and x1+x2+x3+x4 modulo AC
has more than 34 billion most general unifiers [28] whereas
the unification modulo XOR has only 57. Nevertheless, using
the FVP for solving unification remains in our opinion the
most successful technique in practice.

The same year Comon and Delaune introduced the FVP,
Blanchet, Abadi and Fournet published a paper [40] on an
extension of the ProVerif tool in which they handled the
equational theories by introducing the notion of extended
signature modelling an equational theory. In [40], they de-
scribed two procedures to create such extended signatures from
an equational theory given as input: one for E′-convergent
equational theories with E′ = ∅, and the other for linear
equational theories (i.e., those for which in all equations each
variable occurs at most once in the left-hand side and at
most once in the right-hand side) that cannot be expressed
as a convergent rewrite system. Interestingly, their notion of
extended signatures modelling an equational theory [40] can

be shown to coincide with the FVP when E′ = ∅.
As mentioned, most past works on the FVP have been

focusing on equational theories E that can be represented
by an E′-convergent rewrite system R where E′ = AC.
Furthermore, they also require the rewrite system R to be
provided in order to either compute E-variants or check the
FVP. This is the case for the Maude-NPA and Maude tools.
The Tamarin tool is even further restrictive as it only allows
four groups of built-in function symbols with associative-
commutative properties: Exclusive-OR, Diffie-Hellman groups
(Abelian Group with an exponentiation operator), Bilinear-
pairing and multiset (simple AC function symbol). In par-
ticular, (i) the function symbols defined in these equational
theories cannot be used in user-defined equational theories;
(ii) user-defined primitives cannot have function symbols with
associative-commutative properties.

The limitations in Tamarin partly come from the fact that
creating an AC-convergent rewrite system R that satisfies the
FVP can be very tricky. In the case of AG, the only known
representation showing the FVP is a peculiar rewrite system
containing 10 rewrite rules, first proposed by Lankford [41],
[27]. In contrast, we make the following observations on the
algorithms proposed in [40] and currently used in ProVerif:

• they can be used to effectively compute variants of terms
and most general unifiers;

• they do not require any input other than the equational
theory E itself (no mandatory rewrite system requested);

• they handle some theories that are not convergent
(e.g., they handle the linear theory exp(exp(g, x), y) =
exp(exp(g, y), x));

• they terminate only if E has the FVP modulo the empty
theory. In particular, they cannot handle theory modulo
AC.

Our contributions: This present paper generalises and im-
proves upon the framework and algorithms of [40], [40]. Our
main contributions are as follows:

• we introduce a new notion of Rewrite Theory mimicking
an equational theory E that implies the FVP modulo an
equational theory beyond AC, e.g. XOR, XORh, AG,
AGh; thereby avoiding the costly unification modulo AC;

• we show under which conditions our framework coincides
with the FVP;

• we provide a new semi-decision procedure that can auto-
matically transform an equational theory E into a rewrite
theory that mimics E. We lift the convergent or linear
restrictions from [40] as our procedure requires no initial
condition on E;

• we consider some optimisation techniques for both scope
and efficiency;

• we have implemented in a prototype our algorithm re-
stricted to FVP modulo AC and successfully tested it on
several theories with known FVP modulo AC from the
literature (e.g. XOR, AG, Diffie-Hellman bilinear pairing).
We also showed that many of these equational theories
augmented with a homomorphic symbol with different

2

group operators also satisfy the FVP. This is for exam-
ple the case for XOR, AG, ElGamal and (a)symmetric
encryption. Finally, we also provide several toy examples
showing that the prototype also works on equational theory
without AC-convergent rewrite system representation. The
code and examples are available at [42].

We believe that our work is generic enough to be ported to
most automatic verifiers of security protocols, leading to a
significant improvement in their scope, usability and efficiency.

Outline: In Section II, we provide some preliminary defini-
tions, including the finite variant property. Section III presents
the framework with the new notion of rewrite theory and
Section IV explains how it relates to the finite variant property.
In Section V, we shall describe our semi-decision procedure
for generating rewrite theories and present a detailed overview
of its proof of correctness. Section VI focuses on three possible
optimisations to our procedure. Finally, in Section VII, we
present experimental results on a subset of equational theories
that can be handled by our prototype and discuss some
adjacent properties of our procedure and its limitations.

II. PRELIMINARIES

A. Terms

We use classical notation and terminology from [27] on
terms, unification, rewrite systems. Let X be an infinite set
of variables and N be an infinite enumerable set of names
(also called free constant in the rewriting community). The
set T (F ,X ∪ N) consists of all terms built over the finite
ranked alphabet F of function symbols, variables from X and
names from N . A term t is ground when t ∈ T (F ,N). The
set of positions of a term t is written Pos(t). The subterm of
t ∈ T (F ,X ∪ N) at position p ∈ Pos(t) is written t|p. We
denote st(t) (resp. sts(t)) the set of all (resp. strict) subterms
of t. The term obtained by replacing t|p with u is denoted
t[u]p. The set of variables occurring in t is denoted vars(t).
The set of names occurring in t is denoted names(t).

A context C[] is a term where one of its subterms is
replaced by a hole denoted by . Given a term u, C[u] denotes
the term obtained from C[] by replacing the hole with u.

A substitution σ is a mapping from X to T (F ,X ∪N). The
domain of σ, denoted dom(σ), is the set of variables x such
that x 6= xσ. The image of σ, denoted img(σ), is the set of
terms xσ where x ∈ dom(σ). Given N,N′ ⊆ N , a bijective
mapping ρ from N to N′ is called a renaming. We will denote
dom(ρ) = N and img(ρ) = N′.

B. Equational theories

An equational theory E is a set of equations (unordered
pairs of terms) from T (F ,X), meaning that they should not
contain names. It induces the relation =E which is the least
congruence on T (F ,X ∪ N) such that uσ =E vσ for all
pairs u = v ∈ E and substitutions σ. E is regular if for all
equations t1 = t2 ∈ E, vars(t1) = vars(t2). E is trivial if
for all terms s, t ∈ T (F ,X ∪N), s =E t.

Two terms s, t ∈ T (F ,X ∪ N) are E-unifiable if there
exists a substitution σ, called E-unifier, such that sσ =E tσ.

For example, using the infix notation for +, the set E⊕ of
equations for XOR is as follows:

E⊕ =

{
x+ y = y + x, x+ (y + z) = (x+ y) + z,

x+ x = 0, x+ 0 = x

}
The equations for Abelian Groups (AG) include x ∗ 1 = x
and x ∗ inv(x) = 1 with AC equations for ∗. We say that
a finite set of substitutions S = {σ1, . . . , σn} is a complete
set of E-unifiers of s, t if for all E-unifiers σ of s, t, there
exist i ∈ {1, . . . , n} and a substitution θ such that for all
x ∈ vars(s, t), xσ =E xσiθ. We say that S is a complete
set of most general E-unifiers of s, t, denoted by mguE(s, t),
when it is a complete set of E-unifiers and no substitution is
an instance of another, i.e. for all σ1, σ2 ∈ S, there is no
substitution α such that σ1 =E σ2α. Note that it is easy
to derive an algorithm that produces finite complete sets of
most-general E-unifiers from an algorithm that produces finite
complete sets of E-unifiers.

C. Rewriting

A term rewrite system (TRS) is a finite set of rewrite rules
` → r where `, r ∈ T (F ,X). A term s ∈ T (F ,X ∪ N)
rewrites to t by a TRSR, denoted s→R t, if there exist `→ r
in R, p ∈ Pos(s) and a substitution σ such that s|p = `σ and
t = s[rσ]p.

Given a rewrite system R and an equational theory E,
s rewrites into t by R modulo E, denoted s →R,E t, iff
there exist a position p ∈ Pos(s), a rule ` → r ∈ R and
a substitution σ such that s|p =E `σ and t = s[rσ]p. The
relation →R,E has usually been used [43] to implement the
larger relation →R/E = (=E ◦ →R ◦ =E).

A rewrite system R is E-confluent if and only if for all
s, t ∈ T (F ,X ∪ N), if s =(R=)∪E t then there exist s′, t′

such that s →∗R,E s′, t →∗R,E t′ and s′ =E t′, where R= =
{` = r | ` → r ∈ R} and →∗R,E is the reflexive transitive
closure of →R,E . We say that R is E-terminating when the
relation →R/E is well founded. R is said to be E-convergent
when it is both E-terminating and E-confluent. Finally, we
also say that R is E-confluent (resp. convergent) for E′ when
R is E-confluent (resp. convergent) and (R=)∪E is the same
relation as E′, i.e. s =(R=)∪E t iff s =E′ t.

Example 1. Defining R = {x + 0 → x;x + x → 0} and
R⊕ = R ∪ {x + (x + y) → y}, it is well known that R⊕
is AC-convergent for XOR but not R. Indeed, the term t1 =
(a + a) + b →∗R,AC b but the term t2 = a + (a + b) cannot
be rewritten by →R,AC since neither a nor (a + b) can be
AC-matched with the left hand side of a rule in R. In other
words, t2 6→R,AC . Therefore, R is not AC-confluent.

This also illustrates the difference between →R/AC and
→R,AC , as t2 →R/AC 0 + b→R/AC b.

D. Ordering terms

A strict order on terms > is said to be a rewrite order when
it is closed by application of contexts (i.e., t > s implies
C[t] > C[s]) and substitutions (i.e., t > s implies tσ > sσ).
When the rewrite order is well-founded, it is called a reduction

3

order. An order > is E-compatible if s′ =E s > t =E t′

implies s′ > t′. We say that > is E-total on ground terms
(E-total for short) if for all s, t ∈ T (F ,N), s 6=E t implies
s > t or t > s. Furthermore, > is E-compatible with a rewrite
system R when it is E-compatible and for all ` → r ∈ R,
we have ` > r. It is well known that a rewrite system R is
E-terminating if and only if there exists a reduction order E-
compatible with R. An E-compatible reduction order induces
a well-defined order on the set of =E-equivalence classes.
Moreover, when > is in addition E-total, > becomes total on
T (F ,N)/=E . In such a case, given another equational theory
E′ such that E ⊆ E′, we define minE′,>(t) as the smallest
element of T (F ,N)/=E by > such that t =E′ minE′,>(t).
In other words, minE′,>(t) is the smallest term modulo E by
> that is equal modulo E′ to t.

Example 2. Consider the order as follows: t ># s when
• the number of function symbols or names in t is greater

than in s
• for all x ∈ X , the number of occurrences of x in t is

greater than in s
• at least one of these inequalities is strict.

The order ># is a reduction order AC-compatible but not
AC-total.

Remark. It was already shown in [44] that the existence of a
non-empty E-compatible reduction order necessarily implies
E to be regular. In other words, when E is not regular, no
constraint system can be E-terminating. Indeed, consider an
equation u = C[x] in E with x a variable not in u, and a
rewrite rule ` → r in R. We have C[`] →R C[r] =E C[`].
Hence, =E ◦ →R ◦ =E is not well founded.

There exist many ways to implement a reduction order,
specially when E = ∅. The most commonly used in the
literature are recursive path ordering (RPO) [45] and lexico-
graphic path ordering (LPO) [46]. They enjoy nice properties
such as the subterm property (i.e. C[s] > s for all non-empty
contexts C[]) and being total on ground terms. When E 6= ∅,
it is more complicated to create an E-compatible and E-
total reduction order but previous works have been successful
when considering theories such as AC [47], [48], [49], [50] or
permutations [51].

Example 3. Consider F = FAC ∪ Fo where FAC are the
binary function symbols with associative and commutative
properties, and Fo are all the other function symbols.

To define the order >AC from [48], we first need to
consider a strict order on the function symbols, denoted >F .
Additionally, we need consider the terms in their flattened
form, e.g., f(u1, f(u2, u3)) with f ∈ FAC is represented as
f(u1, u2, u3). This is a classic representation of terms when
working with AC function symbols. Let us denote by tf(t)
the term t in flattened representation. We now define some
preliminary notions as follows.

For all s = f(s1, . . . , sn) with f ∈ FAC , we define:
• EmbSmall(s) = {tf(f(s1, . . . , si−1, vj , si+1, . . . , sn)) |
si = h(v1, . . . , vr) ∧ f >F h ∧ j ∈ {1, . . . , r}};

• BigHead(s) = {{si | i ∈ {1, . . . , n} ∧ top(si) >F f}};
• NoSmallHead(s) = {{si | i ∈ {1, . . . , n} ∧ f 6>F
top(si)}};

• #(f(s1, . . . , sn)) = #v(s1)+ . . .+#v(sn) with #v(x) =
x and #v(t) = 1 if t is not a variable;

where {{u1, u2, . . . , uk}} is a multiset.
The order >AC is defined as: s = f(s1, . . . , sn) >AC

g(t1, . . . , tm) if and only if one of the following properties
holds
1) si ≥AC t for some i ∈ {1, . . . , n}
2) f >F g and s >AC ti for all i ∈ {1, . . . ,m}
3) f = g ∈ Fo and (s1, . . . , sn) >lexAC (t1, . . . , tm) and

s >AC ti for all i ∈ {1, . . . ,m}
4) f = g ∈ FAC and ∃s′ ∈ EmbSmall(s) s.t. s′ ≥AC t
5) f = g ∈ FAC and ∀t′ ∈ EmbSmall(t), s >AC t′ and

NoSmallHead(s) ≥mulAC NoSmallHead(t) and either:
• BigHead(s) >mulAC BigHead(t) or
• #(s) > #(t) or
• #(s) ≥ #(t) or {{s1, . . . , sn}} >mulAC {{t1, . . . , tm}}

with >lexAC the lexicographic extension of >AC on sequences
and >mulAC is the multiset extension of >AC on finite multisets.

The order >AC was shown in [48] to be a AC-compatible
and AC-total reduction order. It is also AC-compatible with
R⊕ from Example 1. This is one of the two reduction orders
we implemented in our prototype.

Most orders in the literature do not consider names in terms.
For the need of our algorithm, we will require our reduction
order to be stable by application of renamings that preserve
the order. Formally, a renaming ρ preserves > when for all
a, b ∈ dom(ρ), a > b iff aρ > bρ. We say that > is stable
by renaming when for all terms s, t, for all renamings ρ
preserving >, if names(s, t) ⊆ dom(ρ) then s > t iff sρ > tρ.

E. Finite variant property

We rely on the seminal notion of finite variant property
which has been initially introduced by [27] adapted to our
notation. Let E ⊆ E′ be two equational theories. Let > be an
E-total and E-compatible reduction order. Given two terms
t, t′ ∈ T (F ,X ∪N), (t′, θ) is a E′-variant of t when tθ =E′
t′. A complete set of E′-variants modulo E of t is a set S of
E′-variants of t such that for all substitutions σ closing for t
(i.e. tσ is ground), there exist (t′, θ) ∈ S and a substitution α
such that minE′,>(tσ) =E t′α.

Definition 1 ([27]). Given two equational theories E ⊆ E′,
E′ has the finite variant property modulo E w.r.t. > if for
all terms t, there exists a finite complete set of E′-variants
modulo E of t.

Intuitively, if S is the complete set of E′-variants modulo
E of t then the smallest term by > equal modulo E′ to any
closing instantiation of t is an instantiation (modulo E) of a
term in S. To draw a parallel with the notion of most general
unifiers, one could say that the terms in S of t are the most
general smallest E-instantiations of t by >. Note that even a
simple term can have many variants.

4

Example 4. Coming back to the theory E⊕ of XOR, the
complete set of E⊕-variants modulo AC of x1 + x2 is
composed of 7 variants:

x1, {x2 7→ 0} x2, {x1 7→ 0} y, {x1 7→ y + x2}
y1 + y2, {x1 7→ y1 + z, x2 7→ y2 + z} 0, {x2 7→ x1}

y, {x2 7→ x1 + y} x1 + x2, ∅

For the Abelian Group theory, the term x1+x2 has 47 variants.

In the rest of this paper, we will say that > is a E-strong
reduction order when it is E-compatible, E-total and stable
by renaming.

III. REWRITE THEORY

In the vein of previous works [40], [38], [27], [52], [39],
a rewrite theory T can be seen as a decomposition of
the main equational theory E into a rewrite system and a
smaller equational theory. However, as previously mentioned,
the decomposition of an equation theory E into a rewrite
system that is AC-convergent does not necessarily lead to
an efficient unification algorithm as the unification modulo
AC is notoriously slow. On the other hand, the problem of
matching modulo AC, that is, checking whether there exists
σ such that uσ =AC v, can be often solved efficiently in
practice [53], despite still being an NP-complete problem [54].
This distinction between unification and matching modulo AC
gave rise to one of the key component of our rewrite theories:
instead of decomposing the main equation theory E into one
rewrite system and one small equational theory, a rewrite
theory T will decompose E into two sets of rewrite rules
R↓ and R and two equational theories E↓ and EA such that
E↓ ⊆ EA ⊆ E. Intuitively, we will assume the existence of
an efficient algorithm for solving unification modulo EA (e.g.
XOR, AG) whereas we only require an efficient algorithm for
solving matching modulo E↓ (e.g. AC). Similarly, the set of
rewrite rules R will be used to compute the variants of terms
modulo EA, whereas the set of rewrite rules R↓ will be used
to normalise the terms modulo E↓. Finally, our rewrite theory
T will also include an E↓-strong reduction order compatible
with R↓. This order will serve several purposes: first, it allows
us to ensure E↓-termination of R↓ (we do not require E↓-
convergence); second, it will be used to show that E has the
finite variant property modulo EA; and it will play a crucial
part in the proof of correctness of our main algorithm (see
Section V).

Definition 2. A rewrite theory T is a tuple (>,R,R↓, E↓, EA)
where:
S1 E↓ and EA are equational theories with E↓ ⊆ EA
S2 > is a E↓-strong reduction order compatible with R↓
S3 R is a rewrite system such that for all f ∈ F , denoting

` = f(x1, . . . , xn), we have (` → `) ∈ R, and for all
`′ → r′ ∈ R, we have vars(r′) ⊆ vars(`′)

In Item S3, the presence of rules of the form f(x1,
. . . , xn) → f(x1, . . . , xn) is used in the next section to
homogenise the definition of computation of most general

unifiers and variants. Intuitively, when computing the variants
of a term u, we will use the rules inR to rewrite all symbols in
u. Hence, the above rule represents the case when the symbol
f is actually not rewritten.

Example 5. Coming back to the theory E⊕, we can define two
rewrite theories T1 = (>AC ,R1,R↓1, AC,AC) and T2 =
(>AC ,R2,R↓2, AC,E⊕) where R1 is the rewrite system that
includes the following rules:

x1 + 0→ x1 0 + x2 → x2 (y + x2) + x2 → y
x1 + x1 → 0 (y1 + z) + (y2 + z)→ y1 + y2

x1 + x2 → x1 + x2 x1 + (x1 + y)→ y 0→ 0

and R2 = {x1 + x2 → x1 + x2; 0→ 0}.
Notice that R1 (resp. R2) corresponds to the E⊕-variants

modulo AC (resp. E⊕) of x1 + x2 and 0. Though we will
formally define the notion of a rewrite theory mimicking an
equational theory later in Definition 4, R1 and R2 containing
variants will explain why both rewrite theories T1 and T2
mimic E⊕.

Hence, for a larger equational theory E that contains
E⊕, by taking EA to be E⊕ instead of AC in the rewrite
theory, we also reduce the number of rewrite rules in the
rewrite system R. Consider, as toy-example, Eed = E⊕ ∪
{d(e(x + k2, k1), k1, k2) = x}. The term d(e(x + r, k), k, r)
has 8 Eed-variants modulo AC whereas it only has 2 Eed-
variants modulo E⊕, corresponding to the following two rules:
d(e(x+ k2, k1), k1, k2)→ x and d(x, k1, k2)→ d(x, k1, k2).

The rewrite systems R↓1 and R↓2 in the rewrite theories
T1 and T2 are only used for normalisation. As such, their
content can vary and will mostly be useful for the generation of
rewrite theories (see Section V). For instance, on input E⊕, our
prototype will start by building a rewrite theory with R↓1 = ∅
but gradually augment it to reach R↓1 = {x+0→ x;x+x→
0}.

Although the rewrite system R↓ in a rewrite theory T
is intuitively used for normalisation, Definition 2 does not
impose E↓-convergence of R↓. Therefore, we rely on > being
a E↓-strong reduction order compatible with R↓ to define a
notion of normal form with respect to a rewrite theory T .

Definition 3. Let T = (>,R,R↓, E↓, EA) be a rewrite theory
and E an equational theory. Let k be the smallest name in N
by >. A set of termsM is in normal form, denoted nfT,E(M),
when EA ⊆ E and there exists an injective substitution σ such
that dom(σ) = vars(M), img(σ) ⊆ N and:
• ∀a ∈ img(σ), a 6= k and ∀b ∈ names(M), a > b
• ∀t ∈M, tσ =E↓ minE,>(tσ).

Intuitively, a term t is in normal form when there is no
other term equal to t modulo E that is strictly smaller than t
by >. Such intuition only holds on ground terms as the order
> is E↓-total. When the term t contains variables, it may
not be ordered with other terms. Thus, to discuss the normal
form of a term with variables, we will consider all variables
of t as names, i.e. we will close t with some substitution σ
such that img(σ) only contains names. However, the choice

5

of names in the substitution σ may impact the minimality by
>. In particular, to distinguish variables with names in t, it
is important for σ to select names not already in t. Similarly,
when we need to consider multiple terms in normal forms,
e.g. in a set of terms M, we need to select names that are
not already in any of the terms in M. This is the purpose of
the first item of Definition 3 which guarantees that we do not
confuse the names already in M with the one used to close
M, i.e. in img(σ).

Example 6. Consider two symbols f/2 and h/1, and an equa-
tional theory E representing that f is commutative. Take E↓ =
∅. Consider a lexicographic path ordering such that on ground
terms, the smallest terms are a < b < h(a) < c < . . . where
a, b, c are names. By definition, f(x, h(a)) =E f(h(a), x).
With such order, both terms f(x, h(a)) and f(h(a), x) indi-
vidually are in normal form since f(b, h(a)) < f(h(a), b)
(σ = {x → b}) and f(h(a), c) < f(c, h(a)) (σ = {x → c}).
In other words, there is a way to close each term t such
that the resulting term tσ is the smallest by < amongst the
terms equal modulo E, that is tσ = minE,>(tσ). However,
the set {f(x, h(a)), h(b)} is not in normal form whereas
{f(h(a), x), h(b)} is in normal form since we cannot instan-
tiate x by b any more as it already occurs in the sets.

Manipulating the injective substitution σ and minE,> in the
definition can be quite cumbersome. Hence, we state below
some interesting properties that show how we can manipulate
sets of terms that are in normal form, without relying on the
renaming nor minE,>. The proof of Lemma 1 can be found
in Appendix B.

Lemma 1. Let T = (>,R,R↓, E↓, EA) be a rewrite theory
and E be a non-trivial equational theory. Assume that EA ⊆
E, and that for all terms t and s, t →R↓,E↓ s implies t =E
s. Let M be a set of terms such that nfT,E(M). Then the
following properties hold:

N1 for all t ∈ st(M), t is irreducible by →R↓,E↓ .
N2 for all s, t ∈ st(M), if s =E t then s =E↓ t.
N3 for all x ∈ X , nfT,E(M∪ {x}).
N4 for all terms t, there exists a term s such that t =E s and

nfT,E(M∪ {s}).

Item N1 is particularly useful when the order > is not
(easily) computable as it provides a sound and easy way for
checking that t is not in normal form. Additionally, since >
is compatible with R↓, t→∗R↓,E↓ t

′ implies t > t′. Hence, an
irreducible term obtained by rewriting t is a potential candidate
for being minimal by > amongst the equivalence class of t
modulo E. We can now define when a rewrite theory T mimics
an equational theory E.

Definition 4. A rewrite theory T = (>,R,R↓, E↓, EA)
mimics an equational theory E when:

M1 EA ⊆ E and if t→R↓,E↓ t′ then t =E t′.
M2 If f(t1, . . . , tn)→ t is in R then f(t1, . . . , tn) =E t.

M3 If f(t1, . . . , tn) =E t and nfT,E({t1, . . . , tn, t}) then there
exist σ and f(s1, . . . , sn)→ s in R such that, t =EA sσ,
and for all i ∈ {1, . . . , n}, ti =EA siσ .

In Item M3, the variables in the rewrite rule f(s1, . . . , sn)→
s are assumed to be freshly renamed, to ensure that
vars(s1, . . . , sn, s) ∩ vars(t1, . . . , tn, t) = ∅.

Example 7. T1 and T2 from Example 5 both mimic E⊕. The
rewrite theory T2 trivially mimics E⊕, but is useless since the
equational theory EA in T2 is also E⊕. The rewrite theory
Ted = (>AC ,R,R↓, AC,E⊕) mimics Eed with ∅ ⊆ R↓ ⊆
R⊕ and R containing the rules:

x+ y → x+ y 0→ 0 e(x, y)→ e(x, y)
d(e(x+ k2, k1), k1, k2)→ x d(x, k1, k2)→ d(x, k1, k2)

IV. COMPLETE SET OF E-VARIANTS

To show the relation between rewrite theories mimicking
equational theories and the finite variant property, we first need
to define the notion of to-evaluate symbols and to-evaluate
terms. For each function symbol f ∈ F , we associate a
function symbol f that will correspond to a symbol that needs
to be evaluated. We define F = {f | f ∈ F}. The symbols in
F are called to-evaluate symbols (TE symbols for short).

Definition 5. A to-evaluate term (TE-term for short) is a term
t ∈ T (F ∪ F ,X ∪N) such that either t ∈ T (F ,X ∪N), or
t = f(t1, . . . , tn), and t1, . . . , tn are TE-terms.

Intuitively, in a to-evaluate term, no to-evaluate symbol in
F can occur ”below” a standard symbol from F ; or in other
words, no to-evaluate symbol can occur in a subterm rooted
by a symbol from F . Given a term t, we denote by t the TE-
term obtained from t in which all function symbols f have
been replaced by f .

Example 8. Consider T = (>,R, ∅, ∅, ∅) a rewrite the-
ory mimicking standard randomized encryption E = {dec(
enc(x, r, k), k) = x}. The set of rewrite rules R can be
composed of the following rules:

dec(enc(x, r, k), k)→ x dec(x, k)→ dec(x, k)
enc(x, r, y)→ enc(x, r, y)

We have that dec(enc(m, r, k), k′) is a TE-term but
enc(dec(x, k′), r, k′) is not a TE-term.

We now define the close evaluation of TE-terms, from which
we will derive the procedure to check the equality modulo E.

Definition 6. Let T = (>,R,R↓, E↓, EA) be a rewrite
theory. We define the non-deterministic close evaluation of a
TE-term t into a term s, denoted t ⇓T s, as follows:

t ⇓T t if t ∈ T (F ,X)
f(t1, . . . , tn) ⇓T rσ if f(`1, . . . , `n)→ r ∈ R, and

∀i ∈ {1, . . . , n}, ti ⇓T si and si =EA `iσ

The evaluation on TE-terms intuitively evaluates the func-
tion symbols from the bottom up.

6

Example 9. Coming back to the rewrite theory T of Exam-
ple 8, denoting t = dec(enc(m, r, k′), k′) we have t ⇓T m
and t ⇓T dec(enc(m, r, k′), k′). The first evaluation cor-
responds to the evaluation of dec with the rewrite rule
dec(enc(x, r, k), k) → x whereas the second evaluation
corresponds to the evaluation of dec with the rewrite rule
dec(x, k)→ dec(x, k).

The evaluation on TR-terms allows us to have a simple
procedure to test the equality modulo E, as shown in the
following result (proof in Appendix C).

Theorem 1 (Equality modulo E). Let T = (>,R,R↓, E↓,
EA) be a rewrite theory and E a non-trivial equational theory.
If T mimics E then for all t, s ∈ T (F ,X ∪ N), t =E s if
and only if there exist t′, s′ such that t ⇓T t′, s ⇓T s′ and
t′ =EA s

′.

We can now define the open evaluation of a sequence
of TE-terms L as a relation L ⇓′T (L′, σ) where σ are
the instantiations of the variables of L obtained during the
evaluation of the TE-symbols in L and where L′ is the result
of such evaluation.

Definition 7. Let T = (>,R,R↓, E↓, EA) be a rewrite
theory. We define the open evaluation on a sequence of TE-
terms L, denoted L ⇓′T (L′, σ), as follows:

[] ⇓′T ([], ∅)
[t] ⇓′T ([t], ∅) if t ∈ T (F ,X ∪N)

[h(t1, . . . , tn)] ⇓′T ([uσu], σ
′σu)

if [t1; . . . ; tn] ⇓′T ([s1; . . . ; sn], σ
′), h(u1, . . . , un)→ u ∈ R,

and σu ∈ mguEA((s1, . . . , sn), (u1, . . . , un))

t · L ⇓′T (sσ′ · L′, σσ′) if [t] ⇓′T ([s], σ) and Lσ ⇓′T (L′, σ′)

Example 10. Coming back to the rewrite theory T of Ex-
ample 8, we consider the t = dec(x, dec(y, b)). Notice
here that only the outer symbol dec is to be evaluated.
In particular [dec(y, b)] ⇓′T ([dec(y, b)], ∅). Therefore, we
have: [t] ⇓′T ([z], {x → enc(z, r,dec(y, b))}) and [t] ⇓′T
([dec(x,dec(y, b))], ∅).

The open evaluation intuitively computes the variants of
terms contained in the sequence of terms L as shown in the
next result (proof in Appendix C).

Theorem 2 (Complete sets of E-variants). Let T = (>,
R,R↓, E↓, EA) be a rewrite theory and E a non-trivial
equational theory. If T mimics E then for all terms t, the
set {(t′, α) | [t] ⇓′T ([t′], α)} is a complete set of E-variants
modulo EA.

Corollary 1 (Finite variant property). Let T = (>,R,R↓,
E↓, EA) be a rewrite theory and E a non-trivial equational
theory. If T mimics E then E has the finite variant property
modulo EA.

As the open evaluation allows to compute the finite com-
plete set of variants, it also allows to compute the complete

set of most general E-unifiers, as shown below (proof in
Appendix C).

Theorem 3 (Most general E-unifiers). Let T = (>,R,R↓,
E↓, EA) be a rewrite theory and E a non-trivial equational
theory. If T mimics E then the set {ασu | [t, s] ⇓′T
([t′, s′], α) ∧ σu ∈ mguEA(t

′, s′)} is a complete set of most
general E-unifiers of t, s.

Corollary 1 showed that a rewrite theory mimicking an
equational theory implies that it has the finite variant property.
In fact we can show that finite variant property and mim-
icking of equational theories are equivalent definitions when
EA = E↓, provided that the set of function symbols F contain
some free symbols. In essence, we provide a more practical
characterisation of the finite variant property.

Theorem 4. Let E↓ ⊆ EA ⊆ E be three non-trivial
equational theories. Let > be a E↓-strong reduction ordering.
Assume that there exist a binary function b ∈ F and a constant
amin ∈ F such that b does not occur in E and for all ground
terms t, amin 6> t.

If E has the finite variant property modulo EA and
• either EA = E↓
• or for all f/n ∈ F , the complete set S of E-variants mod-

ulo EA of b(f(x1, . . . , xn), b(x1, b(x2, . . . b(xn−1, xn))))
satisfies for all (t, θ) ∈ S, vars(t|1) ⊆ vars(t|2) (where
t|i denotes the ith subterm of t)

then there exists T = (>,R,R↓, E↓, EA) that mimics E.

V. GENERATING REWRITE THEORIES

We describe in this section a semi-decision procedure to
generate rewrite theories that mimic an equational theory.
Contrary to previous sections, where we only assumed the
existence of an algorithm to compute the complete set of
most general EA-unifiers, we will also assume in this section
that we have at our disposal an algorithm for computing the
most general E↓-unifiers. Our approach takes advantage of the
following remarks.

First, by relying on most general E↓-unifiers only in the
generation of rewrite theories, we greatly limit our reliance
on it. Focusing on the automated verification of protocols
use case, this means that we only need to run this semi-
decision procedure once for each particular equational theory.
In particular, this means that if during the protocol verification
the user wants to make several small modifications to the
protocol steps, but not to the equational theory, then the
procedure has not to be run again. Even different protocols
using the same equational theory would require the procedure
to be run only once. This observation applies to several
protocol verification tools such as ProVerif [11], Tamarin [55]
and Maude-NPA [56].

Also, although the generic algorithm solely relies on E↓-
most general unifiers and will typically terminate only if E
has the finite variant property modulo E↓, we will show that
our optimisations allow us to reduce the number of variants
when focusing on FVP modulo EA.

7

Last, although our optimised algorithm can take as input
a rewrite system R↓, the algorithm does not really need
that particular knowledge. Indeed, a user could start with an
empty R↓ and the algorithm will by itself augment R↓ with
appropriate rewrite rules. This feature is particularly useful in
the context of automated verification of protocols, as users do
not necessarily have the knowledge to create a decomposition
of E by themselves.

A. Overlapping rewrite rules

The core of the procedure consists in taking two rewrite
rules `1 → r1 and `2 → r2 where r1 and `2 overlap and
producing a new rewrite rule.

Definition 8. Let E↓ be an equational theory. We say that the
rewrite rule `1 → r1 is E↓-overlapping on a position p with
the rewrite rule `2 → r2 if p ∈ Pos(r1), r1|p is not a variable
and there exists σ ∈ mguE↓(r1|p , `2).

The set of rewrite rules merging the two E↓-overlapping

rules on p, denoted (`1 → r1
p,E↓
� `2 → r2), is defined as:

{`1σ → r1σ[r2σ]p | σ ∈ mguE↓(r1|p , `2)}

When p 6∈ Pos(r1) or r1|p ∈ X , (`1 → r1
p,E↓
� `2 → r2) = ∅.

Overlapping rewrite rules are closely related to the classical
notion of critical pairs used for example in the Knuth-Bendix
completion algorithm. In particular, the critical pairs of `1 →
r1 and `2 → r2 are the pairs (s, t) such that s → t ∈ (r1 →
`1

p,E↓
� `2 → r2). Notice that here, the overlap is between `1

and `2. We denote by (`1 → r1
p,E↓
�� `2 → r2) the set of rules

from (`1 → r1
p,E↓
� `2 → r2) and their opposite orientation

rules.

B. The procedure

(NORMR)
R∪ {s→ t} R↓,E↓ R∪ {s→ t′} if t =E↓ ◦ →R↓ t′

(NORML)
R∪ {s→ t} R↓,E↓ R∪ {s[s′]i → t, t→ s[s′]i}

if s = f(s1, . . . , sn), i ∈ {1, . . . , n}, si =E↓ ◦ →R↓ s′

(EQ)
R∪ {s→ t} R↓,E↓ R if s =E↓ t

(SUB)
R∪ {u→ t} R↓,E↓ R

if (u′ → t′) ∈ R, C[u′σ] =sE↓ u,C[t
′σ] =E↓ t,

t′ 6→R↓/E↓ and ∀p > ε. u′|p 6→R↓/E↓

Fig. 1. Normalisation rules

The main procedure will consist in generating the rewrite
systems R and R↓ that will in the end be part of the rewrite
theory (>,R,R↓, E↓, EA). Since R↓ in combination with E↓
is used to normalise the rules, the procedure naturally relies

on a subroutine that will just normalise the rewrite rules in
the rewrite system R. We define the subroutine by a set of
normalisation rules on R displayed in Figure 1. The rule
NORMR takes a rule s→ t from R and replaces t by a term
t′ that t rewrites into, i.e. t =E↓ ◦ →R↓ t′. There may be
different possible t′, specially because R↓ is not necessarily
E↓-convergent. However, it suffices to take only one of the
terms t rewrites into. The rule NORML similarly normalises
one of the arguments of the left-hand side. However, it also
produces the rule where we swap the two sides. Intuitively,
when transforming a rule s → t, we need to show that if an
instance of the rule is well-ordered, that is when sσ > tσ
then one of the instantiated produced rules should also be
well-ordered. In the case of NORMR, we know that t > t′ as
> is E↓-compatible with R↓. Thus, tσ > t′σ which implies
sσ > t′σ. Hence, we do not need to consider the rule t′ → s.
In the case of NORML however, such reasoning does not hold
as we might have tσ > s[s′]iσ. Therefore, we output both
rules s[s′]i → t and t→ s[s′]i.

Note that in [40], when the equational theory can be
modelled as a ∅-convergent rewrite system, their procedure
has a similar normalisation rule but does not swap the rules
as is done in NORML. Hence, when it is known that R↓ is
E↓-convergent, one could argue that we should add a specific
rule where the swap does not occur. However, it is unnecessary
thanks to the rule EQ. Assume for simplicity that t is already
normalised by NORMR, once the rule t → s[s′]i is added to
R, it will be simplified once again by successive applications
of the rule NORMR. As R↓ is E↓-convergent, it will produce
a rule t→ t′ with t =E↓ t

′ which will disappear by EQ.
Finally, the rule SUB removes a rule that is already sub-

sumed by another rule in R. In the definition of the rule, =sE↓
denotes the strict equality modulo E↓, that is t =sE↓ s iff t =
f(t1, . . . , tn), s = f(s1, . . . , sn) and for all i ∈ {1, . . . , n},
ti =E↓ si. Intuitively, this equality modulo E↓ does not affect
the root symbol of t and s. Additionally, the rule SUB requires
that the rule s′ → t′ that subsumes s→ t should be irreducible
by →R↓/E↓ (strictly for s′).

Definition 9. A normalisation step, denoted R R↓,E↓
R′, is defined when R′ is the result of the application of
NORMR, NORML, EQ or SUB on R. The set R is said
to be normalised when R 6 R↓,E↓ . We define the function
normalise(R,R↓, E↓) that computes and returns a nor-
malised R′ such that R ∗R↓,E↓ R

′.

Lemma 2. Let R↓ be a set of rewrite rules. Let E↓ be an
equational theory. Let > be a E↓-strong reduction ordering
compatible with R↓. For all sets of rewrite rules R, the
function normalise(R,R↓, E↓) terminates.

Proof. As > is E↓-compatible with R↓, we have that for all
terms t, t′, if t =E↓ ◦ →R↓ t′ then t > t′. Hence, when the
rules NORML and NORMR replace a rule s→ t, they do it by
replacing one of the term (either s or t) by a new term strictly
smaller by >. As the order > is well-founded, we cannot have
an infinite sequence of rules generated by normalisation rules,

8

and so normalise(R,R↓, E↓) terminates.

1 Function generate_rw_th(E′,R↓, E↓)
2 R := R↓ ∪ {s→ t, t→ s | (s = t) ∈ E′}
3 R := normalise(R,R↓, E↓)
4 repeat
5 R′ := ∅
6 R0 := R
7 forall (`1 → r1) ∈ R ∪ E↓, (`2 → r2) ∈ R,

position p do

8 R′ := R′ ∪ (r1 → `1
p,E↓
�� `2 → r2)

9 R′ := R′ ∪ (`1 → r1
p,E↓
�� `2 → r2)

10 R′ := R′ ∪ (r1 → `1)
11 end
12 R := normalise(R′ ∪R,R↓, E↓)
13 until R = R0

14 R = R∪{f(x1, . . . , xn)→ f(x1, . . . , xn) | f/n ∈ F}
15 return R

Algorithm 1: Generic generation of rewrite theories

We can now define the main procedure displayed in Algo-
rithm 1. The set of rewrite rules R gathers the rules generated
throughout the algorithm. It is initialised on Line 2 with all
the rules in E′, in both orientations, as well as all the rules
in R↓. Note that we do not consider both orientations for the
rules in R↓. Intuitively, in the proof (see Section V-C for an
overview), we will only consider applications of rewrite rules
that follow the ordering >, i.e. if t →R,E↓ s by some rule
` → r with substitution σ then `σ > rσ or `σ =E↓ rσ. As
such, since any rule (` → r) ∈ R↓ satisfies ` > r, we will
never consider an application of the rule r → `.

After a first normalisation on Line 3, the algorithm enters
the main loop which merges E↓-overlapping rewrite rules from
R, and then normalises these newly generated rewrite rules
with the current rules in R. The process repeats until we reach
a fixpoint on R. On Line 7, for sake of readability, we write
R ∪ E↓ for the set R ∪ {` → r, r → ` | (` = r) ∈ E↓}.
When looking at the two rewrite rules `1 → r1 and `2 → r2,
we consider the two cases, that are when `1 overlaps with `2
(Line 8) and when r1 overlaps with `2 (Line 9).

Notice that Line 10 also adds all the rules inR with opposite
orientation. Indeed, similarly to the initialisation, the algorithm
aims to maintain that rules with both orientations should occur
inR. But this may be disrupted by normalising with a non-E↓-
convergent R↓. Hence, Line 10 ensures the invariant. Finally,
upon exiting the loop, the algorithm adds to R on Line 14
the rule f(x1, . . . , xn)→ f(x1, . . . , xn) to satisfy Item S3 of
Definition 2.

Before stating the theorem indicating the correctness of
Algorithm 1, we need to introduce a final assumption on E↓:
we will require E↓ to have finite equivalence classes, that is
for all terms t ∈ T (F ,X ∪N), the set {t′ | t =E↓ t′} is finite.
This is a strong assumption that is satisfied, amongst others, by
AC, C (commutative) and A (associative) equational theories,

hence allowing us to cover all the relevant equational theories.
For instance, in our implemented prototype (see Section VII),
we have focused on E↓ being AC. Nevertheless, showing the
correctness of the algorithm without this assumption remains
open.

Theorem 5. Let E↓, E′ be two equational theories such that
E↓ has finite equivalence classes. Let R↓ be a set of rewrite
rules. Let > be a E↓-strong reduction ordering compatible
with R↓. Let E = E′ ∪R↓= ∪ E↓.

If E is not trivial and generate_rw_th(E′,R↓, E↓)
terminates and returns R such that for all (` → r) ∈ R,
vars(r) ⊆ vars(l), then (>,R,R↓, E↓, E↓) is a rewrite
theory that mimics E.

Remark that when R↓ = ∅, the normalisation rules do
not affect the rewrite system R given as input, that is
normalise(R, ∅, E↓) = R. Hence, for the algorithm to
effectively work, it is preferable to provide a rewrite system
R↓ as large as possible (e.g. one that is E↓-convergent with
E). However, to avoid for users the requirement to manually
provide this rewrite system, we present in Section VI some
optimisations that allow the prototype to start withR↓ = ∅ and
to gradually augment it during the execution of the procedure.

Comparison with the procedures in [40]: Our algo-
rithm is a direct generalization of the two algorithms
presented in [40]: when E is oriented as a convergent
rewrite system R↓, Algorithm 1 of [40] actually com-
putes generate_rw_th(∅,R↓, ∅). When E is a linear
equational theory, Algorithm 2 of [40] actually computes
generate_rw_th(E, ∅, ∅). A direct consequence of The-
orem 5 is that Algorithm 2 presented in [40] for linear
equational theories was in fact sound for any equational theory.

C. Overview of the proof of Theorem 5

The complete proof can be found in Appendix D. We
place ourselves within the hypotheses of Theorem 5, which
are: EA = E↓, and > is a E↓-strong reduction order
compatible with R↓, and generate_rw_th(E′,R↓, E↓)
terminates and returns R such that for all (` → r) ∈ R,
vars(r) ⊆ vars(`). Let us denote E = E′ ∪ R↓= ∪ E↓ and
T = (>,R,R↓, E↓, E↓).

1) T is a rewrite theory: Showing that T is a rewrite theory
is a simple matter as Items S1 and S2 are given as assumptions.
Moreover, Item S3 is guaranteed by Line 14 of Algorithm 1
and by our assumption that for all (` → r) ∈ R, vars(r) ⊆
vars(`).

2) Towards T mimics E: Amongst the three properties
required to show that T mimics E, only the last one, i.e.
Item M3, is difficult. Item M1 is directly obtained, since
E↓ = EA and E↓ ∪R↓= ∪E′ = E. The proof of Item M2 is
mostly given by the following lemma.

Lemma 3. Let `1 → r1 and `2 → r2 be two rewrite rules
such that `1 =E r1 and `2 =E r2. For all positions p, for all

`3 → r3 ∈ (`1 → r1
p,E↓
� `2 → r2), `3 =E r3.

9

Proof. If `3 → r3 ∈ (`1 → r1
p,E↓
� `2 → r2) then p ∈

Pos(r1) and there exists σ ∈ mguE↓(r1|p, `2) such that `3 =
`1σ and r3 = r1σ[r2σ]p. `2 =E r2 implies `2σ =E r2σ.
Similarly, `1σ =E r1σ. Since σ is a E↓-unifier of r1|p and
`2, and since E↓ ⊆ E, we have r1|pσ =E `2σ =E r2σ.
This implies that r1σ = r1σ[r1|pσ]p =E r1σ[r2σ]p. Hence
`3 = `1σ =E r1σ =E r1σ[r2σ]p = r3.

Notice that all rules `→ r in the initial value R on Line 2
of Algorithm 1 satisfy ` =E r. By applying Lemma 3 and
noticing that the normalisation rules NORML and NORMR
preserve this invariant, since R↓= ∪ E↓ ⊆ E, we obtain that
R satisfies Item M2.

3) A mountainous landscape of equality modulo E: Con-
sider two terms t and s such that t =E s. The definition
of =E is given by being the least congruence such that
uσ =E vσ for all equations u = v ∈ E. Another way of
viewing this definition is that there exists a finite sequence
t = t0 →RE t1 →RE . . .→RE tn−1 →RE tn = s where RE
are the rules `→ r such that (` = r) or (r = `) is in E.

Let us assume for the moment that all t0, . . . , tn are ground.
If pi, σi and `i → ri are respectively the position, the
substitution and the rewrite rule used in the rewrite step
ti−1 →RE ti then, as > is a E↓-total, we know that either
`iσi > riσi or `iσi =E↓ riσi or `iσi < riσi. The main idea
behind the proof is to only consider rewrite steps that follow
the order >. Formally, we write t ` → r−−−−→

p,σ
s when t|p = `σ

and s = t[rσ]p and (`σ > rσ or `σ =E↓ rσ). Similarly, we

write s r ← `←−−−−
p,σ

t when t ` → r−−−−→
p,σ

s.

Of course, when a rule ` → r is not already ordered by
>, i.e. ` > r, there may be some substitutions σ for which
`σ > rσ and some substitutions σ′ for which `σ′ < rσ′.
This explains why in the initial set R defined in Line 2 of
Algorithm 1, when ` = r ∈ E′, both ` → r and r → ` are
in R, as well as why only R↓ ⊆ R and not the rules in R↓
with opposite orientation.

Using this ordered rewrite step, we can graphically represent
the equality modulo E, t =E s as a mountainous landscape
with peaks, plateaus and valleys (see Figure 2) where each
increase or decrease of altitude is due to an ordered rewrite
step from a rule in R. The first part of the proof intuitively
consists in transforming the mountain into a single valley.
To do so, we will apply successive transformations that will
replace local peaks into local valleys, until no peak remains.

4) Transforming peaks into valleys: In this section, we
present a subset of the transformations needed to reshape the
mountainous landscape. In particular, we first start by looking
at peaks of the form u

r ← `←−−−−
p,σ

t
`′ → r′−−−−−→
p′,σ′

v.

a) Peak with parallel positions.: Assume that p || p′,
which means that p and p′ are not prefix of each other. We
know that `σ = t|p and `′σ′ = t|p′ . Since p || p′, t is in fact of
the form t = C[`σ, `′σ′] with C[,] a term context. Hence,
taking t′ = C[rσ, r′σ′], we have u `′ → r′−−−−−→

p′,σ′
t′ and t′ r ← `←−−−−

p,σ
v.

Graphically, we thus applied the following transformation:

u

t

v
r
←
`

p,
σ

` ′
→
r ′

p ′
, σ ′ ⇒ u

t

v

t′

` ′
→
r ′

p ′
, σ ′

r
←
`

p,
σ

Since > is an E↓-compatible reduction order, `σ > rσ
implies t > u and v > t′. Similarly, `′σ′ implies t > v and
u > t′. Therefore t > t′. Notice that the peak, whose highest
altitude was represented by t, becomes a local valley whose
highest altitude is either u or v.

b) Peak with overlapping positions.: When the positions
p and p′ are not parallel, we cannot apply the previous
transformation. However, we can rely on the rules obtained
by merging E↓-overlapping rules. Assume that p′ = p · q,
i.e. p is a prefix of p′, and q ∈ Pos(`) and `|q 6∈ X . In
such a case, `|qσ = `′σ′. W.l.o.g., we assume that distinct
rules in the mountainous landscape have distinct variables.
We can therefore define γ = σ ∪ σ′ yielding `|qγ = `′γ
and so `|q and `′ being unifiable. Hence, not only there exist
α ∈ mguE↓(`|q, `

′) and θ such that γ =E↓ (αθ)|dom(γ); but
the rule r → ` is also E↓-overlapping on q with `′ → r′.
Hence, we can find (s → w) ∈ (r → `

q
� `′ → r′) such that

sθ =E↓ rσ and wθ =E↓ `σ[r
′σ′]q .

Note that we cannot deduce how sθ and wθ are ordered, i.e.
whether sθ > wθ or sθ =E↓ wθ or wθ > sθ. We thus consider
two cases when transforming the peak. When E↓ = ∅, the two
transformations are graphically represented below.

u

t

v

r
←
`

p,
σ

` ′
→
r ′p ′

, σ ′ ⇒

sθ > wθ or sθ =E↓
wθ

u

t

v
s → w

p, θ

u

t

v
r
←
`

p,
σ

` ′
→
r ′

p ′
, σ ′ ⇒

wθ > sθ

u

t

vs ← w

p, θ

These two cases explain why in Line 7 of Algorithm 1, we
augment R′ with r → `

q
�� `′ → r′.

When E↓ 6= ∅, we cannot apply exactly the same trans-
formation since, in the mountainous landscape, all rewrite
steps are syntactic and not modulo E↓. However, sθ =E↓ rσ
implies that there exists a sequence of rewrite steps from sθ
to rσ using only rewrite rules in E↓. To discuss about such
sequences more easily, we write u tr⇐⇒ v when tr is a rewrite
trace, i.e. a sequence of rewrite step arguments (p1, σ1 : `1 ∼1

r1) . . . (pn, σn : `n ∼n rn) with ∼1, . . . ,∼n ∈ {←,→} and
when there exist terms t0, . . . , tn such that t0 = u, tn = v
and for all i ∈ {1, . . . , n},

ti−1
`i → ri−−−−−→
pi,σi

ti when ∼i =→ and ti−1
`i ← ri←−−−−−
pi,σi

ti otherwise.

We call each (pi, σi : `i ∼i ri) a rewrite label. When tr
contains only right (resp. left) oriented rewrite rules, we say
that it is a right (resp. left) rewrite trace, and we denote u tr

=⇒ v

(resp. u tr⇐= v).

10

t = t0

t1 t2

t3

t4

t5 t6

t7

t8

t9 = s

`
1 →

r
1p

1 , σ
1

`2 ← r2

p2, σ2

`3
←
r3

p3
, σ3

`4
←
r4

p4
, σ4

`
5 →

r
5p

5 , σ
5

`6 → r6

p6, σ6

`
7 →

r
7p

7 , σ
7

`8
←
r8

p8
, σ8

`9
←
r9

p9
, σ9

Fig. 2. Mountainous landscape of t =E s

Coming back to the peak of our landscape, sθ =E↓ rσ and
wθ =E↓ `σ[r

′σ′]q imply u =E↓ u[sθ]p and v =E↓ v[wθ]p,
which in turn imply that there exist two rewrite traces trL
and trR with rules only in E↓ such that u trL==⇒ u[sθ]p and

v[wθ]p
trR⇐== v. We can therefore amend our transformations

to add these rewrite traces. For example, when wθ > sθ, the
transformation can be graphically represented as follows:

u

t

v

r
←
`

p
,
σ

` ′ →
r ′

p ′, σ ′

⇒

u

t

v

wθ > sθ

u[sθ]p

v[wθ]p

s
←
w

p
,
θ

trL

trR

Although the altitude of the mountainous landscape decreases,
the presence of trL and trR may increase its length, i.e.
the number of rewrite steps. This will be taken into account
when showing that repeated applications of transformations
necessarily terminate.

For brevity, we omit here the other transformations used to
remove peaks, for instance when p′ = p · q and q 6∈ Pos(`) or
`|q ∈ X . They can however be found in Appendix D.

5) Ordering slopes by decreasing position: In addition to
removing peaks of the mountainous landscape, we also order
the rewrite steps on a slope by decreasing position. Intuitively,
our aim is to ensure that if the rewrite steps u ` → r−−−−→

p,σ
t

tr
=⇒

w
`′ → r′−−−−−→
p′,σ′

v are part of our mountainous landscape then either

p || p′ or p′ < p. In other words, if u tr
=⇒ v then any rule that

affects the root symbol of u should be the last rule applied
in tr. Once again, we can achieve this by transforming the
landscape.

Consider for example the slope u ` → r−−−−→
p,σ

t
`′ → r′−−−−−→
p′,σ′

v where

p′ = p · q, i.e. p is a prefix of p′, and q ∈ Pos(`) and `|q 6∈ X
with `′σ′ > r′σ′. These two rewrite steps are not ordered
by decreasing position. Similarly to our transformation that
removes peaks with overlapping positions, there exist (s →
w) ∈ (`→ r

q
� `′ → r′) and a substitution θ such that sθ =E↓

`σ and wθ =E↓ rσ[r
′σ′]q . In this case, one can show that

we necessarily have sθ > wθ as > is a E↓-strong reduction
ordering and `′σ′ > r′σ′. Once again, sθ =E↓ `σ and wθ =E↓
rσ[r′σ′]q imply that there exist two rewrite traces trL and trR
with rules only in E↓ such that u trL==⇒ u[sθ]p and v[wθ]p

trR==⇒
v. The transformation is graphically represented below.

u

t

v

` →
r

p, σ

` ′ →
r ′

p ′, σ ′

⇒

u

v

u[sθ]p

v[wθ]p

s
→
wp
,
θ

trL

trR

When E↓ = ∅, as u = u[sθ]p and v[wθ]p = v, the sequences
trL and trR would be empty hence the number of wrongly
ordered rewrite steps would decrease. However, when E↓ 6=
∅, trL and trR may introduce wrongly ordered rewrite steps.
Therefore, we relax the notion of rewrite steps ordered by
decreasing position by only looking at cases where `′σ′ >
r′σ′, thus excluding rules in E↓.

Definition 10. A right rewrite trace tr is ordered by decreasing
position when for all sub-traces of tr of the form (p, σ : `→
r)tr′(p′, σ′ : `′ → r′), if `′σ′ > r′σ′ then p || p′ or p′ <
p. Similarly, a left rewrite trace tr is ordered by decreasing
position when for all sub-traces of tr of the form (p, σ : r ←
`)tr′(p′, σ′ : r′ ← `′), if `σ > rσ then p || p′ or p < p′.

With this new definition, as trR only contains rules from
E↓, the rewrite trace (p, θ : s → w)trR is naturally ordered
by decreasing position. To handle trL, one can notice that
in the equality sθ =E↓ `σ, we in fact have s = `α with
(αθ)|dom(σ) =E↓ σ. Thus, after showing that ` cannot be a
variable as E↓ has finite equivalence classes and > has the

subterm property on ground terms, we thus obtain `σ
tr′L==⇒

sθ for some tr′L where the positions in tr′L are all different
from the root position ε, i.e. they do not affect the root of `.
Therefore, we deduce that there exists u trL==⇒ u[sθ]p where p
is a strict prefix of all positions of trL.

The proof of Theorem 5 and in particular the proof of
Item M3 from Definition 4 is completed by showing that
when no more landscape transformation rule is applicable,
the rewrite trace is a valley whose slopes are ordered by
decreasing position. In such a case, as f(t1, . . . , tn) =E t,
M = {t1, . . . , tn, t} and nfT,E(M) holds, we can show that
the ordered slopes is in fact only composed of a single rule,
that is the one used to prove Item M3.

VI. OPTIMISATIONS

The procedure presented above has two main flaws: it may
not terminate and it may produce rewrite rules where variables
of the right hand side are not all included in the left hand side,
the latter thus possibly violating the requirement from Item S3
of Definition 2. Although we will never be able to guarantee
termination (otherwise all equational theories would satisfy the

11

finite variant property, which is not the case), we suggest in
this section some optimisations that will help the procedure
terminate more often. Moreover, we will also propose an
additional optimisation that will ensure that all rewrite rules
generated have variables in their right hand side occurring in
their left-hand side.

A. Dealing with right-hand side variables

Recall that > is a E↓-strong reduction order and E↓ has
finite equivalence classes. Without restriction, the smallest
ground term by > could be either a name or a constant. It
cannot be any other term as > satisfies the subterm property
on ground term, i.e. any strict subterm is strictly smaller than
the term itself. To apply our optimisation, we will assume that
the smallest ground term by >, denoted amin, is a constant
that does not occur in E↓. In such a way, amin will be able
to appear within our rewrite rules and not be affected by E↓.
In practice, we can always augment F with a new constant
disjoint from F , and define a new reduction from > where
this constant is minimal.

The main idea of the rule comes from the following simple
observation. Assume that s =E t and x ∈ vars(t) \ vars(s).
Thus, for all terms u1, u2, denoting σ1 = {x 7→ u1} and
σ2 = {x 7→ u2}, we have tσ1 =E s =E tσ2. In other words,
the value of x does not really matter. Thus, when s → t
occurs in R, we can replace x by the minimal term amin.
In order to achieve correctness, we also introduce the rewrite
rule t → t{x 7→ amin}. Therefore, we augment the set of
normalisation rules with the following rule VAR.

(VAR)
R∪ {s→ t} R↓,E↓ R∪ {s→ tρ, t→ tρ}

if ρ : V → {amin} and V = (vars(t) \ vars(s)) 6= ∅

For example, this optimisation allows our prototype to
generate a rewrite theory for the equational theory {g(x, y) =
f(x, z);h(x) = a; f(a, z) = p(x, z)}.

B. Checking the order of rules

So far, we assumed the existence of an E↓-strong reduction
order but it is only used in the proof and not in the algorithm
itself. However, if we have an effective way of testing whether
t > s then we can remove any rule s → t from R such that
t > s since they will never be used in a rewrite trace between
two terms. Indeed, u s → t−−−−→

p,σ
v and u

t ← s←−−−−
p,σ

v requires that

either sσ =E↓ tσ or sσ > tσ; and t > s implies tσ >
sσ for all σ. In a similar fashion, as > satisfies the subterm
property on ground terms, s cannot be a strict subterm of t as
it would imply tσ > sσ. We can therefore augment the set of
normalisation rules with the following rule ORD.

(ORD)
R∪ {s→ t} R↓,E↓ R if t > s or s ∈ sts(t)

On the other hand, when a rule s → t already satisfies
s > t, we also have the opportunity to add it to R↓ as

the only requirement on R↓ is to be E↓-terminating. When
it occurs, we restart the algorithm by re-initialising R to
its initial value with the augmented R↓. This optimisation
allows the prototype to terminate on the equational theory
{exp(g, one) = g; exp(exp(g, x), y) = exp(exp(g, y), x)}.

C. Subsumed rules modulo EA
Theorem 5 generates a rewrite theory mimicking E, of the

form (>,R,R↓, E↓, E↓), where the equational theory E↓ used
for normalisation is also used for the computation of most
general unifiers. As mentioned at the beginning of the paper,
we aim for rewrite theories of the form (>,R,R↓, E↓, EA).
Of course, when E↓ ⊆ EA, it is easy to see that if (>
,R,R↓, E↓, E↓) mimics E then so does (>,R,R↓, E↓, EA).
However, many of the rules in R would become superfluous:
typically, when two rules are equal modulo EA, only one of
them is needed. We therefore consider a function that will
remove these superfluous rules (Algorithm 2).

1 Function cleanup(R, EA)
2 while R = R′ ∪ {s→ r, s′ → r′} and ∃α s.t.

sα =sEA s
′ and rα =EA r

′ do R := R′ ∪ {s→ r}
3 return R

Algorithm 2: Removing superfluous rewrite rules

Correctness of this function is given below (proof in Ap-
pendix E).

Lemma 4. If (>,R,R↓, E↓, EA) is a rewrite theory mim-
icking an equational theory E and R′ = cleanup(R, EA)
then (>,R′,R↓, E↓, EA) is a rewrite theory mimicking E.

VII. EXPERIMENTATION RESULTS AND DISCUSSION

We developed a prototype implementing our semi-decision
procedure in OCaml and used Maude version 3.4 [58] as
backend. Our source code and examples are available in
[42]. The prototype currently natively only support matching
and unification modulo AC, meaning that given an input
equational theory E, and an optional rewrite system R↓,
the prototype will execute generate_rw_th(E,R↓, AC),
returning a rewrite system R. In Table I, we provide an extract
of our experimental results on different equational theories,
indicating the equations we consider, the computation time on
a MacBook Pro M2 8-core with 24GB of memory, the number
of rewrite rules generated by the algorithm (# rules), the size
of R (|R|) and whether our prototype was able to determine
that R is convergent (Conv). Finally, we also indicate whether
a rewrite system R↓ was initially provided to the prototype
(R↓). We explain below how our prototype check convergence.

In Table I, we denote by AC(+) the equations for asso-
ciativity and commutativity of the symbol +. In [27], it was
shown that adding to XOR an homomorphic symbol h with
the equation h(x + y) = h(x) + h(y) yields an equational
theory that does not have the FVP modulo AC. However,
we retrieve the FVP modulo AC when considering different
operators +in and +out with the equation {h(x +in y) =

12

Acronym Equations time # rules |R| Conv R↓
ACI AC(+) ∪ {x+ x = x} 5s 54k 6 yes no
ACN AC(+) ∪ {x+ x = 0} 35s 399k 14 yes no
XOR AC(+) ∪ {x+ 0 = x, x+ x = 0} 1s 38k 8 yes no
XORed XOR ∪ {d(e(x+ k2, k1), k1, k2) = x} 3s 56k 17 yes no

H(+in,+out) {h(x+in y) = h(x) +out h(y)} 1s 10 5 yes no
XORh6= XOR ∪ H(+,+out) 2s 40k 17 yes no
AG AC(∗) ∪ {x ∗ 1 = x, x ∗ x−1 = 1} 7min 26s 530k 52 yes yes
DH AG ∪ {x ˆ 1 = x, (x ˆ y) ˆ z = x ˆ (y ∗ z)} 17min 828k 99 yes yes

Bilinear Pairing DH ∪ {(x · y) · z = x · (y ∗ z), x · 1 = x, 1h 14min 1402k 194 no yes
em(x · y, z) = em(x, z) ∗ y, em(z, x · y) = em(z, x) ∗ y}

OldDHWeak {gw ˆ x = x, 1 ˆ x = 1, (g ˆ y) ˆ z = (g ˆ z) ˆ y} 1s 32 10 no no
AGh 6= AG ∪H(∗, ∗out) 16min 42s 815k 101 yes yes

EG-Mixnet [57] AC(∗) ∪ {(x ˆ y) ˆ z = x ˆ (y ∗ z), dec(enc(m,x, x ˆ y, r), x, y) = m, 1s 276 15 yes no
check(sign(m,x, s), x, x ˆ s) = m, get(sign(m,x, s)) = m}

EG-Renc [57] EG-Mixnet ∪ AC(+) ∪ {renc(enc(m,x, x ˆ y, r), r′, x, x ˆ y) = enc(m,x, x ˆ y, r + r′)} 1s 428 19 yes no
Ench6= AC(+) ∪ {enc(x, z) +out enc(y, z) = enc(x+ y, z), dec(enc(x, y), y) = x} 1s 24 8 yes no

AEnch6= AC(+) ∪ {enc(x, pk(z)) +out enc(y, pk(z)) = enc(x+ y, pk(z)), dec(enc(x, pk(y)), y) = x} 1s 24 7 yes no

Blind Signature {unblind(blind(x, y), y) = x, get(sign(x, y)) = x, 1s 72 11 yes no
unblind(sign(blind(x, y), z), y) = sign(x, z), verify(sign(x, y), vk(y)) = ok}

Toy example 1 {g(x, y) = f(x, z), h(x) = 0, f(0, z) = p(x, z)} 1s 218 14 no no
Toy example 2 {g(x, y) = f(x, x, z), h(x, x) = 0, f(0, x, z) = p(x, z)} 1s 159 12 no no
Toy example 3 {dh(x, pk(y)) = dh(y, pk(x)), dh(x, invalid) = invalid} 1s 21 5 no no

TABLE I
EXTRACT OF EQUATIONAL THEORIES HANDLED BY OUR PROTOTYPE.

h(x)+outh(y)}. In the case of XOR for example, the equations
XOR∪H(+,+out) ensure that +out is also AC, nilpotent with
a unit element but only over the outputs of the h function (not
over all terms). The same technique applies to Abelian groups
with an homomorphic symbol and (a)symmetric homomorphic
encryption/decryption scheme.

We also consider more complex equations used in the
literature. For instance, we consider a model of ElGamal
asymmetric encryption used to model Exponentiation Mix-
Nets in [57]. We also consider the Bilinear Pairing equations
used in Tamarin, which is basically Diffie Hellman (DH)
augmented with a bilinear map em and a scalar multiplier ·.
We relied on the generic definition where the function em is
not commutative, corresponding to the case where the groups
used on the left and right arguments of em may be different.
Interestingly, when adding the commutative property to em,
our algorithm seems stuck in the computation of an AC-
unification in Maude. However, when considering em to be
both associative and commutative, our algorithm concludes
and generates the same number of rewrite rules as the non-
commutative case. This can be explained by the fact that our
prototype currently only implements natively AC unification
and not commutative-only unification. Therefore the algorithm
needs to take care of the commutative property which seems
to lead to some very costly unification. In a future version of
our prototype with commutative unification implemented, we
expect the bilinear pairing with a commutative em to conclude
without problem.

Additional examples, including some toys examples, can be
found in [42].

We now discuss some additional observations on our pro-
cedure and its implementation.

1) Detecting convergent equational theories: Upon closer
examination, our algorithm shares several similarities with
the Knuth-Bendix algorithm used to show that an equational

theory is convergent. The generation of (r1 → `1
p,E↓
��

`2 → r2) and some of our normalisation rules intuitively
correspond to the rules in the Knuth-Bendix algorithm. As
such, it is hardly surprising that our algorithm also allows us
to determine whether an equational theory can be represented
by a rewrite system R convergent modulo E↓. In particular,
if our algorithms with optimisations returns the set R then it
suffices to check whether (almost) all rules in R are ordered
by >. To be more specific, removing from R the rules of the
form ` → ` added on Line 14 yields a rewrite system R′. It
then suffices to check that > is compatible with R′ to show
that R′ is E↓-convergent for E.

Termination is directly guaranteed. Confluence is given by
Theorem 1. Indeed, denoting T = (>,R,R↓, E↓, E↓), with
a simple induction one can show that t ⇓T t′ implies that
t →∗R′,E↓ t′. Hence, the E↓-confluence of R′ is given by
Theorem 1, since t =E s implies that there exist t′, s′ such
that t ⇓T t′, s ⇓T s′, and t′ =E↓ s

′. This leads to an interesting
observation:

Lemma 5. If E has the finite variant property modulo E↓,
then there exists a finite rewrite system R that is E↓-confluent
for E.

2) Existence of an AC-strong reduction order compatible
with a rewrite system: Our procedure relies at minimum on the
existence of an E↓-strong reduction order which, as previously
mentioned, can be quite challenging to prove. In our prototype,
we rely on the AC-compatible and AC-total reduction order
of [48]. It is fully syntactic and RPO based, meaning that it
is efficient and allows us to apply the optimisation described
in Section VI-B. Notice that for this order to be AC-strong,
it additionally requires to be stable by renaming. Being RPO
based, this can easily be achieved by encoding names into
ground terms N = {a, sc(a), sc(sc(a)), . . .}.

Although our experiments showed that using >AC works

13

well in practice, it can be enhanced by providing a rewrite
system to the algorithm instead of letting the algorithm try to
create one on its own. This is for example the case with the
Abelian Group (AG) equational theory. In [27],AG was shown
to satisfy the FVP modulo AC using an AC-convergent rewrite
system first proposed by Lankford [41]. Denoting this rewrite
system RAG , we call our prototype with RAG given as input.
However, this is only correct if we can show the existence of
an AC-strong reduction order compatible with RAG . It is well
known that from an E-terminating rewrite system, one can
build an E-compatible reduction order, but obtaining totality is
not always possible. For example, consider the rewrite system
R = {f(x, x) → k, k → f(k1, k2)} with k, k1, k2 constants.
R is convergent but there exists no reduction order ∅-total
and ∅-compatible with R. Indeed, totality implies f(k1, k2) >
f(a, a) for some minimal ground term a; and compatibility
with R entails that f(a, a) > k > f(k1, k2), leading to a
contradiction.

Nevertheless, we show the existence of an AC-strong re-
duction order compatible with RAG by composing >AC with
the order that was used to show termination of RAG [41]. The
composition of orders is given by the following result (proof
in Appendix F).

Lemma 6. Let E be an equational theory. Let ≡ be an equiv-
alence relation on terms closed by application of contexts,
substitutions and renaming, and such that u =E t implies
u ≡ t. Let >1 be an E-strong reduction order. Let R be a set
of rewrite rules and > be a reduction order stable by renaming
such that:
• if s ≡ u > v ≡ t then s > t (≡-compatible);
• for all ground terms u, v, either u > v or v > u or u ≡ v

(≡-total);
• for all (`→ r) ∈ R, ` > r;
• for all a, b ∈ N , a > b implies a >1 b.

Then there exists an E-strong reduction order >2 compatible
with R.

Example 11. Consider the reduction order ># from Exam-
ple 2 and the order >AC from Example 3. Define R = {s→
t | s ># t} and ≡ the smallest equivalence relation such that
s ≡ t implies either s =AC t or there exist a, b ground terms
and a term context C[] such that s = C[a] and C[b] = t
and #(a) = #(b). Applying Lemma 6 with > being ># and
>1 being >AC , we deduce the existence of an AC-strong
reduction order >2 compatible with R. More precisely, the
proof of Lemma 6 defines >2 as the transitive closure of >′2
where s >′2 t iff:
• either s ># t
• or s ≡ t and there exists u, v ground terms and a term

context C[] such that s =AC C[u], and t =AC C[v], and
u >AC v

In our prototype, we have also implemented the reduction
order >2. Note that increasing the number of reduction orders
handled by our prototype also increases its chance to gener-
ate a rewrite theory mimicking the target equational theory.

Indeed, changing the reduction order impacts the termination
of the algorithm. It is however difficult to estimate beforehand
which order is more suited to a given equational theory.

3) Limitations and future work: Although the optimised
algorithm allows to transform more equational theories than
Algorithm 1, both are still confined to the realm of theories
having the FVP modulo E↓. The function cleanup(R, EA)
takes EA into account by removing superfluous rules but
does not change the fact that R was built with E↓, i.e. the
equational theory has the FVP modulo E↓. This is a limitation
of our algorithm. Indeed, even if an equational theory E does
not have the FVP modulo E (e.g. XOR with homomorphic
symbol), E trivially has the FVP modulo E (itself), and so we
could expect other interesting equational theories that include
E to have the FVP modulo E. We conjecture that modifying
the normalisation rule EQ and SUB to consider =EA instead
of =E↓ should be a step in the right direction, possibly with
the hypothesis that there exists a rewrite system RA that is
E↓-convergent for EA. However, the proof we present in this
paper cannot be as simply adapted. Indeed, by going from E↓
to EA, we are losing very critical properties (> is not EA-
compatible and EA does not have finite equivalence classes)
for the termination of our transformations in the proof. As
future work, we plan to address these challenges.

Our prototype showed that for some examples relying on
AC-unification, the computation time could go from several
minutes up to more than one hour. Although our prototype
was developed as a proof of concept, we used the tool
Maude [58] to efficiently compute the most general unifiers
modulo AC. However, most generated rules are duplicates of
other generated rules. For example, applying our algorithm
on ACN generates around 400k rules despite finally keeping
only 14. We plan to identify new invariants in the proof of
Theorem 5 that would reduce the number of generated rules,
hence increasing our algorithm’s efficiency.

Finally, the genericity of our prototype makes it an ideal
candidate to be integrated to cryptographic verifiers such as
Tamarin and ProVerif. We plan to first tackle its integration
to ProVerif as the rewrite theory introduced in this paper is
a generalisation of the framework used in ProVerif. Never-
theless, for both tools, it may require a major overhaul of
the theory behind them. But this is, in our opinion, anyway
the next logical step for automatic verifiers to handle more
cryptographic primitives.

REFERENCES

[1] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in 2017
IEEE Symposium on Security and Privacy, SP 2017, May 22-26, 2017.
San Jose, CA, USA: IEEE Computer Society, 2017, pp. 483–502.

[2] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-rtt, resumption and delayed
authentication,” in IEEE Symposium on Security and Privacy, SP 2016,
May 22-26, 2016. San Jose, CA, USA: IEEE Computer Society, 2016,
pp. 470–485.

[3] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A comprehensive symbolic analysis of TLS 1.3,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, October 30 - November 03, 2017, B. Thuraisingham,

14

D. Evans, T. Malkin, and D. Xu, Eds. Dallas, TX, USA: ACM, 2017,
pp. 1773–1788.

[4] K. Bhargavan, V. Cheval, and C. A. Wood, “A symbolic analysis of pri-
vacy for TLS 1.3 with encrypted client hello,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, November 7-11, 2022, H. Yin, A. Stavrou, C. Cremers, and
E. Shi, Eds. Los Angeles, CA, USA: ACM, 2022, pp. 365–379.

[5] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A symbolic
and computational approach,” in 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, April 26-28, 2017. Paris, France:
IEEE, 2017, pp. 435–450.

[6] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stet-
tler, “A formal analysis of 5g authentication,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, October 15-19, 2018, D. Lie, M. Mannan, M. Backes, and
X. Wang, Eds. Toronto, ON, Canada: ACM, 2018, pp. 1383–1396.

[7] N. Kobeissi, G. Nicolas, and K. Bhargavan, “Noise explorer: Fully
automated modeling and verification for arbitrary noise protocols,” in
IEEE European Symposium on Security and Privacy, EuroS&P 2019,
June 17-19, 2019. Stockholm, Sweden: IEEE, 2019, pp. 356–370.

[8] D. A. Basin, R. Sasse, and J. Toro-Pozo, “The EMV standard: Break, fix,
verify,” in 42nd IEEE Symposium on Security and Privacy, SP 2021, 24-
27 May 2021. San Francisco, CA, USA: IEEE, 2021, pp. 1766–1781.
[Online]. Available: https://doi.org/10.1109/SP40001.2021.00037

[9] S. Gazdag, S. Grundner-Culemann, T. Guggemos, T. Heider, and
D. Loebenberger, “A formal analysis of ikev2’s post-quantum extension,”
in ACSAC ’21: Annual Computer Security Applications Conference,
December 6 - 10, 2021. Virtual Event, USA: ACM, 2021, pp. 91–
105.

[10] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, Automatic Crypto-
graphic Protocol Verifier, User Manual and Tutorial, available at https:
//prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf, 2020.

[11] B. Blanchet, V. Cheval, and V. Cortier, “Proverif with lemmas, induction,
fast subsumption, and much more,” in 43rd IEEE Symposium on Security
and Privacy, SP 2022, May 22-26, 2022. San Francisco, CA, USA:
IEEE, 2022, pp. 69–86.

[12] D. Basin, C. Cremers, J. Dreier, S. Meier, R. Sasse, and B. Schmidt,
Tamarin prover manual, available at https://tamarin-prover.github.io/,
2019.

[13] D. A. Basin, C. Cremers, J. Dreier, and R. Sasse, “Tamarin: Verification
of large-scale, real-world, cryptographic protocols,” IEEE Secur. Priv.,
vol. 20, no. 3, pp. 24–32, 2022.

[14] S. Escovar, C. Meadows, and J. Meseguer, Maude-NPA manual,
Version 3.1, available at https://maude.cs.illinois.edu/w/images/9/90/
Maude-NPA manual v3 1.pdf, 2017.

[15] S. Escobar, C. Meadows, and J. Meseguer, “A rewriting-based inference
system for the NRL protocol analyzer and its meta-logical properties,”
Theor. Comput. Sci., vol. 367, no. 1-2, pp. 162–202, 2006.

[16] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: deciding equiva-
lence properties in security protocols theory and practice,” in 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018. San Francisco, California, USA: IEEE Computer Society, 2018,
pp. 529–546.

[17] ——, “The DEEPSEC prover,” in Computer Aided Verification - 30th In-
ternational Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, July 14-17, 2018, Proceedings, Part II, ser.
Lecture Notes in Computer Science, H. Chockler and G. Weissenbacher,
Eds., vol. 10982. Oxford, UK: Springer, 2018, pp. 28–36.

[18] R. Chadha, V. Cheval, Ş. Ciobâcă, and S. Kremer, “Automated verifica-
tion of equivalence properties of cryptographic protocols,” ACM Trans.
Comput. Log., vol. 17, no. 4, p. 23, 2016.

[19] D. Baelde, S. Delaune, I. Gazeau, and S. Kremer, “Symbolic verification
of privacy-type properties for security protocols with XOR,” in 30th
IEEE Computer Security Foundations Symposium, CSF 2017, CA, USA,
August 21-25, 2017. Santa Barbara: IEEE Computer Society, 2017, pp.
234–248.

[20] F. Baader and W. Snyder, “Unification theory,” in Handbook of Auto-
mated Reasoning (in 2 volumes), J. A. Robinson and A. Voronkov, Eds.
Elsevier and MIT Press, 2001, pp. 445–532.

[21] A. Boudet and E. Contejean, “”syntactic” ac-unification,” in Constraints
in Computational Logics, First International Conference, CCL’94,
September 7-9, 1994, ser. Lecture Notes in Computer Science, J. Jouan-
naud, Ed., vol. 845. Munich, Germany: Springer, 1994, pp. 136–151.

[22] C. Kirchner, “6 - from unification in combination of equational theories
to a new ac-unification algorithm,” in Rewriting Techniques, H. Aı̈t-Kaci
and M. Nivat, Eds. Academic Press, 1989, pp. 171–210.

[23] M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho, “A
certified algorithm for ac-unification,” in 7th International Conference on
Formal Structures for Computation and Deduction, FSCD 2022, August
2-5, 2022, ser. LIPIcs, A. P. Felty, Ed., vol. 228. Haifa, Israel: Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 8:1–8:21.

[24] F. Baader and K. U. Schulz, “Unification in the union of
disjoint equational theories: Combining decision procedures,” J. Symb.
Comput., vol. 21, no. 2, pp. 211–243, 1996. [Online]. Available:
https://doi.org/10.1006/jsco.1996.0009

[25] P. Réty, C. Kirchner, H. Kirchner, and P. Lescanne, “NARROWER: A
new algorithm for unification and its application to logic programming,”
in Rewriting Techniques and Applications, First International Confer-
ence, RTA-85, May 20-22, 1985, Proceedings, ser. Lecture Notes in
Computer Science, J. Jouannaud, Ed., vol. 202. Dijon, France: Springer,
1985, pp. 141–157.

[26] W. Nutt, P. Réty, and G. Smolka, “Basic narrowing revisited,” J. Symb.
Comput., vol. 7, no. 3/4, pp. 295–317, 1989.

[27] H. Comon-Lundh and S. Delaune, “The finite variant property: How
to get rid of some algebraic properties,” in Term Rewriting and Appli-
cations, 16th International Conference, RTA 2005, April 19-21, 2005,
Proceedings, ser. Lecture Notes in Computer Science, J. Giesl, Ed., vol.
3467. Nara, Japan: Springer, 2005, pp. 294–307.

[28] A. Boudet, “Competing for the ac-unification race,” J. Autom.
Reason., vol. 11, no. 2, pp. 185–212, 1993. [Online]. Available:
https://doi.org/10.1007/BF00881905

[29] F. Fages, “Associative-commutative unification,” J. Symb. Comput.,
vol. 3, no. 3, pp. 257–275, 1987.

[30] M. E. Stickel, “A unification algorithm for associative-commutative
functions,” J. ACM, vol. 28, no. 3, pp. 423–434, 1981. [Online].
Available: https://doi.org/10.1145/322261.322262

[31] A. Boudet, E. Contejean, and H. Devie, “A new AC unification algorithm
with an algorithm for solving systems of diophantine equations,” in
Proceedings of the Fifth Annual Symposium on Logic in Computer
Science (LICS ’90), June 4-7, 1990. Philadelphia, Pennsylvania, USA:
IEEE Computer Society, 1990, pp. 289–299.

[32] D. Kapur, P. Narendran, and L. Wang, “An e-unification algorithm
for analyzing protocols that use modular exponentiation,” in Rewriting
Techniques and Applications, R. Nieuwenhuis, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 165–179.

[33] D. Lankford, G. Butler, and B. Brady, “Abelian group unification
algorithms for elementary terms,” in Automated theorem proving (1983),
ser. Contemp. Math. Denver, Col.: Amer. Math. Soc., Providence, RI,
1984, vol. 29, pp. 193–199.

[34] S. Anantharaman, P. Narendran, and M. Rusinowitch, “Unification
modulo ACUI plus distributivity axioms,” J. Autom. Reason., vol. 33,
no. 1, pp. 1–28, 2004.

[35] Z. Liu and C. Lynch, “Efficient general unification for XOR with
homomorphism,” in Automated Deduction - CADE-23 - 23rd Interna-
tional Conference on Automated Deduction, July 31 - August 5, 2011.
Proceedings, ser. Lecture Notes in Computer Science, N. S. Bjørner and
V. Sofronie-Stokkermans, Eds., vol. 6803. Wroclaw, Poland: Springer,
2011, pp. 407–421.

[36] ——, “Efficient general agh-unification,” Inf. Comput., vol. 238, pp.
128–156, 2014.

[37] J. Meseguer, “Variants in the infinitary unification wonderland,” in
Rewriting Logic and Its Applications - 13th International Workshop,
WRLA 2020, October 20-22, 2020, Revised Selected Papers, ser. Lecture
Notes in Computer Science, S. Escobar and N. Martı́-Oliet, Eds., vol.
12328. Virtual Event: Springer, 2020, pp. 75–95.

[38] S. Escobar, J. Meseguer, and R. Sasse, “Effectively checking the
finite variant property,” in Rewriting Techniques and Applications, 19th
International Conference, RTA 2008, July 15-17, 2008, Proceedings,
ser. Lecture Notes in Computer Science, A. Voronkov, Ed., vol. 5117.
Hagenberg, Austria: Springer, 2008, pp. 79–93.

[39] A. Cholewa, J. Meseguer, and S. Escobar, “Variants of variants and
the finite variant property,” Technical report, Department of Computer
Science, University of Illinois at Urbana-Champaign, Tech. Rep., 2014.
[Online]. Available: https://core.ac.uk/reader/19530230

[40] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” J. Log. Algebraic Methods
Program., vol. 75, no. 1, pp. 3–51, 2008.

15

https://doi.org/10.1109/SP40001.2021.00037
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://tamarin-prover.github.io/
https://maude.cs.illinois.edu/w/images/9/90/Maude-NPA_manual_v3_1.pdf
https://maude.cs.illinois.edu/w/images/9/90/Maude-NPA_manual_v3_1.pdf
https://doi.org/10.1006/jsco.1996.0009
https://doi.org/10.1007/BF00881905
https://doi.org/10.1145/322261.322262
https://core.ac.uk/reader/19530230

[41] J.-M. Hullot, “A catalogue of canonical term rewriting systems,” Report
CSL-113, SRI International, no. ADA087641, 1980.

[42] V. Cheval, “Source code and examples for the prototype generating
rewrite theory and checking finite variant property,” https://github.com/
VincentCheval/fvpgen, 2024.

[43] J. Jouannaud, C. Kirchner, and H. Kirchner, “Incremental construction of
unification algorithms in equational theories,” in Automata, Languages
and Programming, 10th Colloquium, July 18-22, 1983, Proceedings, ser.
Lecture Notes in Computer Science, J. Dı́az, Ed., vol. 154. Barcelona,
Spain: Springer, 1983, pp. 361–373.

[44] F. Baader, “Combination of compatible reduction orderings that are total
on ground terms,” in Proceedings, 12th Annual IEEE Symposium on
Logic in Computer Science, June 29 - July 2, 1997. Warsaw, Poland:
IEEE Computer Society, 1997, pp. 2–13.

[45] J. Jouannaud and P. Lescanne, “On multiset orderings,” Inf. Process.
Lett., vol. 15, no. 2, pp. 57–63, 1982. [Online]. Available:
https://doi.org/10.1016/0020-0190(82)90107-7

[46] P. Lescanne, “On the recursive decomposition ordering with
lexicographical status and other related orderings,” J. Autom.
Reason., vol. 6, no. 1, pp. 39–49, 1990. [Online]. Available:
https://doi.org/10.1007/BF00302640

[47] A. Rubio and R. Nieuwenhuis, “A precedence-based total ac-compatible
ordering,” in Rewriting Techniques and Applications, 5th International
Conference, RTA-93, June 16-18, 1993, Proceedings, ser. Lecture Notes
in Computer Science, C. Kirchner, Ed., vol. 690. Montreal, Canada:
Springer, 1993, pp. 374–388.

[48] A. Rubio, “A fully syntactic AC-RPO,” in Rewriting Techniques and
Applications, 10th International Conference, RTA-99, July 2-4, 1999,
Proceedings, ser. Lecture Notes in Computer Science, P. Narendran and
M. Rusinowitch, Eds., vol. 1631. Trento, Italy: Springer, 1999, pp. 133–
147. [Online]. Available: https://doi.org/10.1007/3-540-48685-2 11

[49] A. Rubio and R. Nieuwenhuis, “A total ac-compatible ordering based
on RPO,” Theor. Comput. Sci., vol. 142, no. 2, pp. 209–227, 1995.

[50] A. Yamada, S. Winkler, N. Hirokawa, and A. Middeldorp, “AC-KBO
revisited,” Theory Pract. Log. Program., vol. 16, no. 2, pp. 163–188,
2016.

[51] D. Kim and C. Lynch, “An rpo-based ordering modulo permutation
equations and its applications to rewrite systems,” in 6th International
Conference on Formal Structures for Computation and Deduction,
FSCD 2021, July 17-24, 2021, ser. LIPIcs, N. Kobayashi, Ed., vol.
195. Buenos Aires, Argentina (Virtual Conference): Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021, pp. 19:1–19:17.

[52] S. Escobar, J. Meseguer, and R. Sasse, “Variant narrowing and equational
unification,” in Proceedings of the Seventh International Workshop on
Rewriting Logic and its Applications, WRLA 2008, March 29-30, 2008,
ser. Electronic Notes in Theoretical Computer Science, G. Rosu, Ed.,
vol. 238, no. 3. Budapest, Hungary: Elsevier, 2008, pp. 103–119.

[53] S. Eker, “Associative-commutative rewriting on large terms,” in Rewrit-
ing Techniques and Applications, R. Nieuwenhuis, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, pp. 14–29.

[54] D. Benanav, D. Kapur, and P. Narendran, “Complexity of matching
problems,” Journal of Symbolic Computation, vol. 3, no. 1, pp.
203–216, 1987. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0747717187800275

[55] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in Computer
Aided Verification - 25th International Conference, CAV 2013, July
13-19, 2013. Proceedings, ser. Lecture Notes in Computer Science,
N. Sharygina and H. Veith, Eds., vol. 8044. Saint Petersburg, Russia:
Springer, 2013, pp. 696–701.

[56] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago, “Symbolic pro-
tocol analysis with disequality constraints modulo equational theories,”
in Programming Languages with Applications to Biology and Security
- Essays Dedicated to Pierpaolo Degano on the Occasion of His 65th
Birthday, ser. Lecture Notes in Computer Science, C. Bodei, G. Ferrari,
and C. Priami, Eds., vol. 9465. Pisa, Italy: Springer, 2015, pp. 238–261.

[57] J. Dreier, P. Lafourcade, and D. Mahmoud, “Shaken, not stirred -
automated discovery of subtle attacks on protocols using mix-nets,” in
The 33rd USENIX Security Symposium (Usenix) 2024, 2024.

[58] M. Chavel, F. Duran, S. Escobar, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, P. C. Ölveczky, R. Rubio, and C. L. Talcott, “The maude
system,” https://maude.cs.illinois.edu/w/index.php/The Maude System,
2014.

16

https://github.com/VincentCheval/fvpgen
https://github.com/VincentCheval/fvpgen
https://doi.org/10.1016/0020-0190(82)90107-7
https://doi.org/10.1007/BF00302640
https://doi.org/10.1007/3-540-48685-2_11
https://www.sciencedirect.com/science/article/pii/S0747717187800275
https://www.sciencedirect.com/science/article/pii/S0747717187800275
https://maude.cs.illinois.edu/w/index.php/The_Maude_System

APPENDIX

A. Proofs of Section II

Lemma 7. Let E ⊆ E′ be two equational theories. Let > be a E-strong reduction order. Let k ∈ N be the smallest name by
>. For all t ∈ T (F ,N), for all renamings ρ preserving >, if
• names(t) ⊆ dom(ρ)
• k ∈ img(ρ)⇔ k ∈ dom(ρ)

then minE′,>(tρ) =E minE′,>(t)ρ.

Proof. We first prove a small property on minE′,>(·): for all terms u, for all a ∈ names(minE′,>(u)) \ names(u), a = k.
Indeed, by definition, u =E′ minE′,>(u). Thus, if a ∈ names(minE′,>(u)) \ names(u), then we have that for all b ∈ N ,
minE′,>(u){a 7→ b} =E′ u. By contradiction, assume k 6= a. As k is the smallest name by >, we deduce that a > k. Since
> is a reduction order, we deduce that minE′,>(u) > minE′,>(u){a 7→ k}. This is in contradiction with the definition of
minE′,>(u) considering that minE′,>(u) =E′ minE′,>(u){a 7→ k}.

We now proceed with the proof of the main result. Assume by contradiction that minE′,>(tρ) 6=E minE′,>(t)ρ. Therefore,
minE′,>(t)ρ > minE′,>(tρ). By hypothesis, names(t) ⊆ dom(ρ). If k 6∈ dom(ρ) then we define ρ′ = ρ{k 7→ k} else ρ′ = ρ.
Hence, we deduce that ρ′ is a renaming preserving > such that kρ′ = k and k ∈ dom(ρ′). As such, ρ−1 is also a renaming
preserving >. From our small property, we know that names(minE′,>(t)) ⊆ dom(ρ′) and minE′,>(t)ρ = minE′,>(t)ρ

′.
Similarly, tρ = tρ′ and names(minE′,>(tρ)) ⊆ img(ρ′).

Therefore, we have names(minE′,>(tρ),minE′,>(t)ρ) ⊆ dom(ρ
′−1). As > is stable by renaming, we have minE′,>(t) >

minE′,>(tρ)ρ
′−1. Recall that t =E′ minE′,>(t), meaning that tρ =E′ minE′,>(t)ρ and so minE′,>(tρ) =E′ minE′,>(t)ρ

by definition of minE′,>(tρ). This yields minE′,>(tρ)ρ
′−1 =E′ minE′,>(t), which is a contradiction with the definition of

minE′,>(t) and with minE′,>(t) > minE′,>(tρ)ρ
′−1.

B. Proof of Section III

Lemma 1. Let T = (>,R,R↓, E↓, EA) be a rewrite theory and E be a non-trivial equational theory. Assume that EA ⊆ E,
and that for all terms t and s, t→R↓,E↓ s implies t =E s. Let M be a set of terms such that nfT,E(M). Then the following
properties hold:
N1 for all t ∈ st(M), t is irreducible by →R↓,E↓ .
N2 for all s, t ∈ st(M), if s =E t then s =E↓ t.
N3 for all x ∈ X , nfT,E(M∪ {x}).
N4 for all terms t, there exists a term s such that t =E s and nfT,E(M∪ {s}).

Proof. Let k be the smallest name by >. By definition, there exists an injective substitution σ : vars(M)→ N such that:
• ∀a ∈ img(σ), a 6= k and ∀b ∈ names(M), a > b
• ∀t ∈M, tσ =E↓ minE,>(tσ).

Before tackling the four properties, we start by proving the following property: for all t ∈ st(M), tσ =E↓ min>,E(tσ). Assume
by contradiction that there exist t ∈ M and p ∈ Pos(t) such that t|pσ 6=E↓ min>,E(t|pσ). By definition of min>,E(t|pσ),
t|pσ =E min>,E(t|pσ). Since > is E↓-total, we deduce that t|pσ > min>,E(t|pσ). Moreover, > is also an E↓-compatible
reduction order, thus we deduce that tσ > tσ[min>,E(t|pσ)]p and tσ =E tσ[min>,E(t|pσ)]p. It would contradict the fact that
tσ =E↓ min>,E(tσ).

Let us start with the proof of Item N1. Assume that t is reducible by→R↓,E↓ . Hence there exist (`→ r) ∈ R↓, a substitution
α and p ∈ Pos(t) such that t|p =E↓ `α and t→R↓,E↓ t[rα]p. As E↓ is regular and as vars(r) ⊆ vars(`) thanks to Item S3,
we deduce that vars(rα) ⊆ vars(t).

Moreover, t|p =E↓ `α implies t|pσ =E↓ `ασ, meaning that tσ →R↓,E↓ tσ[rασ]p. By hypothesis, we deduce that tσ =E
tσ[rασ]p. Since tσ is ground and vars(rα) ⊆ vars(t), rασ and tσ[rασ]p are also ground. However, the ordering > is
E↓-compatible with R↓. Hence tσ > tσ[rασ]p, which is a contradiction with tσ =E↓ minE,>(tσ).

For the proof of Item N2, our initial property gives us sσ =E↓ minE,>(sσ) and tσ =E↓ minE,>(tσ). Moreover, s =E t
implies sσ =E tσ. Therefore, by definition of minE,>(·),we have minE,>(sσ) = minE,>(tσ) and then sσ =E↓ tσ. It entails
s =E↓ t as σ is injective and names(s, t) ∩ img(σ) = ∅.

For the proof of Item N3, we start by showing that for all names a, minE,>(a) =E↓ a. Let us denote t = minE,>(a)
and assume that t 6=E↓ a, and then t < a. By definition, t =E a. Assume first that a ∈ st(t). Since > is a reduction
order, a cannot be a strict subterm of t (otherwise, if t = C[a], we would have the infinite sequence of distinct terms
a > C[a] > C[C[a]] > C[C[C[a]]] > . . ., which is a contradiction with > being well-founded). Thus a ∈ st(t) implies t = a,
which is a contradiction with t 6=E↓ a. Assume now that a 6∈ st(t). As equality modulo E is stable by replacement of names
by arbitrary terms, we deduce that for all terms t1, t2, we obtain t1 =E t =E t2 (by replacing a once by t1 and once by t2).
This contradicts the fact that E is a non-trivial equational theory.

17

We can now complete the proof of Item N3 as follows. If x 6∈ dom(σ), we can define σ′ = σ{x 7→ a} for some a ∈ N
such that a is different from k and greater than all names in img(σ) and in names(M). Since N is infinite, it is always
possible to do so. If x ∈ dom(σ), we define σ′ = σ. Hence, Mσ =Mσ′ and xσ′ ∈ N . As we proved that for all names a,
minE,>(a) =E↓ a, we obtain minE,>(xσ

′) =E↓ xσ
′, which allows us to conclude.

Finally, let us focus on the proof of Item N4. We first want to avoid the case where img(σ)∩ names(t) 6= ∅. We thus take
a fresh renaming ρ preserving >, that renames the names in img(σ). As N is infinite, we can even take the new names to
be all greater than the one in σ, i.e. dom(ρ) = img(σ) and for all a ∈ img(ρ), a 6= k and for all b ∈ img(σ) ∪ names(t),
a > b. Let us define ρ′ = ρ{a 7→ a | a ∈ names(M, t)}. Hence, as ρ is preserving > and all names in img(ρ) are greater
than the ones in t and M, we deduce that ρ′ is also preserving >, names(tσ,Mσ) ⊆ dom(ρ′) and if k ∈ img(ρ′)∪ dom(ρ′)
then kρ′ = k. Hence, by Lemma 7, we deduce that for all v ∈ M, vσρ′ =E↓ minE,>(vσ)ρ

′ =E↓ minE,>(vσρ
′). Finally,

let us take the substitution α such that for all x ∈ dom(σ), xα = xσρ′ and for all x ∈ vars(t) \ dom(σ), xα is a fresh
name (we take it greater than the ones in ρ′). We know that tα =E minE,>(tα). Hence, by taking s the term minE,>(tα)
where we replace all occurrences of names a by aα−1, we obtain that s =E t, and sα = minE,>(tα) = minE,>(sα) (since
minE,>(minE,>(u)) = minE,>(u) for all ground terms u). As we already showed that for all v ∈M, vα =E↓ minE,>(vα),
we conclude.

C. Proofs of Section III

In this section, all lemmas consider an equational theory E and a rewrite theory T = (>,R,R↓, E↓, EA) mimicking E.
1) Equality modulo E:

Lemma 8. Let σ be a substitution and t, t′ two terms. If t′ =E tσ and nfT,E({t′} ∪ {xσ | x ∈ vars(t)}) then tσ ⇓T t′′ and
t′′ =EA t

′ for some t′′.

Proof. The proof is by induction on t.
a) Case t = x:: By definition x = x. Moreover, we have xσ =E t′. Since nfT,E({xσ, t′}), we deduce that xσ =E↓ t

′.
By Item S1 of Definition 2, we know that E↓ ⊆ EA hence the result holds with t′′ = xσ.

b) Case t = f(t1, . . . , tn):: We have t′ =E f(t1σ, . . . , tnσ). Let us denote M = {t′} ∪ {xσ ∈ vars(t)}. By Item N4 of
Lemma 1, there exists t′1, . . . , t

′
n such that nfT,E(M∪{t′1, . . . , t′n}). By Item M3 of Definition 4, there exist a substitution σ′

and f(`1, . . . , `n)→ r in R such that t′ =EA rσ
′ and for all i ∈ {1, . . . , n}, `iσ′ =EA t′i. By applying our inductive hypothesis

on t1, . . . , tn, we deduce that there exist t′′1 , . . . , t
′′
n such that for all i ∈ {1, . . . , n}, tiσ ⇓T t′′i and t′′i =EA t

′
i =EA `iσ

′. By
Definition 6, we deduce that f(t1, . . . , tn) ⇓T rσ′. Since we already showed that rσ′ =EA t

′, we conclude.

Lemma 9. Let t be a TE-term. If t ⇓T s then t =E s.

Proof. The proof is by induction on t.
c) Case t ∈ T (F ,X):: In such a case t = t ⇓T t and so the result holds.
d) Case t = f(t1, . . . , tn):: By definition, t ⇓T s implies that there exists f(`1, . . . , `n) → r ∈ R and a substitution σ

such that s = rσ and for all i ∈ {1, . . . , n}, ti ⇓T si and si =EA `iσ. By Item M1, we know that EA ⊆ E. Hence si =E `iσ
for all i ∈ {1, . . . , n}. Moreover, by Item M2 of Definition 4, we know that f(`1, . . . , `n) =E r. Thus f(s1, . . . , sn) =E
f(`1σ, . . . , `nσ) =E rσ. Applying our inductive hypothesis on t1, . . . , tn gives us ti =E si for all i ∈ {1, . . . , n}. This allows
us to deduce that t = f(t1, . . . , tn) =E rσ = s.

Theorem 1 (Equality modulo E). Let T = (>,R,R↓, E↓, EA) be a rewrite theory and E a non-trivial equational theory. If
T mimics E then for all t, s ∈ T (F ,X ∪N), t =E s if and only if there exist t′, s′ such that t ⇓T t′, s ⇓T s′ and t′ =EA s

′.

Proof. Assume that t =E s. By Item N4 of Lemma 1, we know that there exists u such that u =E t and nfT,E({u}) (by
taking M = ∅). Hence, by Item N3 of Lemma 1, we deduce that nfT,E({u}∪ vars(t, s)). Applying Lemma 8, we obtain that
there exist t′, s′ such that t ⇓T t′ and s ⇓T s′ and t′ =EA u =EA s

′.
Assume now that there exist t′, s′ such that t ⇓T t′, s ⇓T s′ and t′ =EA s′. We know from Item M1 that EA ⊆ E thus

t′ =E s′. Moreover, by Lemma 9, t =E t′ and s =E s′.

2) Properties on open evaluation: For the next proofs, we will define the size of an evaluation term t, denoted |t|TE , as the
number of function symbols from F in t. We also naturally extend the definition of close evaluation to sequence of ET-term,
as follows: [t1, . . . , tn] ⇓T [s1, . . . , sn] if ti ⇓T si for all i ∈ {1, . . . , n}. Given two sequences of terms L,L′, we also write
L =E L′ when L = [t1, . . . , tn], L′ = [s1, . . . , sn] and for all i ∈ {1, . . . , n}, ti =E si.

Lemma 10. Let L be a sequence of TE-terms. If L ⇓′T (Lt, σ) then dom(σ) ∩ vars(Lt) = ∅.

Proof. We prove the result by induction on {{|t|TE | t ∈ L}}.
a) Case L = []:: In such a case, Lt = [] and σ = ∅ hence the result trivially holds.

18

b) Case L = [t] with t ∈ T (F ,X ∪N):: In such a case, Lt = L and σ = ∅. Hence the result holds.
c) Case L = [f(t1, . . . , tn)]:: Let us denote L′ = [t1, . . . , tn]. We know that there exist f(`1, . . . , `n)→ r ∈ R and L′t,

σ′, σu such that, denoting L` = [`1, . . . , `n], L′ ⇓′T (L′t, σ
′), and σu ∈ mguEA(L

′
t, L`), and Lt = [rσu] and σ = σ′σu.

Let x ∈ dom(σ) ∩ vars(Lt). Hence either x ∈ dom(σu) or x ∈ dom(σ′). In the former case, since σu is acyclic then
x ∈ dom(σu) implies that x 6∈ vars(rσu) which is in contradiction with x ∈ vars(Lt). Hence x ∈ dom(σ′). By our inductive
hypothesis, it implies that x 6∈ vars(L′t). Since the variables of f(`1, . . . , `n) → r ∈ R can always be renaming and since
the variables of a most general unifier σu ∈ mguEA(L

′
t, L`) can also be renamed, we have that x 6∈ vars(σu) and x 6∈ L`.

Hence x 6∈ vars(L′tσu) and x 6∈ L`σu. But vars(rσu) ⊆ vars(L`σu). Hence x 6∈ vars(Lt) which is a contradiction with
x ∈ dom(σ) ∩ vars(Lt). This conclude the proof that dom(σ) ∩ vars(Lt) = ∅.

Lemma 11. For all sequences of TE-terms L, if L ⇓′T (Lt, σ) then Lσ =E Lt.

Proof. We prove the result by induction on {{|t|TE | t ∈ L}}.
d) Case L = []:: In such a case, Lt = [] hence the result trivially holds.
e) Case L = [t] with t ∈ T (F ,X ∪N):: In such a case, Lt = Lt = L and σ = ∅. Hence the result holds.
f) Case L = [f(t1, . . . , tn)]:: Let us denote L′ = [t1, . . . , tn]. We know that there exist f(`1, . . . , `n)→ r ∈ R and L′t,

σ′, σu such that, denoting L` = [`1, . . . , `n], L′ ⇓′T (L′t, σ
′), and σu ∈ mguEA(L

′
t, L`), and Lt = [rσu] and σ = σ′σu. By

inductive hypothesis on L′, we know that L′σ′ =E L′t. Hence, Lσ′σu =E L′tσu =E L`σu as EA ⊆ E by Item M1. Note
that the variables of `1, . . . , `n, r are fresh, i.e. vars(`1, . . . , `n, r) ∩ vars(σ) = ∅. Hence L`σσu = L`σu and rσσu = rσu.
This allow us to deduce that f(t1, . . . , tn)σ =E f(`1, . . . , `n)σ. By Item M2, f(`1, . . . , `n) =E r and so f(`1, . . . , `n)σ = rσ
which allows us to conclude.

g) Case L = t · L′:: In such a case, we have [t] ⇓′T ([s], σ′) and L′σ′ ⇓′T (L′t, σ
′′) with Lt = sσ′′ · L′t and σ = σ′σ′′.

Note that L′σ′ = L′σ′. By inductive hypothesis on both [t] and L′σ′, we deduce that tσ′ =E s and L′σ′σ′′ =E L′t. Hence
(t · L′) =E sσ′′ · L′t and so Lσ =E Lt.

Lemma 12. Let t be a TE-term and two substitutions σ1, σ2 such that tσ1 =EA tσ2. For all terms s1, if tσ1 ⇓T s1 then there
exists a term s2 such that tσ2 ⇓T s2 and s1 =EA s2.

Proof. The proof is by induction on t.
h) Case t ∈ T (F ,X ∪N):: In that case, tσ1 ⇓T tσ1 and tσ2 ⇓T tσ2. Thus the result holds.
i) Case t = f(t1, . . . , tn):: In such a case, by Definition 6, there exists f(`1, . . . , `n) → r ∈ R and s1, . . . , sn terms

and a substitutions σ such that for all i ∈ {1, . . . , n}, tiσ1 ⇓T si and si =EA `iσ. By inductive hypothesis on t1, . . . , tn,
there exist terms s′1, . . . , s

′
n such that for all i ∈ {1, . . . , n}, tiσ2 ⇓T s′i and si = EAs

′
i and so s′i = EA`iσ. This leads to

tσ2 ⇓T rσ.

Lemma 13. Let L be a sequence of TE-terms. For all substitutions σ, for all sets of variables V , if Lσ ⇓T Ls and dom(σ)∪
vars(L,Ls) ⊆ V then there exist a sequence of term Lt, two substitutions α, β such that L ⇓′T (Lt, α), and Ltβ =EA Ls and
σ =EA (αβ)|dom(σ) and dom(αβ) ∩ V = dom(σ).

Proof. We prove this result by induction on {{|t|TE | t ∈ L}}.
j) Case L = []:: In such case, [] ⇓T [] and [] ⇓′T ([], ∅). So the result holds directly with Lt = L, α = ∅ and β = σ.
k) Case L = [t] with t ∈ T (F ,X ∪ N):: In such a case, [tσ] ⇓T [tσ] and [t] ⇓′T ([t], ∅). Once again the result directly

holds with Lt = L, α = ∅ and β = σ.
l) Case L = [f(t1, . . . , tn)]:: Let us denote t = f(t1, . . . , tn). By definition, Lσ ⇓T Ls implies that there exist a term

s such that Ls = [s] and tσ ⇓T s. Hence there exist f(`1, . . . , `n) → r ∈ R and a substitution θ and terms s1, . . . , sn such
that rθ = s and for all i ∈ {1, . . . , n}, `iθ =EA si and tiσ ⇓T si. Let L′ = [t1, . . . , tn] and L′s = [s1, . . . , sn]. By inductive
hypothesis on L′ with σ and V ′ = V ∪ vars(s1, . . . , sn), there exists a sequence of terms L′t and two substitutions α′, β′

such that L′ ⇓′T (L′t, α
′), and L′tβ

′ =EA L′s, σ =EA (α′β′)|dom(σ) and dom(α′β′) ∩ V ′ = dom(σ). Since the variables of
`1, . . . , `m, r can always be renamed, we can w.l.o.g. assume that dom(θ) ∩ vars(α′β′) = ∅ and dom(θ) ∩ V ′ = ∅.

Since L′tβ
′ =EA L

′
s =EA [`1θ, . . . , `nθ], we can define L` = [`1, . . . , `n] and γ = β′θ to have L′tβ

′ = L′tγ and L`θ = L`γ
and rγ = rθ. Hence γ is a EA-unifier of L′t and L`. Hence, there exist σu ∈ mguEA(L

′
t, L`) and θu such that for all

x ∈ vars(L′t, L`), xγ =EA xσuθu. Note that using renaming of variables in σu introduced by the computation of most general
unifier, we can always have γ = (σuθu)dom(γ) and the variables of dom(σuθu) \ dom(γ) are all fresh. Hence by Definition 7,
L ⇓′T ([rσu], α

′σu). Let us define β = θu and Lt = [rσu]. By Item S3, vars(r) ⊆ vars(L`), hence rσuθu = rγ. It implies that
Ltβ = [rσuθu] =EA [rγ] = [rθ] = [s] = Ls. Moreover, for all x ∈ dom(σ), xσ =EA xα

′β′. As dom(θ) ∩ vars(α′β′) = ∅,
xα′β′ = xα′β′θ = xα′γ =EA xα

′σuθu.
Hence, defining α = α′σu, we obtain xσ =EA xαβ. Take x ∈ dom(αβ) ∩ V . Note that dom(αβ) = dom(α′σuθu).

But dom(σuθu) is dom(γ) with some fresh variables introduced in the computation of the most general unifier. However,
dom(γ) = dom(β′) ∪ dom(θ) and we already know that dom(θ) ∩ V ′ = ∅. Since V ⊆ V ′, we deduce that dom(θ) ∩ V = ∅.
Therefore, dom(αβ) ∩ V = (dom(α′) ∪ dom(β′)) ∩ V = dom(σ).

19

m) Case L = t ·L′:: By definition Lσ ⇓T Ls implies that tσ ⇓T s and L′σ ⇓T L′s and Ls = s ·L′s for some term s and
sequence of terms L′s. By inductive hypothesis, there exists a term t′ and two substitutions α′, β′ such that [t] ⇓′T ([t′], α′)
and t′β′ =EA s and σ =EA (α′β′)|dom(σ) and dom(α′β′) ∩ V = dom(σ).

Since vars(L) ⊆ V , we deduce that L′σ =EA L
′α′β′. By Lemma 12, we deduce that there exists a sequence of terms L′′s

such that L′α′β′ ⇓T L′′s and L′′s =EA L
′
s. By applying our inductive hypothesis on (L′α′) and β′ and V ′ = V ∪ vars(L′′s) ∪

dom(α′β′)∪vars(t′), we obtain that there exists a sequence of terms L′′t , two substitutions α′′, β′′ such that L′α′ ⇓′T (L′′t , α
′′)

and L′′t β
′′ =EA L

′′
s and β′ =EA (α′′β′′)|dom(β′) and dom(α′′β′′) ∩ V ′ = dom(β′).

By Definition 7, L ⇓′T (t′α′′ ·L′′t , α′α′′). Let us denote α = α′α′′ and β = β′′ and Lt = t′α′′ ·L′′t . Note that vars(t′) ⊆ V ′.
Hence t′α′′β′′ =EA t

′β′ =EA s. Moreover, L′′t β
′′ =EA L

′′
s =EA L

′
s. Hence, Ltβ =EA Ls. Let us show σ =EA (αβ)dom(σ).

Let x ∈ dom(σ). We know that xσ =EA xα′β′. As β′ =EA (α′′β′′)|dom(β′), we obtain xα′β′ =EA xα′α′′β′′ = xαβ. It
also implies that dom(σ) ⊆ dom(αβ). As dom(σ) ⊆ V , we have dom(σ) ⊆ dom(αβ) ∩ V . Take x ∈ dom(αβ) ∩ V . Hence
x ∈ dom(α′α′′β′′) = dom(α′) ∪ dom(α′′β′′). If x ∈ dom(α′′β′′) then, since dom(α′′β′′) ∩ V ′ = dom(β′) and V ⊆ V ′, we
deduce that x ∈ dom(β′). Therefore x ∈ dom(α′α′′β′′) implies x ∈ dom(α′β′). As we proved that dom(α′β′)∩V = dom(σ),
we conclude that x ∈ dom(σ) and so dom(αβ) ∩ V = dom(σ).

Lemma 14. For all sequences of terms L,Ls, for all substitutions σ, if Lσ =E Ls and nfT,E(Ls) then there exist L ⇓′T (Lt, α)
and a substitution β such that Ltβ =EA Ls and σ =E (αβ)dom(σ) and vars(L) ∩ dom(αβ) ⊆ dom(σ).

Proof. By Item N4 of Lemma 1, there exists a substitution σ′ such that nfT,E(Ls ∪ img(σ′)) and σ =E σ′. Moreover, by
Item N3 of Lemma 1, we deduce that nfT,E(Ls ∪ img(σ′)∪{xσ′ | x ∈ vars(L)}). By Lemma 8, Lσ′ ⇓T L′s and L′s =EA Ls
for some L′s. Take V = dom(σ′) ∪ vars(L,L′s). By Lemma 13, there exists a sequence of terms Lt, two substitutions α, β
such that L ⇓′T (Lt, α) and L′s =EA Ltβ and σ′ =EA (αβ)|dom(σ′) and dom(αβ) ∩ V = dom(σ′). Since EA ⊆ E by
Item M1, we conclude that Ltβ =EA Ls and σ =E σ′ =EA (αβ)|dom(σ′) = (αβ)|dom(σ). Since vars(L) ⊆ V , we deduce
from dom(αβ) ∩ V = dom(σ′) that dom(αβ) ∩ vars(L) ⊆ dom(σ′).

3) Finite variant property and most general E-unifiers:

Theorem 2 (Complete sets of E-variants). Let T = (>,R,R↓, E↓, EA) be a rewrite theory and E a non-trivial equational
theory. If T mimics E then for all terms t, the set {(t′, α) | [t] ⇓′T ([t′], α)} is a complete set of E-variants modulo EA.

Proof. Let t be a term. Let us define S = {t′ | [t] ⇓′T (t′, α)}. We can show that S is a complete set of E-variants modulo
EA of t. Let t′ ∈ S . Hence [t] ⇓′T (t′, α). By Lemma 11, tα =E t′ meaning that t′ is a E-variant of t. Hence S is a set of
E-variant of t.

Let us show the second part of the theorem. Let σ be a substitution closing for t. Let s = minE,>(tσ). Since we have
minE,>(tσ) = minE,>(minE,>(tσ)), we have by definition that nfT,E({s}) and s =E tσ (using the empty substitution since
tσ is ground). By Lemma 14, we deduce that there exists [t] ⇓′T ([t′], α) and a substitution β such that t′β =EA s. Hence,
t′ ∈ S and t′β =EA s = minE,>(tσ).

Theorem 3 (Most general E-unifiers). Let T = (>,R,R↓, E↓, EA) be a rewrite theory and E a non-trivial equational theory.
If T mimics E then the set {ασu | [t, s] ⇓′T ([t′, s′], α) ∧ σu ∈ mguEA(t

′, s′)} is a complete set of most general E-unifiers of
t, s.

Proof. Let σ be a E-unifier of t and s, i.e. tσ =E sσ. By Item N4 of Lemma 1, there exists a term u such that nfT,E({u})
and tσ =E u =E sσ. Hence defining Ls = [u, u], we have nfT,E(Ls). By Lemma 14, there exists [t, s] ⇓′T ([t′, s′], α) and
a substitution β such that [t′, s′]β =EA Ls and σ =E (αβ)dom(σ) and vars(t, s) ∩ dom(αβ) ⊆ dom(σ). Thus, t′β =EA
u =EA s

′β. Since β is a EA-unifier of t′ and s′, there exists σu ∈ mguEA(t
′, s′) and θ such that for all β =EA (σuθ)dom(β)

and the variables of dom(σuθ) \ dom(β) are fresh variables created in the computation of the most general unifier. Thus,
σ =E (ασuθ)dom(σ). By denoting σ′ = ασu and θ′ = θ, we thus have σ′ ∈ S such that σ =E (σ′θ′)dom(σ).

It remains to show that all substitutions in S are E-unifier of t, s. By Lemma 11, tα =E t′ and sα =E s′. Since σu ∈
mguE(t

′, s′), we have t′σu =E s′σu and so tασu =E sασu which means that ασu is a E-unifier of s, t.

Theorem 4. Let E↓ ⊆ EA ⊆ E be three non-trivial equational theories. Let > be a E↓-strong reduction ordering. Assume
that there exist a binary function b ∈ F and a constant amin ∈ F such that b does not occur in E and for all ground terms
t, amin 6> t.

If E has the finite variant property modulo EA and
• either EA = E↓
• or for all f/n ∈ F , the complete set S of E-variants modulo EA of b(f(x1, . . . , xn), b(x1, b(x2, . . . b(xn−1, xn))))

satisfies for all (t, θ) ∈ S, vars(t|1) ⊆ vars(t|2) (where t|i denotes the ith subterm of t)
then there exists T = (>,R,R↓, E↓, EA) that mimics E.

20

Proof. Let us define R↓ = ∅. Hence Items S1 and S2 of Definition 2 and Item M1 of Definition 4 directly hold. Let us build
R as follows: For all f ∈ F of arity n, we build the term uf = b(f(x1, . . . , xn), b(x1, b(x2, . . . b(xn−1, xn)))). Let us denote
by p the position of f(x1, . . . , xn) in uf , i.e. 1. and p1, . . . , pn the positions of x1, . . . , xn in uf respectively, i.e. 2 ·1, 2 ·2 ·1,
. . .

Since (E,EA) has the finite variant property then there exists a finite set of E-variant Sf such that for all σ closing for u,
there exist a substitution γ and u′ ∈ Sf such that u′γ =EA minE,>(uσ).

For each u′ ∈ Sf , since u′ is a E-variant of u, we know that there exists θ such that u′ =E uθ. Recall that b is a free binary
function. Hence, the positions p, p1, . . . , pn are also positions of u′ and u′|p =E u|pθ and for all i ∈ {1, . . . , n}, u′|pi =E u|piθ.
Moreover, let us define by σu′ the substitution from vars(u′|p) \ vars(u

′
|p1 , . . . , u

′
|pn) to {amin}. Thus, for each u′ ∈ Sf , we

define the following rewrite rule that is added to R:

f(u′|p1 , . . . , u
′
|pn)→ u′|pσu′

Finally, for all f ∈ F of arity n, we also add to R the rewrite rule f(x1, . . . , xn) → f(x1, . . . , xn). By construction, the
property Item S3 of Definition 2 is satisfied, implying that (>,R, ∅, E↓, EA) is a rewrite theory. Notice that when E↓ 6= EA,
our hypothesis ensures that σu′ is empty.

To prove Item M2 of Definition 4, recall that by definition of u, we have u|p = f(u|p1 , . . . , u|pn) and so u′|p =E
u|pθ = f(u|p1 , . . . , u|pn)θ. As for all i ∈ {1, . . . , n}, u′|pi =E u|piθ, we conclude that u′|p =E f(u′|p1 , . . . , u

′
|pn). Recall

that dom(σu′) = vars(u′|p) \ vars(u
′
|p1 , . . . , u

′
|pn). Therefore, f(u′|p1 , . . . , u

′
|pn) = f(u′|p1 , . . . , u

′
|pn)σu′ =E u′|pσu′ .

It remains to prove Item M3. Take f(t1, . . . , tn) =E t with nfT,E(M) and M = {t1, . . . , tn, t}. Hence, by Definition 3,
there exists σ an injective substitution with dom(σ) = vars(M), img(σ) ⊆ N , names(M)∩ img(σ) = ∅ and for all s ∈M,
sσ =E↓ minE,>(sσ). Take α = {x1 7→ t1, . . . , xn 7→ tn}. Since ασ is closing for u, there exists a substitution γ and u′ ∈ Sf
such that u′γ =EA minE,>(uασ).

If we denote w = minE,>(uασ) then once again as b is a free binary symbol, we know that p, p1, . . . , pn are positions of w.
Moreover, we can show that w|p =E↓ minE,>(u|pασ) and for all i ∈ {1, . . . , n}, w|pi =E↓ minE,>(u|piασ). Indeed, assume
by contradiction that this is not the case, w.l.o.g. w|p 6=E↓ minE,>(u|pασ). Hence, minE,>(u|pασ) < w|p (since w|p =E
minE,>(u|pασ)). However, > is E↓-compatible which implies that w[minE,>(u|pασ)]p < w. This leads to a contradiction
with w = minE,>(uασ).

To summarize, we have proved that u′|pγ =EA minE,>(u|pασ) and for all i ∈ {1, . . . , n}, u′|piγ =EA minE,>(u|piασ).
Recall that nfT,E(M) implies that tσ =E↓ minE,>(tσ) =E↓ minE,>(f(t1, . . . , tn)σ) =E↓ minE,>(u|pασ) and for all
i ∈ {1, . . . , n}, tiσ =E↓ minE,>(tiσ) = minE,>(u|piασ). Therefore, we obtain u′|pγ =EA tσ and for all i ∈ {1, . . . , n},
u′|piγ =EA tiσ.

When EA 6= E↓, we know that σu′ is the identity and so the rule f(u′|p1 , . . . , u
′
|pn)→ u′|p is in the set R. As σ is injective

with names(M) ∩ img(σ) = ∅, we conclude by taking the substitution σ′ = γσ−1.
We now look at the case E↓ = EA. Recall that we already proved that u′|p =E u′|pσu′ . By definition of σu′ , we know that

either u′|pγ =E↓ u
′
|pσu′γ or u′|pγ > u′|pσu′γ. As > is E↓-compatible, the latter case would imply that minE,>(u|pασ) > u′|pσu′γ

which is a contradiction with the definition of minE,>(u|pασ). Therefore, u′|pγ =E↓ u
′
|pσu′γ. Once again, as σ is injective

with names(M) ∩ img(σ) = ∅, we conclude by taking the substitution σ′ = γσ−1 and the rule f(u′|p1 , . . . , u
′
|pn) → u′|pσu′

in R.

D. Proofs of Theorem 5

We already introduced many notions in Section V-C. We need to introduce a few more in order to write the proof of
Theorem 5. In this section, we will consider an equational theory E↓ and an E↓-strong reduction ordering >. Given two terms
u, v, we will denote by u ≥ v when either u > v or u =E↓ v. In further sections, we will also refer to E↓ as the rewrite set
{`→ r, r → ` | (` = r) ∈ E↓} when discussing from where a rewrite trace is from.

a) Rewrite steps: In the proof, we will consider two types of rewrite steps: syntactic and modulo E↓. We already
introduced the notation t

` → r−−−−→
p,σ

s and t
r ← `←−−−−
p,σ

s. We augment this notation with an equation theory: We write t ` → r−−−−→
E,p,σ

s

when p ∈ Pos(t), t|p =E `σ and s = t[rσ]p and s′ =E2
rσ and `σ ≥ rσ. Similarly, we write s r ← `←−−−−

p,σ,E
t when t ` → r−−−−→

E,p,σ
s. In

practice, E will either be E↓ or the emptyset ∅. When E = E↓, it will correspond to the rewrite of t by s modulo E↓. When
E = ∅, the equality becomes syntactic and we omit it, hence yielding t ` → r−−−−→

p,σ
s.

Recall that compare to standard rewriting, we impose an order between the instantiated terms of the rule, i.e., `σ ≥ rσ.
Notice that when `σ =E↓ rσ, we have t ` → r−−−−→

E↓,p,σ
s iff t ` ← r←−−−−

p,σ,E↓
s.

21

b) Rewrite labels and rewrite traces: In Paragraph V-C4b, we defined the notion on rewrite labels and rewrite traces. As
we extended rewrite steps with an equational theory E, we also need to update the definition of rewrite labels by just adding
the equational theory E in the tuple: A rewrite label is a tuple ω = (E, p, σ : ` ∼ r) with ∼ ∈ {→,←} corresponding to the
argument of a rewrite step. The

One of the advantages of introducing rewrite traces is that we can define simple operations that will ease the reading of
proofs: Given a position p and a substitution σ, we define recursively p · tr, trσ and tr−1 as follows.
• p · ε = ε and p · (E, q, α : ` ∼ r)tr = (E, p · q, σ : ` ∼ r)(p · tr)
• εσ = ε and ((E, q, α : ` ∼ r)tr)σ = (E, q, ασ : ` ∼ r)trσ
• ε−1 = ε and ((E, q, α : `→ r)tr)−1 = tr−1(E, q, α : r ← `) and ((E, q, α : r ← `)tr)−1 = tr−1(E, q, α : `→ r)

We can provide some basic and useful properties:

Lemma 15. Let u tr⇐⇒ v. For all substitutions σ, for all term contexts C[] with C[]|p = , we have uσ trσ⇐=⇒ vσ, and

C[u]
p·tr⇐==⇒ C[v], and v tr−1

⇐==⇒ u. Moreover, if u tr
=⇒ v (resp. u tr⇐= v) then v tr−1

⇐=== u (resp. v tr
=⇒ u).

Proof. Directly follows from the definitions.

c) Ranking function: The transformations presented in Section V-C4 that transform peaks into valleys intuitively reduce
the altitude of the mountainous landscape, while sometimes increasing the length of the landscape. However, the transformations
presented in Section V-C5 not only do not decrease the altitude but also increase the length of the landscape, possibly adding
terms at the highest altitude. To prove termination of applications of landscape transformations, we rely on an insight found the
previous section: we showed that p was a strict prefix of all positions of rule applications in trL. For the rewrite trace trR, we
only had the guarantee that the positions of rule applications were prefixes of p (not necessarily strict), but the terms rewritten
by the rule were intuitively at a strictly lower altitude. Therefore, to show termination of our landscape transformations, we
will compare both the positions at which a rule is applied, as well as the terms rewritten.

Definition 11. We define the ranking function on rewrite labels, denoted rf, by rf(ω) = (p, rσ, `σ) when ω is a right rewrite
label (p, σ : `→ r) or a left rewrite label (p, σ : r ← `).

We extend the ranking function to rewrite traces by defining rf(tr) = {{rf(ω) | ω ∈ tr}}, that is the multiset of the ranking
values of all rewrite labels in tr.

To compare two instances of the ranking function, we will use the lexicographic order where terms are ordered by < the
E↓-strong reduction ordering, and where positions are compared through the opposite of the natural prefix order, that is p1
will be “strictly smaller” than p2 when p2 is a strict prefix of p1. Intuitively, the closer to ε a position is, the more rewriting is
possible on a term. However, this order on positions is not well founded as there is an infinite sequence of “strictly smaller”
positions than p1. We therefore restrict ourselves to positions contained in a finite set of positions P , that is for p1 and p2 to
be ordered, they both need to be part of P . As P is finite, the order, that we denote ≺P , becomes well-founded.

The sets of position P will be generated from all the terms in the initial rewrite trace that transformed an equality modulo
E into a mountainous landscape, as shown in Section V-C3. In particular, if we gather all terms in this initial landscape into
a set S, we can show that all terms in any transformed landscape are necessarily smaller (w.r.t. < the E↓-strong order) than
a term in S. As < is well-founded and E↓ has finite equivalence classes, the set of terms smaller than terms in S is therefore
finite. Hence, we generate P as the set of all positions in all terms smaller than terms in S.

By abuse of notation, given two rewrite traces tr, tr′, we also denote rf(tr′) ≺P rf(tr) when using the multiset order induced
by the order ≺P on instances of the ranking function on rewrite labels. We show that for any landscape transformation
converting a rewrite trace tr into a new rewrite trace tr′, we have rf(tr′) ≺P rf(tr), ensuring that the application of landscape
transformations necessarily terminates.

Remark. The termination of applications of landscape transformations does not imply that generate_rw_th() terminates.

The rewrite labels with equation theory does not impact their value w.r.t. the ranking function, that is rf((E, p, σ : ` ∼ r)) =
rf((p, σ : ` ∼ r)). Only the inverse operation on rewrite trace preserves the ranking function:

Lemma 16. For all rewrite trace tr, rf(tr−1) = rf(tr).

Proof. By induction on tr and by noticing that rf((E, q, α : `→ r)) = rf((E, q, α : r ← `)).

Let P be a set of positions. To compare the measurements, we denote by ≺P the strict ordering on rewrite label measurement
w.r.t. P , defined as follows: (p1, u1, v1) ≺P (p2, u2, v2) when p1, p2 ∈ P , and either
• p2 is strict prefix of p1, or
• p1 = p2 and either u1 < u2 or (u1 =E↓ u2 and v1 < v2)

22

We also define equality between measurement as (p1, u1, v1) wP (p2, u2, v2) when p1 = p2 ∈ P , u1 =E↓ u2 and v1 =E↓ v2.
We naturally define 4P as ≺P ∪wP .

Notice that in the definition of ≺P , the position p1 is “smaller” than p2 when p2 is a strict prefix of p1, which is opposite
to the natural prefix ordering. Intuitively, the closer to ε a position is, the more rewriting is possible on a term. However, as
such ordering is not well-founded, we additionally require the compared positions to be part of the set P . When P is finite,
we retrieve the well-foundedness of the ordering, as shown below.

Lemma 17. For all finite sets of positions P , the ordering ≺P is well-founded

Proof. The ordering ≺P is in fact a lexicographic ordering on (p, u, v). To compare the terms u and v, we use the ordering
< that is a E↓-strong reduction order, meaning that it is well founded. To compare the position p, we use the negation of the
prefix ordering, i.e. p1 is strictly smaller than p2 when p2 is a strict prefix of p1. This is not well-founded in itself but as we
require that both p1 and p2 are positions in P , which is finite and a parameter of the ordering, we retrieve the well-foundedness
of the ordering.

By abuse of notation, given two rewrite traces tr, tr′, we also denote rf(tr) ≺P rf(tr′) when using the multiset ordering
induced by ≺P on ordering labels.

In additional to the main ranking function rf(·) on rewrite traces, we consider a second ranking function defined on a rewrite
traces and the terms it rewrites, that is u tr⇐⇒ v, denoted rf2(u, tr, v), as the multisets of the terms {{t0, . . . , tn}} where

u = t0
ω1⇐=⇒ t1

ω2⇐=⇒ . . .
ωn⇐=⇒ tn = v

with tr = ω1 . . . ωn and the ωis are rewrite labels. Two instances of this ranking function are compared using the multiset
order induced by the E↓-strong reduction order >.

d) Orderly rewriting of terms: The sets of position P used in the ordering above will be generated from all the terms
in the initial rewrite trace, by relying on our E↓-strong reduction order > (and it’s associated non-strict ≥ relation). Given a
set of terms M, we say that M is greater than a term t (or t smaller than M) when there exists s ∈ M such that s ≥ t.
Similarly, we say that M is greater than u tr⇐⇒ v when for all tr′ of tr, if u tr′⇐=⇒ w then M is greater than w.

Denoting P(M) the set of positions defined as {p ∈ Pos(t) | s ∈M, s ≥ t}, we obtain the following property.

Lemma 18. If E↓ has finite equivalence classes then for all finite set of ground terms M, the set P(M) is finite.

Proof. Since M is ground and finite and since > is well founded then the number of E↓-equivalence classes of ground terms
smaller than M is finite. As E↓ having finite equivalence classes implies, we directly conclude.

e) Saturated sets of rewrite rules: Our generic procedure and its optimisations basically keep merging E↓-overlapping
rewrite rules until a fixpoint is reached, that is until the set of rewrite rules is saturated. We define below the properties satisfied
by such saturated set.

Definition 12. Let R,R↓ be two sets of rewrites rule. We say that R is saturated w.r.t. R↓ when:
• R∪R↓ ∗R↓,E↓ R
• for all (`1 → r1), (`2 → r2) ∈ R, for all positions p, (r1 → `1

p
�� `2 → r2) ∪R ∪R↓ ∗R↓,E↓ R

• for all (`1 → r1) ∈ R ∪ E↓, for all (`2 → r2) ∈ R, for all positions p, (`1 → r1
p
� `2 → r2) ∪R ∪R↓ ∗R↓,E↓ R

• for all (`→ r) ∈ R, {r → `} ∪ R ∪R↓ ∗R↓,E↓ R

1) Normalisation rules: Recall that > is a E↓-strong reduction order compatible with R↓. Before we state stating the
correctness of our normalisation rules, we show that if u > v then vars(v) ⊆ vars(u). Indeed, assume that u contains a
variable x that is not a variable of v. Thus v > u = C[x, . . . , x]. As > is stable by application of substitutions, we deduce
that v > C[v, . . . , v] > C[C[v, . . . , v], . . . , C[v, . . . , v]] > . . . leading to a contradiction with > being well founded.

Lemma 19 (Rule NORMR). Let u ` → r−−−−→
p,σ

v be a ground rewrite step and tr0 = (p, σ : `→ r). Let M a set of terms greater

than u tr0⇐=⇒ v. If r =E↓ t
`′ → r′−−−−−→
p′,σ′

s and `′ > r′ then there exists a syntactic rewrite trace trR from E↓ such that:

u
` → s−−−−→
p,σ

u[sσ]p
r′ ← `′←−−−−−
p·p′,σ′σ

u[tσ]p
p·trRσ⇐==== v

and denoting tr1 = (p, σ : `→ s)(p · p′, σ′σ : r′ ← `′)(p · trRσ), we deduce that tr1 is a ground syntactic rewrite trace and:

P1 u
tr1⇐=⇒ v, and

23

P2 M is greater than u tr1⇐=⇒ v, and

P3 for all ω ∈ tr1, rf(ω) ≺P(M) (p, rσ, `σ) or (rf(ω) wP(M) (p, rσ, `σ) and ω ∈ p · trRσ).

Proof. By definition, u ` → r−−−−→
p,σ

v implies v = u[rσ]p, and u|p = `σ and `σ ≥ rσ. By definition t `′ → r′−−−−−→
p′,σ′

s, we deduce that

t|p′ = `′σ′ and s = t[r′σ′]p′ . Since r =E↓ t, there exists trR a syntactic rewrite trace from E↓ such that t trR⇐== r. Thus,

tσ
trRσ⇐=== rσ, implying u[tσ]p

p·trRσ⇐==== v. Since s = t[r′σ′]p′ and t|p′ = `σ′, we have u[sσ]p
r′ ← `′←−−−−−
p·p′,σ′σ

u[tσ]p. Recall that

(`′ → r′) ∈ R↓ meaning that vars(r′) ⊆ vars(`′).
Recall that `′ > r′. Hence, t = t[`′σ′]p′ > t[r′σ′]p′ = s. As > is E↓-compatible and r =E↓ t, we deduce r > s. As `σ ≥ rσ,

we deduce that `σ > sσ. Thus, u ` → s−−−−→
p,σ

u[sσ]p and so Item P1 holds. By construction of tr1, as M is greater then u tr0⇐=⇒ v,

we directly obtain that M is greater than u tr1⇐=⇒ v, i.e. Item P2.

Finally, we already showed that rσ > sσ thus (p, sσ, `σ) ≺P(M) (p, rσ, `σ). Additionally, if p′ 6= ε then we trivially
have that (p · p′, r′σ′σ, `′σ′σ) ≺P(M) (p, rσ, `σ). Otherwise, r =E↓ `

′σ′ and s = r′σ′. Hence rσ =E↓ `
′σ′σ > r′σ′σ and so

(p, r′σ′σ, `′σ′σ) ≺P(M) (p, rσ, `σ). It remains to consider ω ∈ p ·trRσ, that is ω = (p′′, ασ : b← a) with p ≤ p′′: Once again,
if p′′ 6= p then we directly have that rf(ω) ≺P(M) (p, rσ, `σ). Otherwise, it implies that aασ =E↓ bασ =E↓ rσ. Therefore
since `σ ≥ rσ, we deduce that rf(ω) 4P(M) (p, rσ, `σ) which concludes the proof of Item P3.

We can represent graphically the transformation as follows:

when `σ > rσ

transformation−−−−−−−−−−→

u

v

`
→
rp

, σ

u

u[sσ]

u[tσ]p v
`
→
sp

, σ

r
′ ←

`
′

p
· p
′ , σ
′

p · trRσ

when `σ =E↓ rσ

transformation−−−−−−−−−−→u v
` → r

p, σ
u

u[sσ]

u[tσ]p v
`
→
sp

, σ r
′ ←

`
′

p
· p
′ , σ
′

p · trRσ

Lemma 19 focuses only a right rewrite step u ` → r−−−−→
p,σ

v but we can easily have similar result on a left rewrite step by using

the properties of the inverse operator in Lemmas 15 and 16.

Lemma 20 (Rule NORML). Let u ` → r−−−−→
p,σ

v be a ground rewrite step and tr0 = (p, σ : `→ r). Let M a set of terms greater

than u
tr0⇐=⇒ v. If ` = f(`1, . . . , `n) and `i =E↓ t

`′ → r′−−−−−→
p′,σ′

s and `′ > r′ and i ∈ {1, . . . , n} then there exists a ground

syntactic rewrite trace tr1 from E↓ ∪ {r → `[s]i, `[s]i → r, `′ → r′} such that:

P1 u
tr1⇐=⇒ v, and

P2 M greater than u tr1⇐=⇒ v, and

P3 for all ω ∈ tr1, rf(ω) ≺P(M) (p, rσ, `σ).

Proof. Let us denote w = `[s]i. Since `|i =E↓ t, there exists trL a syntactic rewrite trace from E↓ such that `|i
trt==⇒ t. By

definition of t `′ → r′−−−−−→
p′,σ′

s, we have t|p′ = `′σ′ and s = t[r′σ′]p′ . Moreover, u ` → r−−−−→
p,σ

v implies u|p = `σ and v = u[rσ]p.

Therefore, u
p·i·trLσ
=====⇒ u[`σ[tσ]i]p

`′ → r′−−−−−−→
p·i·p′,σ′σ

u[`σ[tσ[r′σ′σ]p′]i]p = u[`σ[sσ]i]p = u[wσ]p.

24

Let us define ωM = (p, σ : w → r) when wσ > rσ and ωM = (p, σ : w ← r) otherwise. In both cases, we deduce that
u[wσ]p

ωM⇐==⇒ u[rσ]p = v. Defining tr1 = (p · i · trLσ)(p · i · p′, σ′σ : `′ → r′)ωM , we deduce that u tr1⇐=⇒ v proving Item P1.

Since M is greater than u tr0⇐=⇒ v, we obtain by construction of tr1 that M is greater than u tr1⇐=⇒ v thus proving Item P2.
We now focus on Item P3: Since `′ > r′, we deduce that `′σ′ > r′σ′ and so `[t]i > `[s]i. As > is E↓-compatible and t =E↓ `i,

we deduce that ` > w, implying `σ > wσ. If wσ > rσ then we obtain rf(ωM) = (p, rσ, wσ) ≺P(M) (p, rσ, `σ) else if rσ > wσ
then rf(ωM) = (p, wσ, rσ) ≺P(M) (p, rσ, `σ), else rσ =E↓ wσ but `σ > wσ hence rf(ωM) = (p, wσ, rσ) ≺P(M) (p, rσ, `σ).

Consider now ω = (p · i · p′, σ′σ : `′ → r′), we have rf(ω) = (p · i · p′, r′σ′σ, `′σ′σ). As p is a strict prefix of p · i · p′, we
directly have rf(ω) ≺P(M) (p, rσ, `σ). For the same reason, we deduce that for all ω ∈ p · i · trLσ, rf(ω) < (p, rσ, `σ).

We can represent graphically the transformation as follows:

when `σ > rσ
and wσ < rσ

transformation−−−−−−−−−−→

u

v

`
→
rp

, σ

u u[`σ[tσ]i]p

u[wσ]p

v

p · i · trLσ

` ′
→
r ′

p
·
i ·
p ′
, σ ′
σ

w
←
r

p
, σ

when `σ > rσ
and wσ =E↓
rσ

transformation−−−−−−−−−−→

u

v

`
→
rp

, σ

u u[`σ[tσ]i]p

u[wσ]p v

p · i · trLσ

` ′
→
r ′

p
·
i ·
p ′
, σ ′
σ w ← r

p, σ

when `σ > rσ
and wσ > rσ

transformation−−−−−−−−−−→

u

v

`
→
rp

, σ

u u[`σ[tσ]i]p

u[wσ]p

v

p · i · trLσ

` ′
→
r ′

p
·
i ·
p ′
, σ ′
σ

w
→
rp
, σ

when `σ =E↓
rσ

transformation−−−−−−−−−−→u v
` → r

p, σ
u u[`σ[tσ]i]p

u[wσ]p

v
p · i · trLσ

` ′
→
r ′

p
·
i ·
p ′
, σ ′
σ

w
←
r

p
, σ

Lemma 21 (Rule SUB). Let u ` → r−−−−→
p,σ

v be a ground rewrite step and tr0 = (p, σ : ` → r). Let M a set of terms greater

than u tr0⇐=⇒ v. If there exist `′ → r′, a term context C[] and a substitution σ′ such that C[`′σ′] =sE↓ ` and C[r′σ′] =E↓ r
then there exists tr1 a ground syntactic rewrite trace from E↓ ∪ {`′ → r′} such that:

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 for all ω ∈ tr1, rf(ω) 4P(M) (p, rσ, `σ).

Proof. By definition of C[`′σ′] =sE↓ `, there exists trL a syntactic rewrite trace from E↓ such that ` trL==⇒ C[`′σ′] and for

all ω ∈ trL, pos(ω) 6= ε. As u ` → r−−−−→
p,σ

v implies u|p = `σ and v = u[rσ]p, we deduce that u
p·trLσ
====⇒ u[Cσ[`′σ′σ]]p.

25

Similarly, C[r′σ′] =E↓ r implies that there exists trR a syntactic rewrite trace from E↓ such that C[r′σ′] trR==⇒ r. Hence

u[Cσ[r′σ′σ]]p
p·trRσ
====⇒ v.

Recall that u ` → r−−−−→
p,σ

v implies `σ ≥ rσ. By contradiction, assume that r′σ′σ > `′σ′σ. Since > is a E↓-compatible

reduction ordering, we deduce that rσ =E↓ Cσ[r
′σ′σ] > Cσ[`′σ′σ] =E↓ `σ and so rσ > `σ, which is a contradiction

with `σ ≥ rσ. Therefore r′σ′σ ≤ `′σ′σ and so we obtain Cσ[`′σ′σ]
`′ → r′−−−−−→
p′,σ′σ

Cσ[r′σ′σ] with C[]|p′ = which entails

u[Cσ[`′σ′σ]]p
`′ → r′−−−−−→
p·p′,σ′σ

u[Cσ[r′σ′σ]]p. Defining tr1 = (p · trLσ)(p · p′, σ′σ : `′ → r′)(p · trRσ), we deduce that u tr1⇐=⇒ v,

yielding Item P1. As M is greater than u
tr0⇐=⇒ v, we also directly obtain by construction of tr1 that M is greater than

u
tr1⇐=⇒ v, hence proving Item P2.

We now focus on Item P3. We know that for all ω ∈ trL, pos(ω) 6= ε. Hence for all ω ∈ p · trLσ, p, pos(ω) meaning that
rf(ω) ≺P(M) (p, rσ, `σ). Let us denote ω′ = (p·p′, σ′σ : `′ → r′). Recall that C[]|p′ = . Thus, if p′ 6= ε then we also directly
have rf(ω′) ≺P(M) (p, rσ, `σ); and otherwise `′σ′σ =E↓ `σ and r′σ′σ =E↓ rσ which implies rf(ω′) = (p, r′σ′σ, `′σ′σ) wP(M)

(p, rσ, `σ). Therefore, in both cases, we have rf(ω′) 4P(M) (p, rσ, `σ). Finally, for all (p′′, α : s→ t) ∈ p · trRσ, if p′′ = p
then sα =E↓ tα =E↓ rσ. As `σ ≥ rσ, we deduce that either (p′′, tα, sα) 4P(M) (p, rσ, `σ). We conclude the proof of
Item P3.

We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→u v
` → r

p, σ
u u[Cσ[`′σ′σ]]p u[Cσ[r′σ′σ]]p v

p · trLσ `′ → r′

p · p′, σ′σ

p · trRσ

Lemma 22 (Rule EQ). Let u ` → r−−−−→
p,σ

v be a ground rewrite step and tr0 = (p, σ : `→ r). Let M a set of terms greater than

u
tr0⇐=⇒ v. If ` =E↓ r then there exists tr1 a ground syntactic rewrite trace from E↓ such that:

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 for all ω ∈ tr1, rf(ω) 4P(M) (p, rσ, `σ).

Proof. By definition of u ` → r−−−−→
p,σ

v, u|p = `σ and v|p = rσ. As ` =E↓ r, there exists trM a syntactic rewrite trace from E↓ such

that ` trM==⇒ r. Thus, u|p
trMσ===⇒ v|p and so u

p·trMσ
=====⇒ v. Defining tr1 = p ·trMσ, we directly conclude Item P1. AsM is greater

than u tr0⇐=⇒ v, we also deduce by construction of tr1 that M is greater than u tr1⇐=⇒ v, hence proving Item P2. Moreover, as
`σ =E↓ rσ = u|p, we deduce that for all ω = (p′, α : s → t) ∈ tr1, p ≤ p′ and if p = p′ then sα =E↓ tα =E↓ `σ =E↓ rσ.
Hence we deduce that rf(ω) 4P(M) (p, rσ, `σ) which allows us to conclude the proof of Item P3.

We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→u v
` → r

p, σ
u v

p · trMσ

Lemma 23. Let R↓ and R two sets of rewrite rules such that R↓ ⊆ R. Assume that R ∗R↓,E↓ R
′ and let u ` → r−−−−→

p,σ
v be

a ground rewrite step. Let M be a set of terms greater than u and v. Let q be a position and a, b two terms. There exists a
ground syntactic rewrite trace tr1 from E↓ ∪R′ such that:

P1 u
tr1⇐=⇒ v

P2 M is greater than u tr1⇐=⇒ v

P3 if (p, rσ, `σ) ≺P(M) (q, a, b) then for all ω ∈ tr, rf(ω) ≺P(M) (q, a, b)

Proof. Since R ∗R↓,E↓ R
′, we have in fact R = R0 R↓,E↓ . . . R↓,E↓ Rn = R′ for some R0, . . . ,Rn. We show the

following result:
For all i ∈ {0, . . . , n}, for all u ` → r−−−−→

p,σ
v (resp. u r ← `←−−−−

p,σ
v), if (` → r) ∈ Ri and M is greater than u, v and

(p, rσ, `σ) ≺P(M) (q, a, b) then there exists a syntactic rewrite trace tr from E↓ ∪R′ such that:

26

• u
tr1⇐=⇒ v

• M is greater than u tr1⇐=⇒ v

• for all ω ∈ tr, rf(ω) ≺P(M) (q, a, b)

We prove this result by induction on ((p, rσ, `σ), n− i) using the lexicographic ordering on pair, using ≺P(M) to compare
the first element of the pair and standard natural number ordering on the second element of the pair.

Once we proved that the result holds for u ` → r−−−−→
p,σ

v, we can derive the result for u r ← `←−−−−
p,σ

v by applying the result on

v
` → r−−−−→
p,σ

u, leading to the existence of a syntactic trace tr0 from E↓ ∪R′ such that v tr0⇐=⇒ u, M rewrites into v tr0⇐=⇒ u and

for all ω ∈ tr0, rf(ω) ≺P(M) (q, a, b). We conclude by taking tr1 = tr−10 and by applying Lemmas 15 and 16.

We now focus on proving the result for u ` → r−−−−→
p,σ

v.

a) Base case ((p, rσ, `σ), 0):: In such a case, we have i = n and so Ri = R′. Hence the result directly holds with
tr = (p, σ : `→ r).

b) Inductive step ((p, rσ, `σ), n− i):: Let us look at the normalisation rule Ri R↓,E↓ Ri+1. If (` → r) ∈ Ri+1 then
we can apply our inductive hypothesis on ((p, rσ, `σ), n − i − 1) which allows us to conclude. Therefore we assume that
`→ r 6∈ Ri+1. We do a case analysis on the normalisation rule Ri R↓,E↓ Ri+1.
• Rule NORMR: In such a case, Ri = R′′ ∪ {`→ r}, r =E↓ t→R↓ s and Ri+1 = R′′ ∪ {`→ s}. As r =E↓ t→R↓ s, we

have r =E↓ t
`′ → r′−−−−−→
p′,σ′

s for some p′, σ′ and `′ → r′ ∈ R↓. Hence we can apply Lemma 19 to obtain that there exist a

syntactic rewrite trace trR from E↓ and tr1 = (p, σ : `→ s)(p · p′, σ′σ : r′ ← `′)(p · trRσ) such that

u
` → s−−−−→
p,σ

u[sσ]p
r′ ← `′←−−−−−
p·p′,σ′σ

u[tσ]p
p·trRσ⇐==== v

and the following properties hold:

– u
tr1⇐=⇒ v, and

– M is greater than u tr1⇐=⇒ v, and
– for all ω ∈ tr1, rf(ω) ≺P(M) (p, rσ, `σ) or (rf(ω) wP(M) (p, rσ, `σ) and ω ∈ p · trRσ)

From the last property, we deduce that (p, sσ, `σ) ≺P(M) (p, rσ, `σ) and (p · p′, r′σ′σ, `σ′σ) ≺P(M) (p, rσ, `σ). Hence,

as (`→ s) ∈ Ri+1, we can apply our inductive hypothesis on u ` → s−−−−→
p,σ

u[sσ]p which gives us the existence of a syntactic

rewrite trace tr2 from E↓∪R′ such that u tr2⇐=⇒ u[sσ]p, which is smaller thanM, and for all ω ∈ tr2, rf(ω) ≺P(M) (q, a, b).

Similarly, as `′ → r′ ∈ R0, we can apply our inductive hypothesis on u[sσ]p
r′ ← `′←−−−−−
p·p′,σ′σ

u[tσ]p which implies the existence

of a syntactic rewrite trace tr3 from E↓ ∪R′ such that u[sσ]p
tr3⇐== u[tσ]p, which is smaller than M, and for all ω ∈ tr3,

rf(ω) ≺P(M) (q, a, b). We conclude by taking tr = tr2tr3(p · p′ · trRσ).
• Rule NORML: In such a case, ` = f(`1, . . . , `m), `j =E↓ t→R↓ `′j ,Ri = R′′∪{`→ r} andRi+1 = R′′∪{`[`′j]j → r, r →
`[`′j]j}. Denoting s = `[`′j]j and applying Lemma 20, we deduce that there exists a syntactic rewrite trace tr1 = ω1 . . . ωm
from E↓ ∪ {r → s, s→ r, `′ → r′} such that:

u = u0
ω1⇐=⇒ u1

ω2⇐=⇒ . . .
ωm⇐=⇒ um = v

and u tr1⇐=⇒ v, which is smaller than M derives, and for all j ∈ {1, . . . ,m}, rf(ωj) ≺P(M) (p, rσ, `σ).
Take j ∈ {1, . . . ,m} such that ωj = (p′′, α : w ∼ w′). If (w = w′) ∈ E↓ then we define tr′j = ωj else if (w ∼
w′) ∈ {s ← r, s → r} then (w ∼ w′) ∈ Ri+1 else we have (w ∼ w′) = (`′ → r′) ∈ R0. In the last two cases, since
rf(ωj) ≺P(M) (p, rσ, `σ) we can apply our inductive hypothesis on uj−1

ωj⇐=⇒ uj which implies the existence of a syntactic

rewrite trace tr′j from E↓∪R′ such that uj−1
tr′j⇐=⇒ uj which is smaller thanM and for all ω ∈ tr′j , rf(ω) ≺P(M) (q, a, b).

We conclude by taking tr = tr′1 . . . tr
′
m

• Rule EQ: In such a case Ri = Ri+1 ∪ {`→ r} and ` =E↓ r. Applying Lemma 22, the result directly holds.
• Rule SUB: In such a case Ri = Ri+1 ∪ {`→ r} and there exist (`′ → r′) ∈ Ri+1, a term context C[] and a substitution
σ′ such that C[`′σ′] =sE↓ ` and C[r′σ′] =E↓ r. Applying Lemma 21, we deduce that there exists a syntactic rewrite trace
tr1 = ω1 . . . ωm from E↓ ∪ {`′ → r′} such that:

u = u0
ω1⇐=⇒ u1

ω2⇐=⇒ . . .
ωm⇐=⇒ um = v

27

and u tr1⇐=⇒ v which is smaller thanM, and for all j ∈ {1, . . . ,m}, rf(ωj) 4P(M) (p, rσ, `σ). Thus rf(ωj) ≺P(M) (q, a, b)

for all j ∈ {1, . . . ,m}.
Take j ∈ {1, . . . ,m} such that ωj = (p′′, α : w ∼ t). If (w = t) ∈ E↓ then we define tr′j = ωj else (w ∼ t) = (`′ →
r′) ∈ Ri+1. As rf(ωj) 4P(M) (p, rσ, `σ), we deduce that (rf(ωj), n − i − 1) is strictly smaller than ((p, rσ, `σ), n − i).
We can therefore apply our inductive hypothesis on uj−1

ωj⇐=⇒ uj which implies the existence of a syntactic rewrite trace

tr′j from E↓ ∪R′ such that uj−1
tr′j⇐=⇒ uj which M rewrites into, and for all ω ∈ tr′j , rf(ω) ≺P(M) (q, a, b). We conclude

by taking tr = tr′1 . . . tr
′
m.

Corollary 2. Let R↓ and R two sets of rewrite rules such that R↓ ⊆ R. Assume that R ∗R↓,E↓ R
′. Let tr0, tr1 be two

ground syntactic rewrite trace from E↓ ∪ R. Let M be a set of terms. Let u, v two ground terms such that u tr0⇐=⇒ v, and

u
tr1⇐=⇒ v, and M rewrites into both u tr0⇐=⇒ v and u tr1⇐=⇒ v.

There exists a ground syntactic rewrite trace tr2 from E↓ ∪ R′ such that u tr2⇐=⇒ v which M orderly rewrites into, and if
for all ω1 ∈ tr1, there exists ω0 ∈ tr0 such that rf(ω1) ≺P(M) rf(ω0) then rf(tr2) ≺P(M) rf(tr0).

Proof. Direct application of Lemma 23 on each ω1 ∈ tr1 where (q, a, b) is taken as rf(ω0) where rf(ω1) ≺P(M) rf(ω0) and
ω0 ∈ tr0 (its existence is given as hypothesis).

We complete this section by proving some useful properties on the normalisation rules. Given two sets of rewrite rules
R1,R2, we will say that R1 subsumes R2 w.r.t R↓ if for all (`→ r) ∈ R2, either ` =E↓ r or there exists (`′ → r′) ∈ R1, a
term context C[] and a substitution such that C[`′σ] =sE↓ ` and C[r′σ] =E↓ r and r′ 6→R↓/E↓ and ∀p > ε.`′|p 6→R↓/E↓ .

Lemma 24. Let R, R′, R0 and R↓ be sets of rewrite rules.
1) R ∗R↓,E↓ R

′ implies R∪R0 ∗R↓,E↓ R
′ ∪R0

2) R ∗R↓,E↓ R
′ and R subsumes R0 w.r.t R↓ implies R′ subsumes R0 w.r.t. R↓

3) If R subsumes R0 w.r.t. R↓ then R∪R0 ∗R↓,E↓ R
4) R ∗R↓,E↓ R

′ and (`→ r) ∈ R implies there exist Rin,Rrm such that {`→ r} ∗R↓,E↓ Rin ∪Rrm, and Rin ⊆ R and
R subsumes Rrm w.r.t. R↓

Proof. Item 1 is direct by definition of the normalisation rules in Figure 1. If R subsumes R0 then by definition for all
(` → r) ∈ R0, either ` =E↓ r or there exists (`′ → r′) ∈ R, a term context C[] and a substitution such that C[`′σ] =sE↓ `
and C[r′σ] =E↓ r and r′ 6→R↓/E↓ and ∀p > ε.`′|p 6→R↓/E↓ . Hence, we can successively apply the rules SUB and EQ to obtain
that R∪R0 ∗R↓,E↓ R, yielding Item 3.

We now look at Item 2. We prove the result by induction on the length of the derivation R ∗R↓,E↓ R
′.

c) Base case R = R′:: The result trivially holds.
d) Inductive step R ∗R↓,E↓ R

′′ R↓,E↓ R′:: By inductive hypothesis, we know that R′′ subsumes R0 w.r.t. R↓. By
definition, R0 ∗R↓,E↓ R

′
0 and for all (`→ r) ∈ R0, either ` =E↓ r or there exists (`′ → r′) ∈ R′′, a term context C[] and

a substitution such that C[`′σ] =sE↓ ` and C[r′σ] =E↓ r and r′ 6→R↓/E↓ and ∀p > ε.`′|p 6→R↓/E↓ . Hence, we only need to
look at the case where (`′ → r′) 6∈ R′ (in the other cases, the result would hold). We do a case analysis on the normalisation
rule applied.
• Rule NORML: Cannot be the case as ∀p > ε.`′|p 6→R↓/E↓
• Rule NORMR: Cannot be the case as r′ 6→R↓/E↓
• Rule SUB: In such a case, there exist (`′′ → r′′) ∈ R′, a term context C ′[] and a substitution σ′ such that C ′[r′′σ′] =E↓ r

′

and C ′[`′′σ′] =sE↓ `
′ and r′′ 6→R↓/E↓ and ∀p > ε.`′′|p 6→R↓/E↓ . Hence ` =sE↓ C[C

′σ[`′′σ′σ]] and r =E↓ C[C
′σ[r′′σ′σ]].

Defining C ′′[] = C[C ′σ[]] and σ′′ = σ′σ, the result holds.
• Rule EQ: In such a case, `′ =E↓ r

′. Hence C[`′σ] =E↓ C[r
′σ] which implies ` =E↓ r.

This concludes the proof of Item 2.
We finally focus on Item 4. Once again, we prove the result by induction on the length of the derivation R ∗R↓,E↓ R

′.
e) Base case R = R′:: The result trivially holds by taking Rin = {`→ r} and Rrm = ∅.
f) Inductive step R ∗R↓,E↓ R

′′ R↓,E↓ R′:: By inductive hypothesis, we know that for all (` → r) ∈ R, there exist
R′′in,R′′rm such that {` → r} ∗R↓,E↓ R

′′
in ∪ R′′rm and R′′in ⊆ R′′ and R′′ subsumes Rrm w.r.t. R↓. If the rule applied

in R′′ R↓,E↓ R′ does not affect rules in R′′in then it would imply that R′′in ⊆ R′ and by Item 2, we know that R′
subsumes R′′rm, which allows us to conclude. If the rule applied in R′′ R↓,E↓ R′ affect a rule in R′′in, say `′ → r′, i.e.
R′′in = R′in ∪ {`′ → r′} we can do a simple case analysis:
• Rule NORML or NORMR: In such a case, R′′ = R1 ∪ {`′ → r′} and R′ = R1 ∪ Radd for some Radd. We conclude by

defining Rrm = R′′rm and Rin = R′in ∪Radd and applying Item 2.

28

• Rule SUB or EQ: In such a case R′′ = R′∪{`′ → r′}. We conclude by defining Rrm = R′′rm∪{`′ → r′} and Rin = R′in
and applying Item 2.

Lemma 25. Let R1, . . . ,Rn, R′1, . . . ,R′n+1 and R↓ be sets of rewrite rules such that for all i ∈ {1, . . . , n}, R′i∪Ri ∗R↓,E↓
R′i+1. Then for all i ∈ {0, . . . , n}, R′i+1 ∪

⋃i
j=1Rj ∗R↓,E↓ R

′
i+1.

Proof. We prove the result by induction on i.
g) Base case i = 0:: In such a case, R′i+1 ∪

⋃i
j=1Rj = R′1. Hence we trivially have that R′1 ∗R↓,E↓ R

′
1.

h) Inductive step i > 0:: By inductive hypothesis, R′i∪
⋃i−1
j=1Rj ∗R↓,E↓ R

′
i. Moreover, by hypothesis, R′i∪Ri ∗R↓,E↓

R′i+1. Therefore, by Lemma 24, for all (` → r) ∈
⋃i−1
j=1Rj , there exist Rrm,Rin such that {` → r} ∗R↓,E↓ Rrm ∪ Rin

such that Rin ⊆ R′i and R′i subsumes Rrm w.r.t. R↓. As R′i ∪ Ri ∗R↓,E↓ R
′
i+1, then, denoting the rules in Rin by

{`1 → r1, . . . , `m → rm}, we deduce that R′i+1 subsumes Rrm w.r.t. R↓ and there exist R1
rm,R1

in, . . . ,Rmrm,Rmin such that
for all j ∈ {1, . . . ,m}, {`j → rj} ∗R↓,E↓ R

j
rm ∪R

j
in, Rjin ⊆ R′i+1 and Rjrm is subsumed by R′i+1. Hence,

R′i+1 ∪ {`→ r} ∗R↓,E↓ R
′
i+1 ∪Rrm ∪

m⋃
j=1

Rjrm ∗R↓,E↓ R
′
i+1

Thus, we deduce that R′i+1∪
⋃i−1
j=1Rj ∗R↓,E↓ R

′
i+1. Finally, as R′i∪Ri ∗R↓,E↓ R

′
i+1, we deduce once again by Lemma 24

that for all (` → r) ∈ Ri, there exist Rrm,Rin such that {` → r} ∗R↓,E↓ Rrm ∪ Rin such that Rin ⊆ R′i+1 and R′i+1

subsumesRrm w.r.t. R↓. Therefore, we deduce thatR′i+1∪{`→ r} ∗R↓,E↓ R
′
i+1 and so R′i+1∪

⋃i
j=1Rj ∗R↓,E↓ R

′
i+1.

2) Overlapping transformations: In this section, we look at the cases of two successive rules that overlap.

Lemma 26. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t. R↓. Let u r ← `←−−−−
p,σ

t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground

rewrite steps. Let tr0 = (p, σ : r ← `)(E↓, p
′, σ′ : `′ → r′) with {`→ r, `′ → r′} ⊆ R. Let M be a set of terms that rewrites

into u tr0⇐=⇒ v.
If p′ = p · q, and q ∈ Pos\X (`), and `σ > rσ, and `′σ′ > r′σ′ then there exists a ground syntactic rewrite trace tr1 from

R∪ E↓ such that:

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 rf(tr1) ≺P(M) rf(tr0)

Proof. By definition, there exists a term context C[] such that t = C[`σ], u = C[rσ], C[]|p = , `|qσ =E↓ `
′σ′, v =

C[rσ[r′σ′]q]. Since `|qσ =E↓ `
′σ′, we can denote γ = σ ∪ σ′ to obtain `|qγ =E↓ `

′γ. Hence `|q and `′ are E↓-unifiable. Let
θ ∈ mguE↓(`|q, `

′). There exists σ3 such that γ =E↓ (θσ3)dom(γ). Moreover, we also know that there exists `3 → r3 ∈ (r →
`
q
� `′ → r′) such that `3 = rθ, r3 = `θ[r′θ]q . Hence `3σ3 =E↓ rγ = rσ. We also have r3σ3 =E↓ `γ[r

′γ]q = `σ[r′σ′]q .
As γ =E↓ (θσ3)dom(γ), we deduce that there exists a syntactic rewrite trace trL from E↓ such that rσ trL==⇒ `3σ3. Similarly,

there exists a syntactic rewrite trace trR from E↓ such that r3σ3
trR==⇒ `σ[r′σ′]q . We therefore obtain the following sequence:

u = C[rσ]
p·trL
===⇒ C[`3σ3]

ω3⇐=⇒ C[r3σ3]
p·trR
===⇒ C[`σ[r′σ′]q] = v

with ω3 = (p, σ3 : `3 → r3) if `3σ3 ≥ r3σ3 and ω3 = (p, σ3 : `3 ← r3) otherwise. By defining tr′0 = (p · trL)ω3(p · trR),
we obtain that u

tr′0⇐=⇒ v. Moreover, as M is greater than u tr0⇐=⇒ v, we obtain by construction of tr′0 that M is greater than

u
tr′0⇐=⇒ v.

We now order the labels of tr′0 w.r.t. tr0. Let us denote ω = (p, σ : r ← `) and ω′ = (E↓, p
′, σ′ : `′ → r′). Since `′σ′ > r′σ′

and `|qσ =E↓ `
′σ′, we deduce that `σ > r3σ3. We do a case analysis on the comparison between `3σ3 and r3σ3.

• Case `3σ3 ≥ r3σ3: Since `3σ3 =E↓ rσ, we deduce that rf(ω3) = (p, r3σ3, `3σ3) ≺P(M) (p, rσ, `σ) = rf(ω). Moreover,
for all ω1 = (p′′, α : a → b) ∈ p · trL, p ≤ p′′ and if p = p′′ then aα =E↓ bα =E↓ rσ. Since `σ > rσ, we deduce
that rf(ω1) ≺P(M) (p, rσ, `σ) = rf(ω). Finally, for all ω1 = (p′′, α : a → b) ∈ p · trR, p ≤ p′′ and if p = p′′ then
aα =E↓ bα =E↓ r3σ3. Recall that `3σ3 =E↓ rσ thus when p = p′′ then `σ > rσ =E↓ `3σ3 ≥ r3σ3 =E↓ aα =E↓ bα. We
deduce that rf(ω1) ≺P(M) (p, rσ, `σ) = rf(ω). We therefore conclude that for all ω1 ∈ tr′0, there exist ω0 ∈ tr0 such that
rf(ω1) ≺P(M) rf(ω0).
We can represent graphically the transformation as follows:

29

transformation−−−−−−−−−−→u

t

v

r
←
`

p
,
σ

` ′
→
r ′

E
↓ , p ′
, σ ′

u C[`3σ3]

C[r3σ3] v

trL

`
3 →

r
3

p
, σ
3

trR

• Case `3σ3 < r3σ3: As rσ =E↓ `3σ3 and `σ > r3σ3, we deduce that rf(ω3) = (p, `3σ3, r3σ3) ≺P(M) (p, rσ, `σ) = rf(ω).
Moreover, for all ω1 = (p′′, α : a → b) ∈ p · trL, p ≤ p′′ and if p = p′′ then aα =E↓ bα =E↓ rσ. Since `σ > rσ,
we deduce that rf(ω1) ≺P(M) (p, rσ, `σ) = rf(ω). Finally, for all ω1 = (p′′, α : a → b) ∈ p · trR, p ≤ p′′ and if
p = p′′ then aα =E↓ bα =E↓ r3σ3 and q = ε. In such a case (p = p′′), r′σ′ =E↓ r3σ3 and `σ =E↓ `

′σ′. Thus,
aα =E↓ bα =E↓ r

′σ′ < `′σ′ and so rf(ω1) ≺P(M) rf(ω
′). We therefore conclude that for all ω1 ∈ tr′0, there exist ω0 ∈ tr0

such that rf(ω1) ≺P(M) rf(ω0).
We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→

u

t

vr
←
`

p
, σ

` ′
→
r ′

E
↓ ,
p ′
,
σ ′

u C[`3σ3]

C[r3σ3] v

trL

` 3
←
r 3

p
, σ

3

trR

In both cases, we have shown that for all ω1 ∈ tr′0, there exist ω0 ∈ tr0 such that rf(ω1) ≺P(M) rf(ω0).

Notice that, denoting R′ = (R ∪ R↓ ∪ (r → `
q
�� `′ → r′)), we have that tr′0 is a syntactic rewrite trace from R′ ∪ E↓.

Since tr0 is from R, it is naturally also from R′ ∪E↓. Note that by Definition 12, we know that R′ ∗R↓,E↓ R and R↓ ⊆ R′.
Thus, we can apply Corollary 2 to deduce that there exists a syntactic rewrite trace tr1 from R∪E↓ such that u tr1⇐=⇒ v, which
is smaller than M, and rf(tr1) ≺P(M) rf(tr0). This conclude the proof.

Lemma 27. Assume that E↓ has finite equivalence classes. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t. R↓.
Let u ` → r−−−−→

p,σ
t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground be rewrite steps. Let tr0 = (p, σ : `→ r)(E↓, p
′, σ′ : `′ → r′) with (`→ r) ∈ E↓

and (`′ → r′) ∈ R. Let M be a set of terms greater than u tr0⇐=⇒ v.

If p′ = p · q, and q ∈ Pos\X (r), and `′σ′ > r′σ′ then there exists a ground syntactic rewrite trace tr1 from E↓ ∪ R such
that

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and

P3 rf(tr1) ≺P(M) rf(tr0)

Proof. By definition, there exists a term context C[] such that t = C[rσ], u = C[`σ], C[]|p = , r|qσ =E↓ `
′σ′, v =

C[`σ[r′σ′]q]. Since r|qσ =E↓ `
′σ′, we can denote γ = σ ∪ σ′ to obtain r|qγ =E↓ `

′γ. Hence r|q and `′ are E↓-unifiable. Let
θ ∈ mguE↓(r|q, `

′). There exists σ3 such that γ =E↓ (θσ3)dom(γ). Moreover, we also know that there exists `3 → r3 ∈ (`→
r
q
� `′ → r′) such that `3 = `θ, r3 = rθ[r′θ]q . Hence `3σ3 =E↓ `γ = `σ. We also have r3σ3 =E↓ rγ[r

′γ]q = rσ[r′σ′]q .

As γ =E↓ (θσ3)dom(γ), we deduce that there exists a syntactic rewrite trace trL from E↓ such that `σ trL==⇒ `3σ3. Since
(` → r) ∈ E↓ and E↓ has finite equivalence classes, we deduce that ` and r are not variables. Therefore, for all ω ∈ trL,
pos(ω) 6= ε. Similarly, there exists a syntactic rewrite trace trR from E↓ such that r3σ3

trR==⇒ rσ[r′σ′]q and if q 6= ε then
for all ω ∈ trR, pos(ω) 6= ε. As > is a E↓-strong reduction ordering and `′σ′ > r′σ”, we deduce `3σ3 =E↓ `σ =E↓ rσ >
rσ[r′σ′]q =E↓ r3σ3. We therefore obtain the following sequence:

u = C[`σ]
p·trL
===⇒ C[`3σ3]

ω3==⇒ C[r3σ3]
p·trR
===⇒ C[rσ[r′σ′]q] = v

30

with ω3 = (p, σ3 : `3 → r3). By defining tr′0 = (p · trL)ω3(p · trR), we obtain that u
tr′0⇐=⇒ v. Moreover, as M rewrites into

u
tr0⇐=⇒ v, we obtain by construction of tr′0 that M rewrites into u

tr′0⇐=⇒ v.
We now order the labels of tr′0 w.r.t. tr0. Let us denote ω = (p, σ : ` → r) and ω′ = (E↓, p

′, σ′ : `′ → r′). We already
proved that `3σ3 =E↓ `σ =E↓ rσ > r3σ3. Thus rf(ω3) ≺P(M) rf(ω). Moreover, we already proved that for all ω1 in trL,
pos(ω1) 6= ε. Hence for all ω1 in p · trL, p < pos(ω1), implying that rf(ω1) ≺P(M) rf(ω). Finally, if q 6= ε then we also
showed that for all ω1 in trR, pos(ω1) 6= ε, and so for all ω1 in p · trR, p < pos(ω1), implying that rf(ω1) ≺P(M) rf(ω). We
now focus on q = ε. In such a case, p = p′ and for all ω1 = (p′′, α : a→ b) ∈ p · trR, if p′′ = p then aα =E↓ bα =E↓ r

′σ′

else p < p′′. Hence rf(ω1) = (p′′, bα, aα) ≺P(M) (p
′, r′σ′, `′σ′) = rf(ω′). We therefore conclude that for all ω1 ∈ tr′0, there

exist ω0 ∈ tr0 such that rf(ω1) ≺P(M) rf(ω0).
We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→

u t

v

` → r

p, σ

` ′
→
r ′

E
↓ ,
p ′
,
σ ′

u C[`3σ3]

C[r3σ3] v

p · trL
`
3 σ

3 →
r
3 σ

3

p
, σ
3

p · trR

Notice that, denoting R′ = (R∪R↓ ∪ (`→ r
q
� `′ → r′)), we have that tr′0 is a syntactic rewrite trace from R′ ∪ E↓. Since

tr0 is from R, it is naturally also from R′ ∪E↓. Note that by Definition 12, we know that R′ ∗R↓,E↓ R and R↓ ⊆ R′. Thus,

we can apply Corollary 2 to deduce that there exists a syntactic rewrite trace tr1 from R∪ E↓ such that u tr1⇐=⇒ v which M
rewrites into, and rf(tr1) ≺P(M) rf(tr0). This conclude the proof.

Lemma 28. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t. R↓. Let u ` → r−−−−→
p,σ

t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground

rewrite steps. Let tr0 = (p, σ : ` → r)(E↓, p
′, σ′ : `′ → r′) with (` → r), (`′ → r′) ∈ R. Let M be a set of terms greater

than u tr0⇐=⇒ v.
If p′ = p · q, and q ∈ Pos\X (r), and `σ > rσ, and `′σ′ > r′σ′ and (` ∈ X implies ` ∈ vars(r)) then there exists a ground

syntactic rewrite trace tr1 from E↓ ∪R such that

P1 u
tr1⇐=⇒ v, and

P2 M is greater u tr1⇐=⇒ v, and
P3 rf(tr1) ≺P(M) rf(tr0)

Proof. By definition, there exists a term context C[] such that t = C[rσ], u = C[`σ], C[]|p = , r|qσ =E↓ `
′σ′, v =

C[`σ[r′σ′]q]. Since r|qσ =E↓ `
′σ′, we can denote γ = σ ∪ σ′ to obtain r|qγ =E↓ `

′γ. Hence r|q and `′ are E↓-unifiable. Let
θ ∈ mguE↓(r|q, `

′). There exists σ3 such that γ =E↓ (θσ3)dom(γ). Moreover, we also know that there exists `3 → r3 ∈ (`→
r
q
� `′ → r′) such that `3 = `θ, r3 = rθ[r′θ]q . Hence `3σ3 =E↓ `γ = `σ. We also have r3σ3 =E↓ rγ[r

′γ]q = rσ[r′σ′]q .
As γ =E↓ (θσ3)dom(γ), we deduce that there exists a syntactic rewrite trace trL from E↓ such that `σ trL==⇒ `3σ3. By

hypothesis, we know that ` ∈ X implies ` ∈ vars(r). However, > is a reduction ordering, hence if a is a strict subterm of b
then a 6> b (otherwise we would have b = C ′[a] and so a > C ′[a] > C ′[C ′[a]] > . . .). Note that if a = b then we also have
a 6> b. Thus, as `σ > rσ, we deduce that ` 6∈ X , meaning that for all ω ∈ trL, pos(ω) 6= ε.

Similarly, there exists a syntactic rewrite trace trR from E↓ such that r3σ3
trR==⇒ rσ[r′σ′]q and if q 6= ε then for all ω ∈ trR,

pos(ω) 6= ε. As > is a E↓-strong reduction ordering and `′σ′ > r′σ”, we deduce `3σ3 =E↓ `σ > rσ > rσ[r′σ′]q =E↓ r3σ3.
We therefore obtain the following sequence:

u = C[`σ]
p·trL
===⇒ C[`3σ3]

ω3==⇒ C[r3σ3]
p·trR
===⇒ C[rσ[r′σ′]q] = v

with ω3 = (p, σ3 : `3 → r3). By defining tr′0 = (p · trL)ω3(p · trR), we obtain that u
tr′0⇐=⇒ v. Moreover, as M is greater than

u
tr0⇐=⇒ v, we obtain by construction of tr′0 that M is greater than u

tr′0⇐=⇒ v.
We now order the labels of tr′0 w.r.t. tr0. Let us denote ω = (p, σ : ` → r) and ω′ = (E↓, p

′, σ′ : `′ → r′). We already
proved that `3σ3 =E↓ `σ > rσ > r3σ3. Thus rf(ω3) ≺P(M) rf(ω). Moreover, we already proved that for all ω1 in trL,
pos(ω1) 6= ε. Hence for all ω1 in p · trL, p < pos(ω1), implying that rf(ω1) ≺P(M) rf(ω). Finally, if q 6= ε then we also
showed that for all ω1 in trR, pos(ω1) 6= ε, and so for all ω1 in p · trR, p < pos(ω1), implying that rf(ω1) ≺P(M) rf(ω). We
now focus on q = ε. In such a case, p = p′ and for all ω1 = (p′′, α : a→ b) ∈ p · trR, if p′′ = p then aα =E↓ bα =E↓ r

′σ′

31

else p < p′′. Hence rf(ω1) = (p′′, bα, aα) ≺P(M) (p
′, r′σ′, `′σ′) = rf(ω′). We therefore conclude that for all ω1 ∈ tr′0, there

exist ω0 ∈ tr0 such that rf(ω1) ≺P(M) rf(ω0).
We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→

u

t

v

`
→
rp

, σ

` ′
→
r ′

E
↓ ,
p ′
,
σ ′

u C[`3σ3]

C[r3σ3] v

p · trL

`
3 σ

3 →
r
3 σ

3

p
, σ
3

p · trR

Notice that, denoting R′ = (R∪R↓ ∪ (`→ r
q
� `′ → r′)), we have that tr′0 is a syntactic rewrite trace from R′ ∪ E↓. Since

tr0 is from R, it is naturally also from R′ ∪E↓. Note that by Definition 12, we know that R′ ∗R↓,E↓ R and R↓ ⊆ R′. Thus,

we can apply Corollary 2 to deduce that there exists a syntactic rewrite trace tr1 from R ∪ E↓ such that u tr1⇐=⇒ v which is
smaller than M , and rf(tr1) ≺P(M) rf(tr0). This conclude the proof.

3) Non-overlapping transformations: In the previous section, we look at the cases of two successive non-overlapping rules.

Lemma 29. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t. R↓. Let u r ← `←−−−−
p,σ

t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground

rewrite steps. Let tr0 = (p, σ : r ← `)(E↓, p
′, σ′ : `′ → r′) with (` → r), (`′ → r′) ∈ R. Let M be a set of terms greater

than u tr0⇐=⇒ v.

If p′ = p · q, and q 6∈ Pos\X (`), and `′σ′ > r′σ′, and `σ > rσ then there exists a ground syntactic rewrite trace tr1 from
E↓ ∪R such that

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and

P3 rf(tr1) ≺P(M) rf(tr0)

Proof. By definition, we have there exist a term context C[], two positions qx, q′ and a variable x such that u = C[rσ],
C[]|p = , t = C[`σ], q = qx · q′, `|qx = x ∈ X , xσ|q′ =E↓ `

′σ′ and C[`σ[r′σ′]q] = v. Since `′σ′ =E↓ xσ|q′ , there exists
a syntactic rewrite trace trL from E↓ such that xσ|q′

trL==⇒ `′σ′. Hence, we can define trM = trL(ε, σ
′ : `′ → r′) to obtain

xσ|q′
trM==⇒ r′σ′ = v|p′ . From Lemma 15, we deduce that v|p′

tr−1
M⇐=== xσ|q′ .

Let θ be the substitution such that yθ = yσ for all y ∈ vars(r)\{x} and xθ = xσ[r′σ′]q′ . If p1, . . . , pn are the positions of x

in r, thus obtain that C[rσ]
p·p1·q′·trM
=======⇒ . . .

p·pn·q′·trM
=======⇒ C[rθ]. Let us denote ωM = (p, θ : r → `) if rθ > `θ and ωM = (p, θ :

r ← `) otherwise. We thus have C[rθ] ωM⇐==⇒ C[`θ]. Similarly, if q1, . . . , qm are the positions of x in ` other than qx, we obtain

that C[`θ]
p·q1·q′·tr−1

M⇐======= . . .
p·qm·q′·tr−1

M⇐======== v. Denoting tr′0 = (p·p1·q′·trM) . . . (p·pn·q′·trM)ωM (p·q1·q′·tr−1M) . . . (p·qm·q′·tr−1M),

we obtain u
tr′0⇐=⇒ v. As M is greater than u

tr0⇐=⇒ v, we obtain by construction of tr′0 that M is greater than u
tr′0⇐=⇒ v.

Additionally, by construction, tr′0 is syntactic from E↓ ∪R ∪ {r → `}.
We now order the labels of tr′0 w.r.t. tr0. Let us denote ω = (p, σ : ` → r). As qx exists, if m > 0 then it implies

that q1, . . . , qm are all different from ε. Thus, for all i ∈ {1, . . . ,m}, for all ω1 ∈ p · qi · q′ · tr−1M , rf(ω1) ≺P(M) rf(ω).
By definition, we know that `′σ′ > r′σ′ and so xσ > xθ, meaning that rσ > rθ. Therefore, if rθ > `θ then we directly
obtain rf(ωM) = (p, `θ, rθ) ≺P(M) (p, rσ, `σ) = rf(ω). Else we have rf(ωM) = (p, rθ, `θ), which also implies implies
rf(ωM) ≺P(M) rf(ω) as rσ > rθ.

Finally, let us look ω1 ∈ p·pi ·q′ ·trM for some i ∈ {1, . . . , n}. If pi 6= ε or q′ 6= ε then not only we have rf(ω1) ≺P(M) rf(ω)
but we also have that it holds for all i ∈ {1, . . . , n} since pi 6= ε implies for all j ∈ {1, . . . , n}, pj 6= ε. Thus, we now focus
on n = 1, p1 = ε and q′ = ε: It implies that r = x and rσ =E↓ `

′σ′. Thus, rσ > r′σ′ and so rf((p, σ′ : `′ → r′)) =
(p, r′σ′, `′σ′) ≺P(M) rf(ω). We therefore conclude that for all ω1 ∈ tr′0, there exist ω0 ∈ tr0 such that rf(ω1) ≺P(M) rf(ω0).

We can represent graphically the transformation as follows:

32

when rθ > `θ

transformation−−−−−−−−−−→u

t

v

r
←
`

p
,
σ

` ′
→
r ′

E
↓ ,
p ′
,
σ ′

u = C[rσ]

C[rθ]

C[`θ]

v(p
·
p
1 ·
q ′
·
tr
M

)
. . . (p

·
p
n
·
q ′
·
tr
M

)

r →
`

p, θ

(p
· q
1
· q
′ ·

tr
−
1

M
)
.
.
.
(p
· q
m
· q
′ ·

tr
−
1

M
)

when `θ > rθ

transformation−−−−−−−−−−→u

t

v

r
←
`

p
,
σ

` ′
→
r ′

E
↓ ,
p ′
,
σ ′

u = C[rσ]

C[rθ]

C[`θ]

v(p
·
p
1 ·
q ′
·
tr
M

)
.
.
.
(p
·
p
n
·
q ′
·
tr
M

) r ←
`

p,
θ

(p
· q

1
· q
′ ·

tr
−
1

M

)
. .
. (
p
· q
m
· q
′ ·

tr
−
1

M

)

We already proved that, denoting R′ = (R∪R↓ ∪{r → `}), we have that tr′0 is a syntactic rewrite trace from R′ ∪E↓. Since
tr0 is from R, it is naturally also from R′ ∪E↓. Note that by Definition 12, we know that R′ ∗R↓,E↓ R and R↓ ⊆ R′. Thus,

we can apply Corollary 2 to deduce that there exists a syntactic rewrite trace tr1 from R∪ E↓ such that u tr1⇐=⇒ v which M
rewrites into, and rf(tr1) ≺P(M) rf(tr0). This conclude the proof.

Lemma 30. Assume that E↓ has finite equivalence classes. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t.

R↓. Let u ` → r−−−−→
p,σ

t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground rewrite steps. Let tr0 = (p, σ : `→ r)(E↓, p
′, σ′ : `′ → r′) with (`→ r) ∈ E↓

and (`′ → r′) ∈ R. Let M be a set of terms that is greater than u tr0⇐=⇒ v.
If p′ = p · q, and q 6∈ Pos\X (r), and `′σ′ > r′σ′ then there exists a ground syntactic rewrite trace tr1 from E↓ ∪ R such

that

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 rf(tr1) ≺P(M) rf(tr0)

Proof. By definition, we have there exist a term context C[], two positions qx, q′ and a variable x such that u = C[`σ],
C[]|p = , t = C[rσ], q = qx · q′, `|qx = x ∈ X , xσ|q′ =E↓ `

′σ′ and C[rσ[r′σ′]q] = v. Since `′σ′ =E↓ xσ|q′ , there exists
a syntactic rewrite trace trL from E↓ such that xσ|q′

trL==⇒ `′σ′. Hence, we can define trM = trL(ε, σ
′ : `′ → r′) to obtain

xσ|q′
trM==⇒ r′σ′ = v|p′ . From Lemma 15, we deduce that v|p′

tr−1
M⇐=== xσ|q′ .

Let θ be the substitution such that yθ = yσ for all y ∈ vars(r) \ {x} and xθ = xσ[r′σ′]q′ . If p1, . . . , pn are the positions

of x in `, thus obtain that C[`σ]
p·p1·q′·trM
=======⇒ . . .

p·pn·q′·trM
=======⇒ C[`θ]. As (` → r) ∈ E↓, we deduce that rθ =E↓ `θ. Denoting

ωM = (p, θ : `→ r), we thus have C[`θ] ωM==⇒ C[rθ].

Similarly, if q1, . . . , qm are the positions of x in r other than qx, we obtain that C[rθ]
p·q1·q′·tr−1

M⇐======= . . .
p·qm·q′·tr−1

M⇐======== v.

Denoting tr′1 = (p · p1 · q′ · trM) . . . (p · pn · q′ · trM)ωM (p · q1 · q′ · tr−1M) . . . (p · qm · q′ · tr−1M), we obtain u tr1⇐=⇒ v. As M is

33

greater than u tr0⇐=⇒ v, we obtain by construction of tr1 that M is greater than u tr1⇐=⇒ v. Additionally, by construction, tr1 is
syntactic from E↓ ∪R.

We now order the labels of tr1 w.r.t. tr0. Let us denote ω = (p, σ : `→ r). Since (`→ r) ∈ E↓ and E↓ has finite equivalence
classes, we know that ` and r are not variables. Hence p1, . . . , pn, q1, . . . , qm are not ε. Therefore, for all i ∈ {1, . . . ,m}, for
all ω1 ∈ p · qi · q′ · tr−1M , rf(ω1) ≺P(M) rf(ω), and for all i ∈ {1, . . . , n}, for all ω1 ∈ p · pi · q′ · trM , rf(ω1) ≺P(M) rf(ω).
Recall that `′σ′ > r′σ′, meaning that xσ > xθ and so `σ =E↓ rσ > rθ =E↓ `θ. We conclude that rf(ωM) ≺P(M) rf(ω) and
so, combining all previous statements, we obtain rf(tr1) ≺P(M) rf(tr0).

We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→

u t

v

` → r

p, σ ` ′
→
r ′

E
↓ ,
p ′
,
σ ′

u = C[`σ]

C[`θ] C[rθ]

v

(p
·
p
1
·
q ′
·
tr
M
)
.
.
.
(p
·
p
n
·
q ′
·
tr
M
)

` → r

p, θ

(p
· q 1
· q
′ · t

r
−1
M

) .
. .

(p
· qm
· q
′ · t

r
−1
M

)

Lemma 31. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t. R↓. Let u ` → r−−−−→
p,σ

t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground

rewrite steps. Let tr0 = (p, σ : ` → r)(E↓, p
′, σ′ : `′ → r′) with (` → r), (`′ → r′) ∈ R. Let M be a set of terms that is

greater than u tr0⇐=⇒ v.
If p′ = p · q, and q 6∈ Pos\X (r), and `′σ′ > r′σ′, and `σ > rσ then there exists a ground syntactic rewrite trace tr1 from

E↓ ∪R such that

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 rf(tr1) ≺P(M) rf(tr0)

Proof. By definition, we have there exist a term context C[], two positions qx, q′ and a variable x such that u = C[`σ],
C[]|p = , t = C[rσ], q = qx · q′, `|qx = x ∈ X , xσ|q′ =E↓ `

′σ′ and C[rσ[r′σ′]q] = v. Since `′σ′ =E↓ xσ|q′ , there exists
a syntactic rewrite trace trL from E↓ such that xσ|q′

trL==⇒ `′σ′. Hence, we can define trM = trL(ε, σ
′ : `′ → r′) to obtain

xσ|q′
trM==⇒ r′σ′ = v|p′ . From Lemma 15, we deduce that v|p′

tr−1
M⇐=== xσ|q′ .

Let θ be the substitution such that yθ = yσ for all y ∈ vars(r) \ {x} and xθ = xσ[r′σ′]q′ . If p1, . . . , pn are the positions

of x in `, thus obtain that C[`σ]
p·p1·q′·trM
=======⇒ . . .

p·pn·q′·trM
=======⇒ C[`θ].

Let us denote ωM = (p, θ : ` ← r) if rθ > `θ and ωM = (p, θ : ` → r) otherwise. We thus have C[`θ] ωM⇐==⇒ C[rθ].

Similarly, if q1, . . . , qm are the positions of x in r other than qx, we obtain that C[rθ]
p·q1·q′·tr−1

M⇐======= . . .
p·qm·q′·tr−1

M⇐======== v. Denoting

tr′0 = (p · p1 · q′ · trM) . . . (p · pn · q′ · trM)ωM (p · q1 · q′ · tr−1M) . . . (p · qm · q′ · tr−1M), we obtain u
tr′0⇐=⇒ v. As M is greater than

u
tr0⇐=⇒ v, we obtain by construction of tr′0 that M is greater than u

tr′0⇐=⇒ v. Additionally, by construction, tr′0 is syntactic
from E↓ ∪R ∪ {r → `}.

We now order the labels of tr′0 w.r.t. tr0. Let us denote ω = (p, σ : ` → r). As qx exists, if m > 0 then it implies
that q1, . . . , qm are all different from ε. Thus, for all i ∈ {1, . . . ,m}, for all ω1 ∈ p · qi · q′ · tr−1M , rf(ω1) ≺P(M) rf(ω).
By definition, we know that `′σ′ > r′σ′ and so xσ > xθ, meaning that rσ > rθ. Therefore, if rθ > `θ then we directly
obtain rf(ωM) = (p, `θ, rθ) ≺P(M) (p, rσ, `σ) = rf(ω). Else we have rf(ωM) = (p, rθ, `θ), which also implies implies
rf(ωM) ≺P(M) rf(ω) as rσ > rθ.

Finally, let us look ω1 ∈ p·pi ·q′ ·trM for some i ∈ {1, . . . , n}. If pi 6= ε or q′ 6= ε then not only we have rf(ω1) ≺P(M) rf(ω)
but we also have that it holds for all i ∈ {1, . . . , n} since pi 6= ε implies for all j ∈ {1, . . . , n}, pj 6= ε. Thus, we now focus
on n = 1, p1 = ε and q′ = ε: It implies that ` = x and `σ =E↓ `

′σ′. However, ` is a subterm of r, meaning that `σ is a

34

subterm of rσ and so `σ 6> rσ (as > is a reduction ordering) which is a contradiction with `σ > rσ. Hence, we cannot have
p1 = ε = q′. We therefore conclude that for all ω1 ∈ tr′0, there exist ω0 ∈ tr0 such that rf(ω1) ≺P(M) rf(ω0).

We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→

when `θ > rθu

t

v

`
→
r

p
,
σ

′̀
→
r ′

E
↓
,
p ′
,
σ ′

u = C[`σ]

C[`θ]

C[rθ]

v

(p · p
1 · q ′

· trM
) . . . (p · p

n · q ′
· trM

)

`
→
r

p
,
θ

(p
· q1
· q
′ · tr
−1

M
) . .

. (p
· qm

· q
′ · tr
−1

M
)

transformation−−−−−−−−−−→

when rθ > `θu

t

v

`
→
r

p
,
σ

′̀
→
r ′

E
↓
,
p ′
,
σ ′

u = C[`σ]

C[`θ]

C[rθ]

v

(p
·
p
1 ·
q ′
·
tr
M

)
. . . (p
·
p
n
·
q ′
·
tr
M

)

` ←
r

p, θ

(p · q1 ·
q
′ · tr
−1
M

) . . . (
p · qm ·

q
′ · tr
−1
M

)

We already proved that, denoting R′ = (R∪R↓ ∪{r → `}), we have that tr′0 is a syntactic rewrite trace from R′ ∪E↓. Since
tr0 is from R, it is naturally also from R′ ∪E↓. Note that by Definition 12, we know that R′ ∗R↓,E↓ R and R↓ ⊆ R′. Thus,

we can apply Corollary 2 to deduce that there exists a syntactic rewrite trace tr1 from R ∪ E↓ such that u tr1⇐=⇒ v which is
smaller than M, and rf(tr1) ≺P(M) rf(tr0). This conclude the proof.

4) Combining the different transformations: We can regroup the different result from the two previous sections in the
following lemma:

Lemma 32. Assume that E↓ has finite equivalence classes. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t.

R↓. Assume that R= is not trivial. Let u ω⇐⇒ t
`′ → r′−−−−−→
E↓,p′,σ′

v be some ground rewrite steps such that ω = (p, σ : ` ∼ r) and

∼ ∈ {→,←}. Let tr0 = ω(E↓, p
′, σ′ : `′ → r′) with (`→ r) ∈ E↓ ∪ R and (`′ → r′) ∈ R. Let M be a set of terms that is

greater than u tr0⇐=⇒ v.
If p ≤ p′ and `′σ′ > r′σ′ then there exists a ground syntactic rewrite trace tr1 from E↓ ∪R such that

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 rf(tr1) ≺P(M) rf(tr0)

Proof. As p ≤ p′, there exists q such that p′ = p · q. We do a case analysis on the shape of ω and on the value of q.
• Case q ∈ Pos\X (r):

– ∼ = → and (` → r) ∈ R: In that case, `σ > rσ. Note that R= is not trivial. If ` ∈ X and ` 6∈ vars(r) then we
would have that for all terms t, t =R= r which is a contradiction of R= not being trivial. We conclude by applying
Lemma 28.

– ∼ =→ and (`→ r) ∈ E↓: We conclude by applying Lemma 27.
– ∼ =← and (r → `) ∈ R: In that case, `σ > rσ. We conclude by applying Lemma 26.

• Case q 6∈ Pos\X (r):
– ∼ =→ and (`→ r) ∈ R: In that case, `σ > rσ. We conclude by applying Lemma 31.
– ∼ =→ and (`→ r) ∈ E↓: We conclude by applying Lemma 30.

35

– ∼ =← and (r → `) ∈ R: In that case, `σ > rσ. We conclude by applying Lemma 29.

Lemma 33. Let ω = (E, p, σ : ` ∼ r) with ∼ ∈ {→,←}. Let u ω⇐⇒ t
`′ → r′−−−−−→
E′,p′,σ′

v be some rewrite steps. Let tr0 = ω(E, p′, σ′ :

`′ → r′). Let M a set of terms that is greater than u tr0⇐=⇒ v.
If p || p′ then by defining the ground rewrite trace tr1 = (E, p′, σ′ : `′ → r′)ω we have

P1 u
tr1⇐=⇒ v, and

P2 M is greater than u tr1⇐=⇒ v, and
P3 rf(tr1) wP(M) rf(tr0)
P4 if ∼ =← and either rσ > `σ or `′σ′ > r′σ′ then rf2(u, tr0, v) < rf2(u, tr1, v)

Proof. Let us define E1 = E, E2 = ∅ when ∼ =→ and E1 = ∅, E2 = E otherwise. Since p || p′, there exist a term context
C[1, 2] and four terms u′, v′, t1, t2 such that C[1, 2]|p = 1 and C[1, 2]|p′ = 2, t = C[t1, t2], rσ =E2

t1, `′σ′ =E′ t2,

u′ =E1
`σ, v′ = r′σ′, u = C[u′, t2] and v = C[t1, v

′]. Defining t′ = C[u′, v′], we deduce that u `′ → r′−−−−−→
E′,p′,σ′

t′ and t′
ω⇐⇒ v,

which gives us Item P1. Notice that as M rewrites into u
tr0⇐=⇒ v, we directly obtain by construction that M rewrites into

u
tr1⇐=⇒ v, i.e. Item P2. Notice that rf(tr1) = rf(tr0), hence rf(tr0) wP(M) rf(tr1), i.e. Item P3. Finally, when ∼ = ←, since

> is a E↓-compatible reduction ordering, we know from u
` ← r←−−−−
p,σ,E

t that t ≥ u, the inequality being strict when rσ > `σ.

Moreover, as u `′ → r′−−−−−→
E′,p′,σ′

t′, we deduce that u ≥ t′, the inequality being strict when `′σ′ > r′σ′. Therefore, if rσ > `σ or

`′σ′ > r′σ′ then we have t > t′ which concludes the proof of rf2(u, tr0, v) < rf2(u, tr1, v) and thus Item P4.
We can represent graphically the transformation as follows:

transformation−−−−−−−−−−→u

t

v

`
←
r

p
,
σ
,
E

` ′
→
r ′

E ′
,
p ′
,
σ ′

u

t′

v
` ′
→
r ′

E ′
, p ′
, σ ′

`
←
r

p
, σ
, E

Lemma 33 allows us to consider an equivalence relation between rewrite traces, that allows to swap parallel positions.

Definition 13. Let ≈|| the smallest equivalence relation on rewrite traces such that:
• (p, σ : `→ r) ≈|| (p, σ : `← r) when (`→ r) ∈ E↓
• (E1, p1, σ1 : `1 ∼1 r1)(E2, p2, σ2 : `2 ∼2 r2) ≈|| (E2, p2, σ2 : `2 ∼2 r2)(E1, p1, σ1 : `1 ∼1 r1) when p1 || p2
• tr ≈|| tr′ implies tr1 · tr · tr2 ≈|| tr1 · tr′ · tr2

Lemma 34. Let u tr⇐⇒ v. Let M a set of terms that is greater than u
tr⇐⇒ v. For all rewrite traces tr′, if tr′ ≈|| tr then

u
tr′⇐=⇒ v which is smaller than M, and rf(tr) wP(M) rf(tr

′).

Proof. A direct application Lemma 33 on the definition of the equivalence relation ≈||.

5) Shape of minimal rewrite traces:

Lemma 35. Assume that E↓ has finite equivalence classes. Let R,R↓ be sets of rewrite rules such that R is saturated w.r.t
R↓. Assume that R= is not trivial. Let u, v two ground terms and tr is a ground syntactic rewrite trace from E↓ ∪ R such
that u tr⇐⇒ v. Let M be a finite set of terms that is greater than u tr⇐⇒ v.

If u tr⇐⇒ v is minimal by ≺P(M) then there exist a term t and three ground syntactic rewrite traces tr′, trL, trR from E↓∪R
such that:
• tr′ ≈|| tr and tr′ = trLtrR and u trL==⇒ t

trR⇐== v

• for all tr′L ≈|| trL, if tr′L = tr1(p, σ : `→ r)trE(p
′, σ′ : `′ → r′)tr2 and (`′ → r′) ∈ R then p 6≤ p′

• for all tr′R ≈|| trR, if tr′R = tr1(p, σ : r ← `)trE(p
′, σ′ : r′ ← `′)tr2 and (`→ r) ∈ R then p′ 6≤ p

36

Proof. To prove the first point, we take the syntactic rewrite trace tr′ such that tr ≈|| tr′ and tr′ is minimal by rf2(·), i.e. for
all tr′′ ≈|| tr′, rf2(u, tr′′, v) 6< rf2(u, tr

′, v). Let us look at the shape of tr′.
If tr′ = tr1(p, σ : r ← `)(p′, σ′ : `′ → r′)tr2 then by Lemma 33, we know that `σ ≤ rσ and `′σ′ ≤ r′σ′, i.e. `σ =E↓ rσ

and `′σ′ =E↓ r
′σ′ and so both ` → r and `′ → r′ are in E↓. Let us take the largest prefix tr′′ of tr′ such that there exist

two syntactic rewrite traces trL, trR (possibly empty) and a two terms t, s such that u trL==⇒ t
trR⇐== s and tr′′ ≈|| trLtrR

and rf2(u, tr
′′, s) = rf2(u, trLtrR, s). If tr′′ = tr′ then the result holds. Otherwise, tr′ = tr′′ωtrW for some rewrite labels

ω and a rewrite trace (possibly empty) trW . By maximality of tr′′, we deduce that trR 6= ε and ω = (p, σ : ` → r).
As rf2(u, tr

′′, s) = rf2(u, trLtrR, s) and tr′ is minimal by rf2(·), we already showed that ` → r must be in E↓. This is a
contradiction with the maximality of tr′′ as, in such a case, (p, σ : `→ r) ≈|| (p, σ : `← r). This concludes the proof of the
first item of the lemma.

We now show the second and third properties of the lemma. In particular, we show the following sub-property: if tr0 =

tr1(p, σ : ` → r)trE(p
′, σ′ : `′ → r′)tr2 and (`′ → r′) ∈ R and p ≤ p′ and t0

tr0==⇒ t5 smaller than M then there exists a
syntactic rewrite trace trT such that:

• t0
trT⇐=⇒ t5 which is smaller than M,

• rf(trT) ≺P(M) rf(tr0).
Let trE be the smallest rewrite trace (in term of |trE |) such that tr′0 ≈|| tr0 and tr′0 = tr1(p, σ : `→ r)trE(p

′, σ′ : `′ → r′)tr2
and (`′ → r′) ∈ R and p ≤ p′. There exist t1, . . . , t4 such that:

t0
tr1==⇒ t1

` → r−−−−→
p,σ

t2
trE==⇒ t3

`′ → r′−−−−−→
p′,σ′

t4
tr2==⇒ t5

If (p′′, σ′′ : `′′ → r′′) ∈ trE and (`′′ → r′′) ∈ R then by minimality of trE , we know that p 6≤ p′′ and p′′ 6≤ p′.
Let us show that for all ω′′ = (p′′, σ′′ : `′′ → r′′) ∈ trE , p′′ 6≈|| p′. By contradiction, w.l.o.g., assume that trE = trAω

′′trB ,
and p′′ ≈|| p′ and for all ω2 ∈ trB , pos(ω2) 6≈|| p′. We deduce that for all ω2 ∈ trB , pos(ω2) > p′. Moreover, as p′′ ≈|| p′,
we deduce that pos(ω2) ≈|| p′′. This would imply that tr0 ≈|| tr1(p, σ : ` → r)trAtrB(p

′, σ′ : `′ → r′)ω′′tr2, which is a
contradiction with the minimality of trE .

As we shown that ω′′ = (p′′, σ′′ : `′′ → r′′) ∈ trE , p′′ 6≈|| p′ and p′′ 6≤ p′, we deduce that p′ < p′′ and so p < p′′. Once

again by minimality of trE , we deduce that (`′′ → r′′) 6∈ R, i.e. (`′′ → r′′) ∈ E↓. It implies that t1
` → r−−−−→
p,σ

t2
`′ → r′−−−−−→
E↓,p′,σ′

t4.

Hence by Lemma 32, we deduce that there exist a syntactic trace trS from E↓ ∪R such that:

• t1
trS⇐=⇒ t4 which is smaller than M,

• rf(trS) ≺P(M) rf((p, σ : `→ r)(E↓, p
′, σ′ : `′ → r′)).

As rf((p, σ : ` → r)(E↓, p
′, σ′ : `′ → r′)) = rf((p, σ : ` → r)(p′, σ′ : `′ → r′)) 4P(M) rf((p, σ : ` → r)trE(p

′, σ′ : `′ →
r′)), we obtain rf(tr1trStr2) ≺P(M) rf(tr

′
0). We conclude by taking trT = tr1trStr2.

The second property of the lemma directly holds by applying the sub-property on tr0 = trL leading to rf(tr1trStr2) ≺P(M)

rf(tr′0) wP(M) rf(tr0) and so rf(tr1trStr2trR) ≺P(M) rf(tr) yielding a contradiction with the minimality of tr by ≺P(M). The
third property of the lemma holds by applying the sub-property on tr0 = tr−1R which will also lead to a contradiction with the
minimality of tr by ≺P(M).

Recall we placed ourselves within the hypotheses of Theorem 5. Hence generate_rw_th(E′,R↓, E↓) terminates and
returns R such that for all (`→ r) ∈ R, vars(r) ⊆ vars(`). We also denote E = E′∪R↓=∪E↓ and T = (>,R,R↓, E↓, E↓).

Lemma 36. For all ground terms u, v, if u =E v then there exist a ground term w and two rewrite traces trL and trR such
that:

• rules in trL and trR are from R∪ E↓, and
• u

trL==⇒ w
trR⇐== v, and

• trL, trR are both ordered by decreasing position.

Proof. As u, v are ground and u =E v, we deduce that u = t0 →R t1 →R t2 →R . . . →R tn = v where R is the rewrite
system composed of either rules from R↓ or rules ` → r where either (` = r) ∈ E↓ ∪ E′ or (r = `) ∈ E↓ ∪ E′. Note that
some of the tis could potentially contain variables, i.e. not be ground. As rewriting is stable by application of substitutions,
we can take σ with dom(σ) = vars(t1, . . . , tn) and img(σ) ⊆ N . Note that the image of σ does not really matter other than
being ground. As u, v are ground, we thus obtain that u = t0 = t0σ →R t1σ →R t2σ →R . . . →R tnσ = tn = v. Since
> is E↓-total, we can thus order each pair (tiσ, ti+1σ) with >, i.e. either tiσ > ti+1σ or tiσ < ti+1σ or tiσ =E↓ ti+1σ.
Moreover, as > is E↓-compatible, we deduce the existence of n + 1 ground syntactic rewrite labels ω1, . . . , ωn+1 such that

37

u = t0
ω1⇐=⇒ t1

ω2⇐=⇒ . . .
ωn⇐=⇒ tn = v. Denoting tr = ω1 . . . ωn and M = {{t0, . . . , tn}}, we deduce that tr is a ground

syntactic trace from R and u tr⇐⇒ v is smaller than M.

Let us denote by R0,R1, . . . the successive values of R in Algorithm 1. Similarly, we denote by R′0,R′1, . . . the successive
values of R′ in Algorithm 1. In particular, from Line 2, we have R0 = R↓ ∪ {` → r, r → ` | (` = r) ∈ E′}. By denoting
R′0 = R0, we obtain that for all i ≥ 1, Ri = normalise(Ri−1 ∪R′i−1,R↓, E↓), that is Ri−1 ∪R′i−1 ∗R↓,E↓ Ri. Hence
the rewrite trace tr is from R0 ∪ E↓. By Lemma 25, we know that for all i ≥ 0, Ri+1 ∪

⋃i
j=0R′j ∗R↓,E↓ Ri+1.

We prove by induction that for all i ≥ 1, there exists tri a ground syntactic rewrite trace from Ri ∪E↓ such that u tri⇐=⇒ v

which is smaller than M. In the base case i = 1, on Line 3 of Algorithm 1, we have R1 = normalise(R0,R↓, E↓),
i.e. R0 ∗R↓,E↓ R1. By Corollary 2, we deduce that there exists tr1 a ground syntactic rewrite trace from R1 ∪ E↓ such

that u tr1⇐=⇒ v which is smaller than M. In the inductive step i > 1, by inductive hypothesis, we know that there exists

tri−1 a ground syntactic rewrite trace from Ri−1 ∪ E↓ such that u
tri−1⇐==⇒ v which is smaller than M. By definition, Ri =

normalise(Ri−1 ∪ R′i−1,R↓, E↓), i.e. Ri−1 ∪ R′i−1 ∗R↓,E↓ Ri. By Lemma 24, Ri−1 ∪ R′i−1 ∪
⋃i−1
j=0R′j ∗R↓,E↓

Ri ∪
⋃i−1
j=0R′j ∗R↓,E↓ Ri. Note that tri−1 being a ground syntactic rewrite trace from Ri−1 implies that tri−1 is also from

Ri−1∪
⋃i−1
j=0R′j ∪E↓. As R′0 contains R↓, we can apply Corollary 2 to deduce that there exists tri a ground syntactic rewrite

trace from Ri ∪ E↓ such that u tri⇐=⇒ v which is smaller than M.

We now complete the proof our the lemma. As the algorithm terminates, there exists N ∈ N such thatRN∪R′N ∗R↓,E↓ RN ,
i.e. it reached a fix-point. From Lines 7 to 10 of Algorithm 1, we deduce that RN is saturated w.r.t. R↓. Moreover, we already
proved that for all (`→ r) ∈ RN , ` =E r and by hypothesis, E is not trivial. It implies that R=

N is also not trivial. Recall that
M is finite and ground. Since trN is a ground syntactic rewrite trace from RN ∪E↓ such that u tri⇐=⇒ v smaller than M, we

can take trmin to be a ground syntactic rewrite trace from RN ∪ E↓ such that u tri⇐=⇒ v which is smaller than M and trmin
is minimal by ≺P(M).

By Lemma 35, we deduce that there exist a term w and three ground syntactic well-ordered rewrite traces tr′min, trL, trR
from E↓ ∪RN such that:

1) tr′min ≈|| trmin and tr′min = trLtrR and u trL==⇒ w
trR⇐== v

2) for all tr′L ≈|| trL, if tr′L = trA(p, α : `→ r)trE(p
′, α′ : `′ → r′)trB and (`′ → r′) ∈ R then p 6≤ p′

3) for all tr′R ≈|| trR, if tr′R = trA(p, α : r ← `)trE(p
′, α′ : r′ ← `′)trB and (`→ r) ∈ R then p′ 6≤ p

This allows us to conclude.

Theorem 5. Let E↓, E′ be two equational theories such that E↓ has finite equivalence classes. Let R↓ be a set of rewrite
rules. Let > be a E↓-strong reduction ordering compatible with R↓. Let E = E′ ∪R↓= ∪ E↓.

If E is not trivial and generate_rw_th(E′,R↓, E↓) terminates and returns R such that for all (`→ r) ∈ R, vars(r) ⊆
vars(l), then (>,R,R↓, E↓, E↓) is a rewrite theory that mimics E.

Proof. We first show that T = (>,R,R↓, E↓, E↓) is a rewrite theory. This is a simple matter as Items S1 and S2 are given as
assumptions. Finally, as we assumed that for all (`→ r) ∈ R, we have vars(r) ⊆ vars(`), and since Line 14 of Algorithm 1
ensures that R contains f(x1, . . . , xn)→ f(x1, . . . , xn) for all f ∈ F with arity n, Item S3 is guaranteed.

Let us now prove that T mimics E. Amongst the three properties required to show that T mimics E, only the last one, i.e.
Item M3, is difficult. Item M1 is directly obtained, since E↓ = EA and E↓ ∪R↓= ∪E′ = E. The proof of Item M2 is done
a simple induction on the number of loop the algorithm went through in Line 4. Indeed, all rules ` → r in the initial value
R on Line 2 of Algorithm 1 satisfy ` =E r. By applying Lemma 3 and noticing that the normalisation rules NORML and
NORMR preserve this invariant, since R↓= ∪ E↓ ⊆ E, we obtain that R satisfies Item M2.

We now focus on the proof of Item M3. Consider f(t1, . . . , tn) =E t and M = {t1, . . . , tn, t}. If nfT,E(M) holds then by
Definition 3 we know that uθ =E↓ minE,>(uθ) for all u ∈ M where θ is an injective substitution closing f(t1, . . . , tn) and
t. Hence, by Lemma 36, we have

f(t1θ, . . . , tnθ)
trL==⇒ w

trR⇐== tθ

However, w trR⇐== tθ implies that w < tθ or w =E↓ tθ. Since tθ =E↓ minE,>(tθ), we deduce that w =E↓ tθ.
As trL is ordered by decreasing position, we know that there can only be one rule applied at root position, i.e. ε, that can

strictly decrease the terms. Moreover, as tiθ =E↓ minE,>(tiθ) for all i, we also know that any rule application in trL before

38

the one at root position cannot strictly decrease the terms (otherwise minE,>(tiθ) would not be minimal). In other words,
either (a) f(t1θ, . . . , tnθ) =E↓ w; or (b) we have:

f(t1θ, . . . , tnθ)
tr1==⇒ s

` → r−−−−→
ε,α

w′
tr2==⇒ w

where all rules in tr1 and tr2 are in E↓, and (`→ r) ∈ R with `α > rα. Additionally, we also know that the positions in tr1 are
different from ε, as trL is ordered by decreasing position. Case (a) implies f(t1θ, . . . , tnθ) =E↓ tθ and so f(t1, . . . , tn) =E↓ t.
We conclude by taking the rule f(x1, . . . , xn) → f(x1, . . . , xn) and σ = {x1 7→ t1, . . . , xn 7→ tn}. Case (b) implies that
tiθ =E↓ `|iα and so ti =E↓ `|iαθ

−1 for all i, and rαθ−1 =E↓ t. We thus conclude with the rule `→ r and σ = αθ−1.

E. Proof of Section VI

Lemma 4. If (>,R,R↓, E↓, EA) is a rewrite theory mimicking an equational theory E and R′ = cleanup(R, EA) then
(>,R′,R↓, E↓, EA) is a rewrite theory mimicking E.

Proof. LetR0,R1, . . . the successive values ofR in Algorithm 2. We prove by induction on n that (>,Rn,R↓, E↓, EA) mimics
E. The base case n = 0 is given by hypothesis. In the inductive step, we know that (>,Rn−1,R↓, E↓, EA) mimics E. The
only non-trivial property to prove in order to show that (>,Rn,R↓, E↓, EA) mimics E is Item M3. Take f(t1, . . . , tn) =E t
and nfT,E({t1, . . . , tn, t}). We know that there exist σ and f(s1, . . . , sn) → s in Rn−1 such that t =EA sσ and for all
i ∈ {1, . . . , n}, ti =EA siσ. If f(s1, . . . , sn) → s is in Rn then the result trivially holds. Else, from Line 2, there exist a
substitution α and a rule f(`1, . . . , `n)→ ` in Rn such that `α =EA s and for all i ∈ {1, . . . , n}, `iα =EA si. Therefore, it
implies `ασ =EA t and for all i ∈ {1, . . . , n}, `iασ =EA ti. This allows us to conclude.

F. Order E-compatible

Lemma 6. Let E be an equational theory. Let ≡ be an equivalence relation on terms closed by application of contexts,
substitutions and renaming, and such that u =E t implies u ≡ t. Let >1 be an E-strong reduction order. Let R be a set of
rewrite rules and > be a reduction order stable by renaming such that:
• if s ≡ u > v ≡ t then s > t (≡-compatible);
• for all ground terms u, v, either u > v or v > u or u ≡ v (≡-total);
• for all (`→ r) ∈ R, ` > r;
• for all a, b ∈ N , a > b implies a >1 b.

Then there exists an E-strong reduction order >2 compatible with R.

Proof. We define >′2 as the following relation: u >′2 v if and only if
• either u > v
• or u ≡ v and there exist s, t ground terms and a context C[] such that u =E C[s], v =E C[t] and s >1 t

Finally, we define the >2 as being the transitive closure of >′2.
Let us prove that >2 is a E-strong reduction order compatible with R.

a) Closed by application of contexts and substitutions:: Assume u >′2 v and let D[] be a context and σ be a substitution.
If u > v then as > is a reduction order, we have that D[uσ] > D[vσ] and so D[uσ] >′2 D[vσ]. Otherwise, u ≡ v and there
exists s, t ground terms and a context C[] such that u =E C[s], v =E C[t] and s >1 t. Since s and t are ground, there exists
a context D′[] = D[Cσ[]] such that D[uσ] =E D′[s] and D[vσ] =E D′[s]. Since ≡ is close by application of contexts and
substitutions, we deduce that D[uσ] ≡ D[vσ]. This allows us to deduce that D[uσ] >′2 D[vσ] meaning that >′2 is closed by
application of contexts and substitutions. Since >2 is the transitive closure of >′2, we conclude that >2 is closed by application
of contexts and substitutions.

b) Transitive:: By definition of >2.
c) Asymmetric and irreflexive:: if a >2 b and b >2 a then there exists a >′2 u1 >

′
2 . . . >

′
2 un >

′
2 b >

′
2 v1 >

′
2 . . . >

′
2

vm >′2 a. Since > is ≡-compatible, we deduce from definition of >′2 that a >′2 u1 >
′
2 . . . >

′
2 un >

′
2 b implies that either

a > b or a ≡ b (and a ≡ u1 ≡ . . . un ≡ b). Similarly, b >′2 v1 >
′
2 . . . >

′
2 vm >′2 a implies that either b > a or a ≡ b.

If a > b then we cannot have b > a since > is a strict order and we also cannot have a ≡ b since ≡-compatibility would
imply that a > a which is prevented by > being a strict order. With the same reasoning, we can show that b > a. It entails
that a ≡ b. Note that by definition of >′2 and since >1 is closed by application of contexts and E-compatible, we deduce that
a >1 u1 >1 . . . un >1 b >1 v1 >1 . . . >1 vm >1 a. This is in contradiction with >1 being a strict order.

d) Well founded:: We only need to show that the relation >′2 is well founded since >2 is the transitive closure of >′2.
Consider an infinite sequence u1 >′2 u2 >

′
2 u3 >

′
2 As > is well founded and by ≡-compatibility we deduce that we

cannot have an infinite sub-sequence ui > ui+1 > ui+2 > . . . and we cannot have infinite alternation of ≡ and >. This allows
us to deduce that there exists an infinite sub-sequence uj >1 uj+1 >1 uj+2 >1 . . . (recall that >1 is closed by application of
contexts). This contradicts the fact that >1 is well-founded.

39

e) E-compatible:: Take s =E u >′2 v =E t. By definition, s =E u implies s ≡ u, and v =E t implies v ≡ t. If u > v
then we deduce that s > t (by ≡-compatibility) and so s >′2 t. Otherwise u ≡ v and there exist a, b ground terms and a
context C[] such that u =E C[a], v =E C[b] and a >1 b. Hence s =E C[a] and t =E C[b] and a >1 b. Therefore s >′2 t. To
complete the proof, we can notice that if s =E u >2 v =E t then s =E u >′2 a1 >

′
2 . . . >

′
2 an >

′
2 v =E t. As s =E u >′2 a1

implies s >′2 a1, and an >′2 v =E t implies an >′2 t, we conclude that s >′2 a1 >
′
2 . . . >

′
2 an >

′
2 t and so s >2 t.

f) E-total:: Let a, b be ground terms. By ≡-total property, we know that either a > b or b > a or a ≡ b. In the two first
case, we obtain a >2 b and b >2 a respectively. In the last case, as a and b are ground, we know that either a =E b or a >1 b
or b >1 a. If a >1 b (resp. b >1 a) then by taking the empty context C[] = , we obtain that a =E C[a] and b =E C[b]
which leads to a >′2 b (resp. b >′2 a) and so a >2 b (resp. b >2 a).

g) Compatible with R:: By hypothesis, for all (`→ r) ∈ R, we have ` > r and so ` >2 r.
h) Stable by renaming:: Recall that due to ≡-compatibility of > , we know that if u ∼1 . . . ∼i s > t ∼i+1 . . . ∼n v

with ∼i∈ {≡, >} for all i then u > v. Furthermore, by definition of >2, if u >2 v and u 6> v then u ≡ v and u >1 v. Hence,
we obtain that u >2 v implies that u > v or u >1 v.

Let us now look at the case where we order names: If a >2 b then a > b or a >1 b. By hypothesis, a > b implies a >1 b.
Therefore a >2 b implies a >1 b. Assume now that a >1 b. By ≡-totality, we know that either a ≡ b, a > b or b > a. The
latter case is in contradiction with the fact that it would imply b >1 a. Hence, either a > b or a ≡ b. In both cases, as a >1 b,
we deduce that a >2 b. This conclude the proof of a >2 b iff a >1 b. This property allows us to prove that a renaming ρ
preserves >2 iff ρ preserves >1.

Let us now show that if ρ preserves >2 then ρ preserves >. Take a, b ∈ dom(ρ). If a > b then a >2 b which implies
aρ >2 bρ. By definition, either aρ > bρ or aρ ≡ bρ. In the latter case, since ≡ is stable by application of renaming, we deduce
that a ≡ b. However, by ≡-compatibility, it contradicts our hypothesis a > b. Thus aρ > bρ. Let us assume that aρ > bρ. We
can in fact apply the same reasoning: aρ > bρ implies aρ >2 bρ and a >2 b. By definition, either a > b or a ≡ b. Once again
the latter case is in contradiction with aρ >2 bρ by ≡-compatibility and the stability of ≡ by application of renamings.

We can now complete the proof of stability by renaming: Consider a renaming ρ preserving >2 and two terms u and v such
that names(u, v) ⊆ dom(ρ). We already proved that ρ preserves both >1 and >. We first prove that u >′2 v if and only if
uρ >′2 vρ. Assume that u >′2 v. By definition we have:
• either u > v: In such a case, as > is stable by renaming, we deduce that uρ > vρ and so uρ >2 vρ.
• or u ≡ v and there exist ground terms s, t and a context C[] such that u =E C[s], v =E C[t] and s >1 t: In such a

case, as ≡ is stable by application of renamings, uρ ≡ vρ. Moreover, as ρ preserves >1 and >1 is stable by renaming, we
deduce that uρ =E Cρ[sρ], vρ =E Cρ[tρ] and sρ >1 tρ. Therefore uρ >2 vρ.

The other implication works in a similar fashion with a small difference when uρ >′2 vρ due to uρ =E C[s], vρ =E C[t]
and s >1 t: Recall that names(u, v) ⊆ dom(ρ). Hence u =E Cρ−1[sρ−1] and v =E Cρ−1[tρ−1]. Moreover, ρ preserves >1

implies ρ−1 preserves >1, meaning that sρ−1 >1 tρ
−1. This allows us to conclude that u >2 v.

Corollary 3. Consider RAG the rewrite system AC-convergent for AG, first proposed by Lankford [41], defined below.

RAG =

x ∗ 1 → x x−1

−1 → x
1−1 → 1 (x−1 ∗ y)−1 → x ∗ y−1

x ∗ x−1 → 1 x ∗ (x−1 ∗ y) → y
x−1 ∗ y−1 → (x ∗ y)−1 x−1 ∗ (y−1 ∗ z) → (x ∗ y)−1 ∗ z

(x ∗ y)−1 ∗ y → x−1 (x ∗ y)−1 ∗ (y ∗ z) → x−1 ∗ z

There exists a E-strong reduction order compatible with RAG .

Proof. For a term u, let us note #(u) the number of function symbols in u.
We define ≡ the smallest equivalence relation such that u ≡ v implies u =AC v or there exist a, b ground terms and a term

context C[] such that u = C[a] and C[b] = v and #(a) = #(b).
Let us now define >′ be the order defined as u >′ v if and only if either u ≡ ◦ →RAG ◦ ≡ v or else there exist a, b ground

terms and a term context C[] such that u ≡ C[a] and C[b] ≡ v and #(a) > #(b). Finally, the relation >AG is the transitive
closure of >′.

By definition of AC, we can easily notice that u ≡ v implies that #(u) = #(v). Additionally, by definition of RAG , we
also have that for ` → r ∈ RAG , for all substitutions σ, #(`σ) > #(rσ). Hence u →RAG/AC v implies #(u) > #(v).
Thus, we obtain that >′ is well founded and so does >AG . It can also easily be shown that >AG is closed by application of
substitutions and contexts. Hence >AG is a reduction order.

Take a, b two ground terms. Assume that a ≡ ◦ →RAG/AC ◦ ≡ b or b ≡ ◦ →RAG/AC ◦ ≡ a , we directly have that a >AG b
or b >AG a. Else, we naturally have either #(a) > #(b) or #(a) = #(b) or #(a) < #(b). In the first case, we have a >AG b.
In the second case, a ≡ b. In the third case, b >AG a. This prove ≡-totality of >AG .

40

Finally, assume s ≡ u >′ v ≡ t. If u >′ v because u ≡ ◦ →RAG/AC ◦ ≡ v then we naturally have s ≡ ◦ →RAG/AC ◦ ≡ t
and so s >′ t. Otherwise, u ≡ C[a] and C[b] ≡ v and #(a) > #(b) for some ground terms a, b and context C[]. Hence, we
also naturally have s ≡ C[a] and C[b] ≡ t which allows us to conclude that s >′ t. As >AG is the transitive closure of >′, it
concludes the proof of ≡-compatibility.

We conclude the existence of a E-strong reduction order compatible with RAG by applying Lemma 6 with the order >AG
and the order in [48] that was shown to be a AC-strong reduction order (Section VII).

41

	Introduction
	Preliminaries
	Terms
	Equational theories
	Rewriting
	Ordering terms
	Finite variant property

	Rewrite theory
	Complete set of E-variants
	Generating rewrite theories
	Overlapping rewrite rules
	The procedure
	Overview of the proof of Theorem 5
	T is a rewrite theory
	Towards T mimics E
	A mountainous landscape of equality modulo E
	Transforming peaks into valleys
	Ordering slopes by decreasing position

	Optimisations
	Dealing with right-hand side variables
	Checking the order of rules
	Subsumed rules modulo Ea

	Experimentation Results and Discussion
	Detecting convergent equational theories
	Existence of an AC-strong reduction order compatible with a rewrite system
	Limitations and future work

	References
	Appendix
	Proofs of Section II
	Proof of Section III
	Proofs of Section III
	Equality modulo E
	Properties on open evaluation
	Finite variant property and most general E-unifiers

	Proofs of Theorem 5
	Normalisation rules
	Overlapping transformations
	Non-overlapping transformations
	Combining the different transformations
	Shape of minimal rewrite traces

	Proof of Section VI
	Order E-compatible

