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We investigate generic inequalities of various contributions to the shear modulus µ in ensembles
of amorphous elastic bodies. We focus first on a simple elastic network model with connectivity ma-
trices (CMs) which are either annealed or quenched, at or out of equilibrium. The stress-fluctuation
formalism relation for µ is rewritten as µ = µ1 + µa with µ1 ≥ 0 characterizing the variance of the
quenched shear stresses and µa being a simple average over all states and CMs. For equilibrium CM-
distributions µa becomes equivalent to the shear modulus of annealed systems, i.e. µa ≥ 0, while
more generally µa may become strongly negative as shown by considering a temperature quench and
a scalar active two-temperature model. Consistent relations are also found for glass-forming colloids
where µ− µ1 = µa = 0 for equilibrium ensembles, i.e. µ is set by the quenched shear stresses, while
µa becomes again negative otherwise.

I. INTRODUCTION

General context and goal. Broken symmetries [1–
3] may become permanently frozen in time (“t? = ∞”)
but they may also be only transient being annealed af-
ter some finite characteristic relaxation time t?. Per-
manent or transiently broken symmetries do not only
play a role for crystalline solids [1, 4] but are also cru-
cial for complex matter systems without “broken con-
tinuous symmetries” but frozen local heterogeneities [5–
15]. As sketched in Fig. 1, we investigate in the present
study amorphous solids formed by ideal spring networks
with randomly frozen “connectivity matrices” (CMs) de-
scribing the interactions between the connected parti-
cles (“vertices”) [16] and, more briefly, standard colloidal
glasses created by a temperature quench from equili-
brated high-temperature configurations [5, 17, 18]. Due
to the quenched disorder one naturally needs to be more
precise concerning the averaging procedure of fluctua-
tions [19] being crucial for the determination of sec-
ond derivatives of the free energy [2]. Specifically, we
shall focus on the shear modulus µ of amorphous solids
computed by means of the stress-fluctuation formalism
[17, 19–30]. We thus analyze various “moments” of the
instantaneous shear stress τ̂(c, k) with k denoting the
thermodynamic state of a CM c. For instance, we de-
note by τq(c) ≡ 〈τ̂(c, k)〉k the k-averaged quenched shear
stress for a given c. Consistently with the more specific
cases discussed elsewhere [12, 13, 28, 30–35], the rescaled
variance µ1 of these quenched shear stresses is quite gen-
erally shown to yield an important contribution to the
shear modulus µ = µ1 + . . . This is especially relevant
for quenched liquid-type glass-formers under equilibrium
conditions (as properly defined in Sec. VI) for which we
shall demonstrate that

0 = µ− µ1 with µ1 = βV
[
〈τq(c)2〉c − 〈τq(c)〉2c

]
(1)
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FIG. 1: Elastic ideal spring network with annealed refer-
ence lengths Rs of the springs imposing 0.1 ≤ Rs ≤ 2 and
〈Rs〉s = 1 for a temperature T = 0.1: (a) Snapshot of a small
subvolume comprising about 500 vertices. Red lines indicate
compressed springs (r < Rs), blue lines extended springs. (b)
Normalized distribution p(Rs).

corroborating a recently made suggestion [28]. (β = 1/T
stands for the inverse of the temperature T , V for the
d-dimensional volume.)

Outline. We begin in Sec. II by reminding the stress-
fluctuation relations for the shear modulus and state then
general inequalities assuming permanent CMs (t? = ∞)
taken from an equilibrium distribution. The simple elas-
tic network model shown in Fig. 1 is described in Sec. III.
The static relations of Sec. II are generalized into the time
domain [36] by allowing the reorganization of the CMs of
the networks, i.e. t?(ω) becomes finite with the imposed
network reorganization frequency ω being a convenient
tuning parameter. Computational results obtained for
this model are presented in Sec. IV for CMs at equi-
librium and in Sec. V for out-of-equilibrium CMs. We
consider especially an initially out-of-equilibrium CM-
distribution caused by a temperature jump and “scalar
active” networks [37, 38] with different temperatures for
the network vertices and the annealed CMs. In Sec. VI
we turn finally to quenched colloidal glasses and confirm
that Eq. (1) must in general hold for quenched ensem-
bles kept at equilibrium. We conclude in Sec. VII with
an outlook on a similar relation for the microscopic shear
modulus being relevant, e.g., for reversible physical gels
[12, 13, 28] or polymer melts [39].
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II. THEORETICAL CONSIDERATIONS

Stress-fluctuation formalism. Having first been
used by Rowlinson for the compression modulus of liq-
uids [20] and later generalized by Squire et al. [21] for
solid bodies, the stress-fluctuation formalism provides a
convenient route to calculating the (isothermic) elastic
constants in computer simulations [40]. It has thus been
widely used in the past both for macroscopic elastic mod-
uli [17, 19, 21–30] as for local mechanical properties [6–
11, 14, 15, 22]. We note that the relations given in the
literature depend somewhat on whether the elastic mod-
uli are defined with respect to an unstressed reference
state [21, 40] or with respect to an in general prestressed
reference [20]. The difference between both definitions
is described by so-called “Birch coefficients” as discussed
elsewhere [27, 41, 42]. We take here the latter more phys-
ical definition where for gases and liquids the shear mod-
ulus strictly vanishes and the compression modulus is
consistent with Rowlinson’s formula [17, 20, 43].

Shear modulus of amorphous solids. We sum-
marize here the salient relations for the macroscopic shear
modulus µ relevant for ensembles of quenched amorphous
bodies. Let E(c, k) denote the energy for a state k of a
CM c at a given volume V and shear strain γ. Following
Refs. [19, 28, 29] we expand E(c, k) assuming a canonical
transformation [19] of the positions and momenta of the
particles of the system under an infinitessimal affine sim-
ple shear strain γ in, say, the xy-plane of the system. The
instantaneous shear stress τ̂(c, k) and the instantaneous
affine shear modulus µ̂A(c, k) are then defined by

τ̂(c, k) ≡ δE(c, k)/V

δγ
and µ̂A(c, k) ≡ δ2E(c, k)/V

δγ2
(2)

as the first and the second functional derivatives with
respect to this canonical transformation taken at γ =
0 for constant V [28]. While the frozen shear stresses
τq(c) ≡ 〈τ̂(c, k)〉k are in general finite, the c-ensemble
has by symmetry an average shear stress

〈〈τ̂(c, k)〉k〉c = 〈τq(c)〉c = 0. (3)

We analyze below the behavior of the (rescaled) moments

µ1 ≡ 〈µ1(c)〉c with µ1(c) ≡ βV 〈τ̂(c, k)〉2k , (4)

µ2 ≡ 〈µ2(c)〉c with µ2(c) ≡ βV
〈
τ̂(c, k)2

〉
k
, (5)

µF ≡ 〈µF(c)〉c with µF(c) ≡ µ2(c)− µ1(c), (6)

µA ≡ 〈µA(c)〉c with µA(c) ≡ 〈µ̂A(c, k)〉k and (7)

µ ≡ 〈µ(c)〉c with µ(c) ≡ µA(c)− µF(c) (8)

being all ≥ 0. As shown elsewhere [17, 29], the indicated
shear modulus µ(c) for each c is consistent with the ther-
modynamic definition

µ(c) =
∂2F (T, V, γ, c)/V

∂γ2
, (9)

i.e. the second derivative of the free energy F (T, V, γ, c)
taken at γ = 0 at constant T , V and c. µF characterizes

the typical shear-stress fluctuations for each c and µA

the k- and c-averaged “affine shear modulus”. Due to
Eq. (3) the (rescaled) variance µ1 is a measure of the
symmetry breaking associated with the quenched shear
stresses. This is mathematically manifested by the fact
that while the k- and c-averages commute for the “simple
averages” [43] µ2 and µA, this is not the case for the
“fluctuation” µ1 since in general

〈〈τ̂(c, k)〉2k〉c 6= 〈〈τ̂(c, k)〉2c〉k = 〈〈τ̂(c, k)〉k〉2c = 0. (10)

Inequalities. Being a thermodynamic susceptibility
µ(c) ≥ 0 must hold for each CM c and, hence, also µ ≥ 0
for its c-average. Let us rewrite the c-average as

µ = µ1 + µa with µa ≡ µA − µ2. (11)

Since µF ≥ 0 and µ1 ≥ 0 we always have

µA ≥ µ ≥ µa. (12)

What is the meaning of µa? Let us denote by l all com-
bined states lumping together all (c, k). Reminding also
Eq. (3), the “simple average” [19, 43]

µa =
〈
µ̂A(l)− βV τ̂2(l)

〉
l

(13)

would correspond to the stress-fluctuation formula for
the shear modulus if the symmetry breaking between
different CMs could be ignored, i.e., to be a thermo-
dynamically meaningful modulus not only the states k
of the given CMs c must be at thermal equilibrium but
also the CMs. To see why µa ≥ 0 for equilibrium CM-
distributions let us assume that the broken symmetry be-
comes lifted by reversible reorganizations of the CMs for
t� t? assuming (temporarily) a finite t?. Using Eq. (3)
implies that µa = µ−µ1 = µ is the shear modulus of the
annealed CMs and, hence, µa ≥ 0. Interestingly, being
a simple average, the expectation value of µa does not
change if evaluated for permanently quenched CMs of
the same CM-distribution. However, for quenched CMs
with µ1 > 0 it then differs from the shear modulus µq

due to the inequality µq = µa + µ1 > µa. (Instead of µ
we often use below µq for quenched CMs with t? = ∞.)
Interestingly, the above argument implies

µa ≥ 0⇔ µA ≥ µ2 ⇔ µq ≥ µ1 (14)

if the (quenched) CMs are taken from an equilibrium
distribution. This is the most central point we want
to highlight in this work. The special limit where the
above inequalities reduce to Eq. (1) will be further in-
vestigated in Sec. VI. Moreover, while Eq. (14) holds for
equilibrium CM-distributions it may be violated for more
general distributions as shown in Sec. V. We emphasize
finally that in the above argument leading to Eq. (14)
the specific Hamiltonian was irrelevant and there was
no need to specify τ̂ and µ̂A defined by Eq. (2). See
Refs. [17, 19, 21, 23, 26, 28, 29, 35] for specific cases.
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III. SIMPLE ELASTIC NETWORK MODEL

Springs and topology. We use for illustration pur-
poses a simple two-dimensional model elastic network
where n vertices of mass m are connected by ideal springs
s of energy K

2 (r − Rs)
2 with identical spring constants

K but a specific reference length Rs for each spring. We
assume m = 1, K = 10 and 〈Rs〉s = 1 for the first
moment of the Rs-distribution for each CM c. The net-
work topology is set up using a regular hexagonal lattice
of springs where each vertex is connected by identical
springs of Rs = 1 to its six next neighbors. At variance
to the transient spring networks considered in Ref. [28],
the springs remain permanently connected to the same
vertices, i.e. in this respect all CMs are quenched and
identical. We use below n = 104 vertices contained in
periodic rectangular simulation boxes. The networks are
sampled by means of molecular dynamics (MD) using a
Langevin thermostat [43]. For crystalline networks with-
out disorder τq(c) = 0 by symmetry for all c and T and,
hence, µ1 = 0 and µ = µa.

Annealed and quenched disorder. Annealed and
quenched disorder enters since the reference lengths may
fluctuate under the additional constraint that 0.1 ≤ Rs ≤
2. This is done by means of a Monte Carlo (MC) proce-
dure where the reference lengths of two (randomly cho-
sen) neighboring springs are slightly changed subject to
a standard Metropolis criterion [43] and that both new
lengths are within the indicated bounds and their sum
remains constant. (This may be seen as a simple model
for branched wormlike micelles with imposed number of
branching points and total branch length [44].) The al-
gorithm thus mixes MD moves for the vertices at a given
CM with MC steps altering the Hamiltonian and thus the
CM [16]. Time is measured by the MD procedure where
we set δt = 10−3 for the Verlet time increment [43]. Af-
ter each δt we attempt for a small fraction of pairs of
springs an MC hopping move to change their reference
lengths. The reorganization frequency ω indicated below
is proportional to this small fraction: ω = 1 means that
a spring is attempted on average once per time unit.

Configurations and data sampling. Results ob-
tained for ω = 0.01 and running the systems over t = 105

are shown in Fig. 1. As can be seen in panel (a), the net-
work becomes very disordered and appears macroscop-
ically homogeneous and isotropic. (This visual impres-
sion can be corroborated using standard pair correlation
functions.) Panel (b) shows the corresponding probabil-
ity distribution for Rs. We thus obtain a large ensemble
of Nc = 500 independent configurations c with an equi-
librium CM-distribution. Assuming ergodicity for each
CM k-averages are replaced by time-averages [43]. For in-
stance, we estimate the k-average τq(c) by computing the
time-average τq(c, t) of the instantaneous shear stresses
τ̂ over a “sampling time” t. The above-introduced mo-
ments thus become apriori t-dependent as emphasized
by an additional argument t [36]. We remind that for
stationary systems the dynamical shear modulus µ(t) is

FIG. 2: µA(t), µ2(t), µ(t) ≡ µA(t) − µF(t), µ1(t), µF(t) ≡
µ2(t) − µ1(t) and µa(t) ≡ µA(t) − µ2(t) for equilibrated and
finally quenched CMs (ω = 0). Eq. (14) is nicely confirmed.

a smoothing function [19, 45] of the shear stress relax-
ation modulus G(t) [39]. Data are sampled either for
strictly permanent networks (ω = 0) or by gradually re-
organizing the CMs at small finite ω as in our work on
transient self-assembled spring networks [19, 28]. The
behavior of permanent CMs is then obtained from the
small-ω asymptotic limit.

IV. ELASTIC NETWORKS AT EQUILIBRIUM

Quenched CM-distributions. Let us first charac-
terize the moments for switched-off reorganization MC
moves (ω = 0, t? = ∞). Using a half-logarithmic repre-
sentation this is shown in Fig. 2 with the sampling time
t being the horizontal axis. As expected, all moments
become rapidly t-independent (t� 1) as emphasized by
horizontal lines. The static asymptotic limits are

µA ≈ 6.2 > µq ≈ 4.6 > µ1 ≈ 3.9� µa ≈ 0.7 > 0. (15)

The inequalities Eq. (12) and Eq. (14) thus hold as ex-
pected. Please note that µa is very small albeit finite.

Finite reorganization rates. The thermodynamic
static values for permanent CMs are also of relevance
if the reorganization MC moves are not completely
switched off. This is demonstrated for a large range of ω
in Fig. 3 for µ(t). As can be seen, µ(t)→ µA for all ω > 0
for very small times (thin horizontal line) [36]. This is ex-
pected since µF(t) must vanish in this limit. For small ω
and not too large t, µ(t) approaches the static shear mod-
ulus µq of quenched networks (bold horizontal line). µq

becomes an intermediate upper shoulder (plateau) upon
further increasing ω or t. Importantly, for sufficiently
large t and ω the dynamical shear modulus µ(t) always
approaches µa (dashed horizontal line), i.e. the static
shear modulus of completely annealed networks. Natu-
rally, this is best seen for our largest reorganization fre-
quencies (ω � 0.01). We note finally that the relaxation
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FIG. 3: µ(t) ≡ µ1(t) + µa(t) for different ω as indicated in
the legend. The horizontal lines indicate (top to bottom) the
large-t asymptotes µA ≈ 6.2, µq ≈ 4.6 and µa ≈ 0.7 for ω = 0.

FIG. 4: Time-dependence of various moments after quenching
at t = 0 from T = 10 to T = 0.1 and allowing the CMs to
reorganize with a small frequency ω = 0.01. Eq. (14) gets
violated for t � t? ≈ 30000 (vertical line) where µ1(t), µ2(t)
and −µa(t) are found to decay logarithmically.

time t?, operationally defined by µ(t = t?)/µa − 1 = 5%,
is inversely proportional to ω and that it is possible (not
shown) to collapse the data for large t by tracing µ(t) as
a function of t/t?(ω).

V. OUT-OF-EQUILIBRIUM NETWORKS

Having confirmed Eq. (14) for equilibrium CMs we
show now using two examples with non-equilibrium CMs
that these inequalities do not hold in general.

Temperature jump. Starting with annealed liquids
at high temperatures amorphous solids are commonly
created by a rapid quench below the glass transition tem-
perature Tg [5]. This has not only the effect that the
relaxation dynamics is strongly reduced but, moreover,
that glasses are generally not at thermal equilibrium at
T < Tg, i.e. Eq. (14) may not hold. This issue will be
addressed in Sec. VI. Here we consider first a similar sit-

FIG. 5: Scalar active two-temperature model with T = 0.1 for
the network vertices and TCM for the CMs. A half-logarithmic
representation of the observables as a function of the reduced
temperature x = TCM/T is used. The final production runs
are performed at switched-off MC moves (ω = 0) sampling
over a sampling time t = 104. Equation (14) is violated for
x� 1 but holds for x� 1.

uation where networks are first equilibrated with finite ω
at T = 10 and then suddenly at t = 0 quenched to our
standard temperature T = 0.1, i.e. the CM-distribution
is initially not at equilibrium. As shown in Fig. 4, it
is then allowed to relax with ω = 0.01. The data points
have been obtained using an iteration of subsequent tem-
pering and measuring intervals of both ∆t = 1000. The
indicated time for the horizontal axis is t = ∆t(2i− 0.5)
for each iteration step i. While Eq. (12) always holds it
is seen that Eq. (14) is strongly violated for short times
t � t? with t? ≈ 30000. In the large-t limit the equilib-
rium CM-distribution for T = 0.1 is restored, cf. Eq. (15).

Active two-temperature model. As a second ex-
ample we present in Fig. 5 data for two-temperature net-
works where the MD dynamics of the vertices is coupled
to a Langevin thermostat with T = 0.1 while a broad
range of temperatures TCM is imposed for the MC steps
of the network reorganization. This model is motivated
by recent work on scalar active matter with different tem-
peratures for each particle class [37, 38]. Half-logarithmic
coordinates are used with x = TCM/T being the di-
mensionless horizontal axis. For each x we anneal the
CM-ensemble using a finite ω over sufficiently long times
until all properties become stationary. The reorganiza-
tion MC steps are then switched off for the production
runs presented in Fig. 5 (ω = 0, t? = ∞, t = 104).
As expected, the data points for x ≈ 1 are consistent
with Fig. 2 and µA(x), µF(x) and µq(x) are seen to only
depend very weakly on x. Importantly, we observe for
x � 1 that the inequalities Eq. (14) are strikingly vi-
olated, just as for the short-time limit in Fig. 4. This
makes sense since in both cases the CMs are distributed
using a too large temperature which generates stronger
quenched stresses. Moreover, Eq. (14) does not only hold
for x ≈ 1 but also for x � 1. We also note that in
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the small-x limit the moments µ1(x) and µ2(x), measur-
ing the quenched shear stresses, slightly decrease albeit
remaining finite. Hence, −µa(x) = µ2(x) − µA(x) also
decreases with −µa(x)→ −3 for x→ 0+.

VI. LIQUID-TYPE ELASTIC SOLIDS

General considerations. We have considered
above elastic networks which by construction must have
a finite shear modulus even for annealed reference lengths
Rs where µ = µa > 0. We turn now to liquid-type sys-
tems such as reversible physical gels [12, 13, 28] or poly-
mer melts [39] where

µ ' µa ' µ1 ' 0 for t� t? (16)

with t? being the finite terminal relaxation time of the
system. Obviously, in many real experiments and com-
puter simulations t? becomes rapidly extremely large, es-
pecially upon cooling, and in practice t � t? for all re-
alistic sampling times t. One thus expects elastic solid
behavior with a finite shear modulus µ(t) ≈ µq > 0 for
a finite t-window similar to the low-ω data presented in
Fig. 3 for elastic networks. Occasionally, such effectively
quenched liquid-type systems may still be at thermal
equilibrium [28]. (For reversible physical gels this may be
achieved, e.g., by temporarily adding some catalytic com-
pounds facilitating the network reorganization or in com-
putational work by means of additional efficient albeit
artificial MC moves as shown below for one example.)
Assuming thus an equilibrium distribution of dynami-
cally quenched configurations, the inequalities Eq. (14)
are expected to become equalities, i.e.

0 = µa ≡ µA − µ2 = µq − µ1. (17)

In agreement with related recent studies [19, 28, 30] we
have thus finally confirmed Eq. (1). Note that failure of
Eq. (17) implies that the quenched configuration ensem-
ble is inconsistent with an equilibrium distribution.

Colloidal glass-former. The above statements are
illustrated in Fig. 6 using systems of polydisperse
Lennard-Jones (pLJ) particles which have been exten-
sively investigated in the past [17, 19, 24, 30]. We average
over Nc = 100 independent configurations which are kept
at an average normal pressure P = 2 by means of a stan-
dard barostat [43]. All production runs are performed
using straight-forward MD (with switched off barostat)
just as for the spring networks investigated above. We
only present data for t = 105. Two different cases of
ensemble preparation are compared. The open symbols
in Fig. 6 refer to configurations created starting from
equilibrated start configurations at T = 0.5 using a stan-
dard quench protocol decreasing the imposed tempera-
ture with a constant quench rate 0.5 · 10−5 (in LJ units)
and a final tempering over t = 105 for each T sampled. In
addition, we thoroughly equilibrated each configuration
using a mix of local and swap MC moves over 106 MC cy-
cles [18, 19] and sample this second ensemble again using

FIG. 6: T -dependence of contributions to the shear modu-
lus for n = 10000 pLJ particles at an imposed average nor-
mal pressure P = 2 [17, 19]. All data points are obtained
using MD-production runs over t = 105 and averaged over
Nc = 100 independent configurations. Open symbols refer to
configurations obtained by means of a constant-rate T -quench
while the stars show −µa for configurations being first thor-
oughly equilibrated using a mix of local and swap MC moves
[18, 19]. While Eq. (17) is violated in the first case below
Tg ≈ 0.26 (vertical dashed line) it holds in the second case
even for T � Tg (horizontal dashed line).

MD. For clarity, we only show for this second case data
for −µa (stars). This shows that for well-equilibrated
systems Eq. (17) holds in principle for all temperatures.
(As revealed by closer inspection, µa = 0 is slightly vio-
lated for our lowest temperatures suggesting that addi-
tional equilibration with swap MC moves is warranted.)
This is different for the first data set (open symbols) ob-
tained using the standard MD-quench for which Eq. (17)
is clearly violated below the glass-transition temperature
Tg ≈ 0.26 [17, 30]. Especially, it is seen that µ1 � µ and
−µa = µ2 − µA � 0. We thus found similar behavior as
for the networks in Fig. 4.

VII. CONCLUSION

Summary. We have investigated in this work gen-
eral inequality relations for the different contributions to
the shear modulus of amorphous bodies with annealed
or quenched configurations. We compared ensembles
of quenched configurations at thermal equilibrium with
more general distributions with a different dispersion of
quenched shear stresses. To illustrate our key points we
have first focused on simple elastic spring networks for
which the disordered CMs can be simply defined and op-
erationally changed in terms of the reference lengths Rs

of the ideal springs, cf. Fig. 1. The stress-fluctuation for-
malism relation for the shear modulus was rewritten as
µ = µ1 + µa with µ1 ≥ 0 being the (rescaled) variance
of the quenched shear stresses and µa a simple average
over all states and CMs, cf. Eq. (13). For annealed net-
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works µa is equivalent to the shear modulus µ as shown
in Fig. 3. Interestingly, µa may be strongly negative for
out-of-equilibrium distributions as shown by considering
a temperature quench (cf. Fig. 4) and a scalar active
two-temperature model (cf. Fig. 5). While the shear
modulus can still be computed in these cases using the
stress-fluctuation relation Eq. (11), the more special in-
equalities Eq. (14) do not hold in general and µ1 may
thus differ strongly from the shear modulus. Turning in
Sec. VI to glass-forming pLJ particles we have confirmed
that similar behavior can be expected for other types of
amorphous elastic solids. While Eq. (17) was seen to
hold for pLJ glasses equilibrated by means of the swap
MC algorithm, systematic and strong deviations arise for
standard out-of-equilibrium ensembles prepared using a
conventional quench protocol (cf. Fig. 6). The measure-
ment of deviations from Eq. (17) for liquid-type systems
provides thus quite generally a convenient diagnosis tool
of the equilibration status of configuration ensembles.

Outlook. Further work will focus on the systematic
analysis of effects related to the finite sampling time t
used for our pLJ systems and the characterization of the
equilibration of the configuration ensemble by tempering
with different frequencies of swap MC moves. Relaxation

behavior similar to Fig. 4 is expected. It may also be of
interest to consider scalar active self-assembled networks
of colloids bridged by ideal springs [28] and polydisperse
particles with different temperatures as in Refs. [37, 38].
We expect Eq. (17) to be violated just as for the two-
temperature active network presented in Fig. 5. The
above work has focused on macroscopic observables. We
note finally that similar relations should hold for the mi-
croscopic shear modulus and its contributions at finite
wavevectors q [14, 15]. For melts of long reptating poly-
mer chains at equilibrium it is, e.g., expected that Eq. (1)
remains valid in reciprocal space for sampling times be-
low the reptation time [39]. It then follows from gen-
eral considerations of isotropic tensor fields [14] that the
spatial correlations of the (transiently) quenched shear
stresses must be long ranged decaying as 1/r3 with the
distance r and the prefactor being set by the intermediate
plateau G(t) ≈ µ of the shear stress relaxation function.
Work in this direction is currently underway.
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