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A B S T R A C T

A large part of French electricity consumption variation is due to temperature fluctuations. While HVAC
(heating, ventilation and air-conditioning) systems consumption are directly affected by the temperature, other
systems (refrigerator, freezer, water heater) can also be driven by weather changes making thermal contribution
to overall consumption difficult to extract. This paper presents a ‘‘by-design’’ unsupervised data-driven method
to separate the consumptions due to the weather in the overall electricity consumption. The proposed deep-
learning model is based on the separation of meteorological parameters from calendar ones within the model
architecture. The performances of this model, in particular its ability to split consumption mechanisms, is tested
on a synthetic dataset and on the french consumption dataset. Being relatively simple and interpretable, this
approach can be generalized to other countries whereasenergy sobriety represents an important challenge we
are facing.
1. Introduction

Accurate power consumption forecast at a country scale is essential
to anticipate future needs and prevent an overload of the electric
network. To provide such forecasts, an understanding of the consump-
tion mechanisms is required. Temperature is one of the main factors
influencing power consumption [1–6], and its importance is expected
to increase even more with climate change [7]. Accurately estimating
the part of the electrical consumption that is due to the temperature,
and more generally the weather, is essential as heat and cold waves can
lead to overloads and large power outages [8,9]. We refer to the portion
of the consumption depending on temperature as the thermosensitive
or meteorological part.

Source separation in energy data is a well studied topic. On a
small scale, such as for one or a few houses, methods that separate
the individual consumption of the various appliances exist and are
commonly known as Non-Intrusive Load Monitoring (NILM). The term
‘‘non-intrusive’’ indicates a separation carried out without the addition
of measuring equipment. NILM can rely on supervised or unsupervised
methods. In the case of unsupervised methods, the main approaches are
variants of Hidden Markov Models [10], Graph Signal Processing [11,
12], event detection based [13] and Deep Learning [14,15]. A survey
on these methods is presented in [16]. These techniques have been

∗ Corresponding author at: Laboratoire QUARTZ, Institut Superieur de Mecanique de Paris (SUPMECA), 3 Rue Fernand Hainaut, 93407 Saint-Ouen, France.
E-mail address: charles.dampeyrou@isae-supmeca.fr (C. Dampeyrou).

1 Now working at Capgemini Invent.

used to disaggregate consumptions due to meteorological effects like
heating, ventilation and air-conditioning [17,18], but only at a single
house scale. Even if some consumption disaggregation has been studied
on low rate smart energy consumption data [12], most of the non-
intrusive load monitoring is done using high frequency consumption
measurements [13], few appliances [12,17,18] or both [10,14,15].
Moreover, these methods provide consumption per device. Estimating
consumption due to temperature would then be an additional step.

At a larger scale, such as cities, regions or countries, it is impos-
sible to attribute power consumption to single appliances with NILM
techniques because of their high number. Literature is more focused
on the impact of temperature on power consumption, rather than on
the separation of the consumption mechanism. This impact has been
studied and quantified in Spain [3,4], India [5], France [19], Milan
(Italy) [6]. These papers show that the temperature has a direct effect
on the electrical consumption. The consumption is negatively corre-
lated with the temperature for low temperatures (effects of heating) and
positively correlated for high temperatures (effects of air conditioning).

Mor et al. propose a technique to disaggregate the consumption due
to different use at a district level on a region of Spain in [20]. They
first reduce the dimensionality of the problem by applying a clustering
on the considered districts. They compute a base load as Fourier series
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describing the hour and weekday cycles with few harmonics. The
HVAC (heating, ventilation and air-conditioning) consumption is then
considered to be the difference between the true consumption and the
base consumption. This base load identified by this technique is limited
o slow variations since only the first Fourier harmonics are used to
escribe the consumption. In addition, variations in consumption due
o aperiodic phenomena such as public holidays and school vacations
annot be included in the base load and are therefore identified as part
f HVAC.

The disaggregation of the consumption due to the weather is a
omplex single-channel source separation problem. Moreover, the con-
umption due to the weather is not measured, which imposes an
nsupervised approach and leads to difficulties for the evaluation of
ur separation.

We introduce a new approach, based on a combination of two arti-
icial neural networks, to separate the consumption due to the weather
rom the consumption due to other causes. The meteorological and
alendar features are treated separately in an architecture that allows to
ssign different parts of the power consumption to the meteorological
eatures and to other causes.

The originality of this paper is to propose a simple and interpretable
ully unsupervised approach, to disentangle temperature induced con-
umption from other sources, going beyond limitations of the existing
pproaches.

This paper is focused on French consumption, based on open-
ource data from RTE [dataset] [21]. It is organized as follows: the
ethodology is presented in Section 2. In Section 3, the datasets and

he feature engineering are explained. Finally, in Section 4, the validity
f the model is verified by analyzing the results on different metrics.

. Methodology

In this section, the approach proposed to model the power consump-
ion and to extract the thermal contribution is presented.

.1. Electricity consumption and meteorological part

Power consumption has been shown to be largely dependent on
emperature. This influence has been quantified in Spain [3,4], in
taly [6] and in France [19]. This dependence is clearly visible on Fig. 1,
ith consumptions being higher for low and high temperatures. The
art sensitive to the temperature is mainly caused by electric heating
nd water heaters during winter and air conditioners and refrigerators
n summer. For cold temperatures, the correlation between temperature
nd power consumption is negative, as a decrease in temperature
nduces an increase in heating consumption. For hot temperatures,
he correlation is positive, as one more degree means more air condi-
ioning. The use of air conditioning is fairly limited in France, while
eating is frequently electric. This explains why the consumption is
ore sensitive to cold temperature than to hot temperature. This share

f consumption is also sensitive to cloud cover, as solar radiation has
n influence on building temperature.

Another part of the power consumption is due to socio-economic
auses. This consumption is independent from the temperature and
ollows the same daily and weekly cycles as human activity. This
egment of electricity consumption is also sensitive to public holidays
nd school holidays, as they influence people’s behavior. The daily and
eekly cycles, as well as the holidays can be identified on Fig. 2.

In this paper, the assumption is made that the consumption sensitive
o the temperature is independent from social and economic effects and
hat the consumption due to social and economical effects is indepen-
ent from the temperature. Under this assumption, the meteorological
onsumption can be defined as the consumption share dependent on
eteorological conditions and the calendar consumption can be defined

s the consumption share dependent on socio-economic activity. The
2

total consumption can be written as the sum of these two consumptions
(Eq. (1))

𝑌𝑡 = 𝑌𝑀,𝑡 + 𝑌𝐶,𝑡 (1)

where:

• 𝑌𝑡 is the power consumption at time 𝑡
• 𝑌𝐶,𝑡 is the calendar consumption at time 𝑡
• 𝑌𝑀,𝑡 is the meteorological consumption at time 𝑡

The problem of electrical consumption disaggregation can be writ-
ten as the identification of two non-linear functions 𝑓𝑀 and 𝑓𝐶 , depend-
ing respectively on 𝑘𝑀 meteorological features 𝐦𝑡 = 𝑚1

𝑡 ,… , 𝑚𝑗
𝑡 ,… , 𝑚𝑘𝑀

𝑡
(temperature and cloudiness in different cities) and on 𝑘𝐶 calendar
features (day, hour, etc.) 𝐜𝑡 = 𝑐1𝑡 ,… , 𝑐𝑗𝑡 ,… , 𝑚𝑘𝐶

𝑡 . The total power is the
sum of the calendar and meteorological parts as described above:

𝑌 (𝐦𝑡, 𝐜𝑡) = 𝑓𝑚(𝐦𝑡) + 𝑓𝑐 (𝐜𝑡) (2)

Available data are thus defined by two matrices:

𝑀 ∈ R𝑇×𝑘𝑀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑚1
1 ⋯ 𝑚𝑗

1 ⋯ 𝑚𝑘𝑀
1

⋮ ⋮ ⋮
𝑚1
𝑖 ⋯ 𝑚𝑗

𝑖 ⋯ 𝑚𝑘𝑀
𝑖

⋮ ⋮ ⋮
𝑚1
𝑇 ⋯ 𝑚𝑗

𝑇 ⋯ 𝑚𝑘𝑀
𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(3)

and

𝐶 ∈ R𝑇×𝑘𝐶 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑐11 ⋯ 𝑐𝑗1 ⋯ 𝑐𝑘𝐶1
⋮ ⋮ ⋮

𝑐1𝑖 ⋯ 𝑐𝑗𝑖 ⋯ 𝑐𝑘𝐶𝑖
⋮ ⋮ ⋮

𝑐1𝑇 ⋯ 𝑐𝑗𝑇 ⋯ 𝑐𝑘𝐶𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4)

where 𝑇 is the duration of each time series. 𝐦𝑡 and 𝐜𝑡 are thus instan-
taneous values of the vector of meteorological and calendar features
and 𝐦𝑗 and 𝐜𝑗 are time series of the jth meteorological and calendar
features.

The consumption data is available over all different regions and is
defined by the matrix

𝑌 ∈ R𝑇×𝑘𝑅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑦11 ⋯ 𝑦𝑗1 ⋯ 𝑦𝑘𝑅1
⋮ ⋮ ⋮
𝑦1𝑖 ⋯ 𝑦𝑗𝑖 ⋯ 𝑦𝑘𝑅𝑖
⋮ ⋮ ⋮
𝑦1𝑇 ⋯ 𝑦𝑗𝑇 ⋯ 𝑦𝑘𝑅𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5)

here 𝑘𝑅 is the number of french regions considered in this paper.
he learning task associated with this problem is thus to find two
omponents ̂𝑌𝑀 and 𝑌𝐶 , respectively referred to as the ‘‘meteorological
onsumption’’ and ‘‘calendar consumption’’ of 𝑌 by minimizing the loss
unction given in Eq. (6):

(𝑌 , ̂𝑌𝑀 , 𝑌𝐶 ) = ‖𝑌 − ̂𝑌𝑀 − 𝑌𝐶‖ = ‖𝑌 − 𝑓𝑀 (𝑀) − 𝑓𝐶 (𝐶)‖ (6)

.2. Disaggregation model

The proposed model consists in defining 𝑓𝑀 and 𝑓𝐶 as multi-layer
erceptrons.

𝑡 ∈ [[1, 𝑇 ]], ̂𝑦𝑀𝑡 = 𝑓𝑀 (m𝑡), ̂𝑦𝐶 𝑡 = 𝑓𝐶 (c𝑡) (7)

Multi-layer perceptrons (MLP) are known to be a universal function
approximator [22]. They are a type of feed-forward artificial neural
network with multiple layers, each one consisting in a parameterized
linear function followed by a non-linear activation function. The pa-
rameters of the linear functions are optimized during the learning
process in order to minimize an error between the outputs of the MLP

and the targets. The main hyperparameters are the number of layers,



Applied Energy 363 (2024) 123097C. Dampeyrou et al.

c
a

Fig. 1. Weekday consumption in the most populated french region at 12 am versus last 24 h averaged temperature. The correlation between temperature and consumption is
learly visible on low and high temperatures. At low temperatures, electric heating causes the correlation to be negative, while air conditioning causes the correlation to be positive
t higher temperatures.
Fig. 2. French power consumption over one year and over two weeks. The socio-economic effects are visible on the graphs since power consumption follows human activity. On
the first graph, the impact of school holiday can be observed during august and for christmas, as well as the impact of the 14th july public holiday. The effect of other holidays
is not as easily identifiable since they occur at times when consumption variability is greater due to heating. The second graph shows that consumption follows daily and weekly
cycles, reflecting human activity.
the number of neurons on each layer, the choice of activation function,
the loss function, the optimizer and the learning rate.

Following the approximation 𝑌 = 𝑌𝐶 + ̂𝑌𝑀 , we define the architec-
ture of the model to represent this separation. To do so, two parallel
MLPs with different input, one with meteorological features and the
second with calendar ones, have been combined to predict the overall
consumption as described in Fig. 3. Doing so, one can train the network
on the error involving the total consumption instead of individual
predictions for ̂𝑌𝑀 and 𝑌𝐶 that are not accessible. This model is shown
on Fig. 3. The loss function 𝑙𝑡 is thus defined by:

𝑙 = 𝑀𝑆𝐸(𝑦 − 𝑦 ) = 𝑀𝑆𝐸(𝑦 − ̂𝑦 − ̂𝑦 ) (8)
3

𝑡 𝑡 𝑡 𝑡 𝑀 𝑡 𝐶 𝑡
Where 𝑀𝑆𝐸 is the mean square error, a loss function commonly used
in deep learning for regression problems. The consumptions are recon-
structed for each region separately in order to help the network to learn
the relation between the regional features (temperature, nebulosity,
school holiday) and the meteorological and calendar consumptions in
the given region. There is a compromise to be made regarding the
choice of consumption granularity. A finer division of consumption
(‘‘département’’ or city) would provide weather features that are more
representative of the area under consideration, but would increase the
number of features and thus the risk of overfitting. Fine granularity
data may also be difficult to obtain.
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Fig. 3. Illustration of the disaggregation model: the weather features 𝐦𝑡 and the
calendar features 𝐜𝑡 are the respective inputs of 2 distinct multi-layer perceptrons in
order to produce two intermediary consumptions ̂𝑦𝑀 𝑡 and ̂𝑦𝐶 𝑡. The optimization of
the networks is done by minimizing the difference between the sum of the 2 outputs
𝑦𝑡 = ̂𝑦𝑀 𝑡 + ̂𝑦𝐶 𝑡 and the real electrical consumption 𝑦𝑡 at time 𝑡.

Fig. 4. Consumption reconstruction error for varying number of layers and number of
nodes in the models multilayer perceptrons. The model is trained on the training set
and the results are obtained with the validation set The best results are obtained for
4 layers of 512 nodes.

Through the backpropagation process, this approach enables the
training of both networks by calculating the gradient of the cost func-
tion with respect to the parameters of the multi-layer perceptrons,
arising from the differentiation of the loss function and the application
of the chain rule.

2.3. Implementation

The proposed models are implemented in pytorch-lightning [23],
a pytorch [24] overlayer which makes the coding of artificial neural
network workflows lighter. Each submodel has 2 hidden layers with
256 nodes each. The activation functions on the hidden layers are ReLU
(𝑓 (𝑥) = 0 if 𝑥 < 0, else 𝑥), the final activation is a Softplus function
(𝑓 (𝑥) = 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝑥))). A batch size of 32 and an Adam’s optimizer
with a learning rate of 0.0001 are considered. An L2 regularization is
used to limit overfitting. The choice of the number of hidden layers
and the number of nodes has been done by extensively testing various
configurations. For separation to be reliable, reconstruction must be
reliable. This is why the selected model is the one that minimizes the
reconstruction error. This is not an ideal metric, as it gives no indication
of the quality of the separation, but it remains relevant in the absence
of annotations. The results of these tests are shown on Fig. 4. The best
results are obtained for 4 layers of 512 nodes.

3. Datasets description and feature engineering

The performances of the proposed approach has been tested on
two dedicated datasets. While the unsupervised approaches described
above allow for the unraveling of electrical charge without the need
for a real-world example to compare against, the direct drawback
4

is the inability to evaluate the performance of such a separation. In
order to overcome this issue, the models were evaluated on a synthetic
dataset for the disaggregation, while the overall total consumption
performances were evaluated on both synthetic and real french power
consumption dataset.

3.1. French power consumption dataset

The dataset is an aggregation of data from different sources. The
French power consumption is obtained from the national electric-
ity transmission system operator Réseau de Transport d’Electricité RTE
[dataset] [21]. The weather conditions comes from the French national
meteorological service Météo France [dataset] [25]. Calendar informa-
tion such as school vacations and public holiday come from French
government open data source [dataset] [26,27]. The dataset involves
data over seven years from 2013 to 2019, all features are region scale
with one-hour frequency. For each region, the power consumption is
a sum of all the user’s consumption coming from every sector. The
weather features are the temperature and the nebulosity. The original
weather data is sampled at 3 h, it is resampled at 1 h with a linear
interpolation. The research of the best hyperparameters has been done
using the 2013 to 2016 data for training and the 2017 to 2018 data for
evaluation. The final evaluation has been done using the 2013 to 2018
data for training and the 2019 data for evaluation.

3.2. Synthetic dataset

The synthetic dataset aims to evaluate the ability of the proposed
architectures to separate consumptions when the thermal and calendar
effects are perfectly separated and fully known. This dataset is com-
posed of 4 calendar consumptions and 4 meteorological consumptions,
in order to simulate different regions. The calendar and meteorological
consumptions are created separately and added together in order to
create the total consumption.

The calendar consumption is defined by three functions 𝑓ℎ, 𝑓𝑑 and
𝑓𝑤:

𝑌𝐶,synth = 𝑓ℎ(hour) × 𝑓𝑤(weekday) + 𝑓𝑑 (day of year) (9)

where 𝑓ℎ is an hourly consumption profile based on the mean consump-
tion for the given hour in a french region, 𝑓𝑤 is a linear coefficient
depending on the weekday allowing to weight higher consumption dur-
ing working days than during weekend and 𝑓𝑑 is a seasonal component
(cosine) with a minimum on June, 21, representing consumption due
to artificial lighting.

The model of the meteorological consumption considers only the
temperature effect. A piece wise linear model, similar to the model
proposed by Pagliarini et al. [6], is considered and tuned using the
actual temperature of 4 french regions. Three linear segments are con-
sidered: consumption decreases at low temperatures, remains constant
in the intermediate range, and then increases at high temperatures
(see Fig. 5). The temperature considered 𝑇𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑡 for each region for
this consumption is a weighted average of 𝑇𝑡−24 to 𝑇𝑡, with 𝑇𝑡 be-
ing the temperature at time 𝑡. The temperature considered is 𝑇 ∗

𝑡 =
∑23

𝑖=0 𝑇𝑡−𝑖×(24−𝑖)
∑23

𝑖=0(24−𝑖)
. This averaging was chosen to take into account thermal

inertia in consumption, while giving greater importance to the most
recent temperatures.

The meteorological consumption is therefore a function of a feature
not given as input to 𝑓𝑀 . This allows to check the robustness of the
models. The piecewise linear functions are distinct for each of the 4
regions, to present different responses to the temperature according to
the climate.

Gaussian noise is added to the two consumption in order to evaluate
the robustness of the proposed models. The standard deviation of the
noise is arbitrarily fixed to 2% of the mean value for the calendar and
meteorological consumption.



Applied Energy 363 (2024) 123097C. Dampeyrou et al.
Fig. 5. Synthetic meteorological consumption versus temperature used to create the synthetic dataset. The temperature considered to create the consumption is a weighted average
of the temperatures over the last 24 h.
Fig. 6. Synthetic consumption versus real consumption over a week for a single region. The temperatures used for the synthetic consumption creation are the temperatures of the
region displayed on the upper chart (Île-de-France). The synthetic consumption qualitatively follows the same variations as the real consumption, over the daily and weekly cycles
and over the temperature evolution.
The total consumption is obtained by adding the meteorological
consumption and the calendar consumption, as shown in Eq. (10). This
total consumption does not aim to be a model of the french consump-
tion, but aims to involve the same phenomena over the calendar and
temperature features than the actual french consumption.

𝑌synth = 𝑌𝑀,synth + 𝑌𝐶,synth (10)

As shown is Fig. 6, the synthetic consumption’s variations are
representative from real consumption variations.

3.3. Feature engineering

Classical cosine and sinus functions (Eqs. (11)–(12)) are used to
transform the cyclic features and avoid the discontinuity at the end of
a cycle (23:00 to 00:00, sunday to monday, december to january, etc.):

𝑥𝑐𝑜𝑠 = 𝑐𝑜𝑠(2𝜋 𝑥
𝑥𝑚𝑎𝑥

) (11)

𝑥𝑠𝑖𝑛 = 𝑠𝑖𝑛(2𝜋 𝑥
𝑥𝑚𝑎𝑥

) (12)

where 𝑥 is the feature considered and 𝑥𝑚𝑎𝑥 its maximum value.
The calendar features are shown in Table 1.
The year is not provided in order to limit the overfitting on train-

ing data. This choice is equivalent to assume that the consumption
mechanisms do not vary from a year to another. The performance
5

Table 1
Calendar features supplied to the model. The cyclic features (hour,
weekday, week of the year) are encoded with cosine and sinus in
order to avoid the discontinuities.
Feature Encoding

Hour of the day cyclic encoded
Day of the week cyclic encoded
Week of the year cyclic encoded
Sunset duration percentage of the day
Public holiday boolean
School holiday booleans for each region

obtained by the model leads us to believe that this hypothesis is valid
for periods of a few years, since changes in consumption patterns are
a slow phenomenon.

The meteorological features are shown in Table 2.
The nebulosity has effects on the thermal radiation received by the

buildings and therefore on the HVAC power consumption.
The HVAC power consumption does not only depend on the instan-

taneously meteorological conditions. Various effects can cause a delay
before a consumption variation. For instance, effects of the outside tem-
perature are slowed down due to the buildings thermal isolation and
the incoming water temperature (which has influence on water heater
consumption) has a slower dynamic then air temperature. In order to
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Fig. 7. Consumption separation for a region over an unseen time period. The daily and weekly cycles are visible on the calendar consumption, and a negative correlation can be
seen between the temperature and the meteorological consumption.
𝑦

Table 2
Meteorological features supplied to the model. Moving averages are used to create new
temperature and nebulosity features in order to take into account longer-term effect of
the weather on the power consumption.

Feature Encoding

Instantaneous temperature of each region scaled between −1 and 1
Instantaneous nebulosity of each region scaled between −1 and 1
Last 6 h average temperature of each region scaled between −1 and 1
Last 6 h average nebulosity of each region scaled between −1 and 1
Last 12 h average temperature of each region scaled between −1 and 1
Last 12 h average nebulosity of each region scaled between −1 and 1
Last 24 h average temperature of each region scaled between −1 and 1
Last 24 h average nebulosity of each region scaled between −1 and 1

capture the consumptions due effects with various dynamics, features
corresponding to the moving average temperature and nebulosity over
different time periods are used in addition to instantaneous values.

The overall consumption of each region are normalized between 0
and 1 (MaxAbsScaler).

4. Results

In this section, we discuss the results obtained by the model on the
two datasets. First, the predicted consumptions are compared to the
real value. As explained in Section 3, while this is not a problem for
the synthetic dataset, the unsupervised approach makes it impossible
to monitor the performances of the meteorological consumption and
calendar consumption independently on the real-world dataset. The
sum of these two consumptions are therefore compared to the real
consumption. Secondly, two scores are created to measure the influence
of the temperature on the meteorological and calendar consumptions.
Finally, we discuss the effect of compensatory bias in the models.

4.1. Qualitative observations

Fig. 7 shows the separation of consumptions over the period from
April 8 to april 17, 2019 for the region Île-de-France. As part of the
test dataset, these data were not used in the training of the model.
This example illustrates the different variables that influence consump-
tion. Daily and weekly (weekend is 13/04 and 14/04) cycles are well
represented in the calendar consumption, with day/night cycles and
consumption reduction over the weekend. The meteorological con-
sumption is influenced differently by the temperature depending on
the range considered. A change in temperature has a greater effect on
meteorological consumption at low temperatures (13/04–14/04) than
at mild temperatures (8/04–9/04). The decrease in temperature causes
an increase in meteorological consumption.
6

Table 3
Mean Absolute Percentage Error (MAPE) between the predicted meteorological con-
sumption and calendar consumption and their ground truth values on the synthetic
dataset. The very low reconstruction error (particularly on the data without noise)
shows that the proposed model performs an accurate separation when the consumption
are due to distinct mechanisms.

Score 𝑀𝐴𝑃𝐸𝑚𝑒𝑡𝑒𝑜 𝑀𝐴𝑃𝐸𝑐𝑎𝑙

Performance without noise 1.07%(𝜎 = 0.07%) 0.20%(𝜎 = 0.02%)

Performance with noise 1.97%(𝜎 = 0.09%) 0.91%(𝜎 = 0.01%)

4.2. Reconstruction error

4.2.1. Component-wise reconstruction error
The synthetic dataset allows to compare the predicted meteorolog-

ical consumption and calendar consumption with their ground truth
value. The optimization is done on the sum of the meteorological and
calendar consumption, a compensatory bias can appear between the
two consumptions (this drawback is discussed in part 4.4). The bias can
be offset on the calendar (respectively meteorological) consumption
by subtracting the mean of the calendar (respectively meteorological)
prediction and adding the mean of the calendar (respectively meteoro-
logical) consumption to the predictions, as expressed in Eqs. (13)–(14).

𝑦𝑀
∗
𝑡 = ̂𝑦𝑀𝑡 −

1
𝑇

𝑇
∑

𝑖=1
̂𝑦𝑀𝑖 +

1
𝑇

𝑇
∑

𝑖=1
𝑦𝑀𝑖 (13)

𝐶
∗
𝑡 = ̂𝑦𝐶 𝑡 −

1
𝑇

𝑇
∑

𝑖=1
̂𝑦𝐶 𝑖 +

1
𝑇

𝑇
∑

𝑖=1
𝑦𝐶 𝑖 (14)

The accuracy of the reconstruction is measured using the mean
average percentage error (MAPE):

MAPE(𝑋1, 𝑋2) =
1
𝑇

𝑇
∑

𝑡=1
|

𝑥1𝑡 − 𝑥2𝑡
𝑥1𝑡

| (15)

where 𝑋1 and 𝑋2 are two time series of length 𝑇 .
The MAPE of the meteorological and calendar consumption are thus

defined by

𝑀𝐴𝑃𝐸𝑚𝑒𝑡𝑒𝑜 = MAPE(𝑌𝑀 , 𝑌 ∗
𝑀 ) (16)

and

𝑀𝐴𝑃𝐸𝑐𝑎𝑙 = MAPE(𝑌𝐶 , 𝑌 ∗
𝐶 ). (17)

The 𝑀𝐴𝑃𝐸𝑚𝑒𝑡𝑒𝑜 and 𝑀𝐴𝑃𝐸𝑐𝑎𝑙 evaluated on the synthetic dataset
with and without noise are presented Table 3. The performance is
measured by averaging the results over 10 training to limit sensitivity

to initialization.
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Table 4
MAPE between the predicted total consumption and the actual consumption. The
low error on the French dataset shows that the network can accurately model the
consumption phenomena. Therefore, our assumption of 2 consumptions created by
separated mechanisms seems to be respected.

Metric 𝑀𝐴𝑃𝐸𝑇𝑂𝑇

French dataset
𝑀𝐴𝑃𝐸𝑇𝑂𝑇

synthetic dataset
with noise

𝑀𝐴𝑃𝐸𝑇𝑂𝑇

synthetic dataset
no noise

Separation model 2.09%(𝜎 = 0.1%) 0.76%(𝜎 = 0.01%) 0.17%(𝜎 = 0.01%)
Comparative model 2.30%(𝜎 = 0.2%) 0.76%(𝜎 = 0.01%) 0.15%(𝜎 = 0.02%)

The error on the data without noise is very low, which shows the
bility of the proposed model to accurately separate the calendar and
eteorological effect. The reconstruction error increases for noisy data,

ut this increase is quite marginal, which illustrates the robustness of
he model.

The weather features given to the models are different from the one
sed to create the synthetic dataset (𝑇 ∗

𝑡 ). The reconstruction obtained
by applying this artificial restriction confirms that the models have a
generalization capacity in the absence of the precise data used during
the generative process. This result is particularly important for the
application to real data, because the features that generate them are
by nature not accessible to us.

4.2.2. Total reconstruction error
While the disaggregation of the electrical consumption between

calendar and meteorological part is the main goal of this paper, the
comparison between the real consumption and the sum of the estimated
calendar consumption and meteorological consumption is an important
metric. It allows us to ensure that the overall consumption is well
reconstructed. A well reconstructed consumption has two meanings.
Firstly, it means that the inputs provided to the model are sufficient
to model consumption. Secondly, it provides confidence in the quality
of the separation of the two consumptions. The score used to measure
the reconstruction is again the MAPE.

In order to assess the effects of the consumption separation hypoth-
esis on the overall reconstruction, a comparative model was created.
This comparative model is a simple multilayer perceptron that recon-
structs the overall consumption using all the features available to the
separation model. Doing so, the comparative model is not constrained
by the hypothesis of two separated consumption mechanisms. The
hyperparameters of the comparative model are chosen in the same
manner than for the disaggregation model. The selected architecture
is composed of 3 hidden layers of 256 nodes.

The performance is measured by averaging the results over 10
training to limit sensitivity to initialization.

𝑀𝐴𝑃𝐸𝑇𝑂𝑇 = MAPE(𝑌 , 𝑌 ) (18)

The total reconstruction error of the proposed models according to
the MAPE metric evaluated on the french dataset and on the synthetic
dataset is presented Table 4.

With an error of 2.09% as shown in Table 4, the presented approach
allows a correct modeling of the consumption phenomena. As we can
see in Fig. 8, the reconstruction is precise both on a daily scale and on a
yearly scale. The accurate reconstruction performed by the separation
model shows that the provided features are sufficient to predict the
consumption.

The comparative model does not perform as well as the separation
model on the real data due to overfitting. It achieved the same 𝑀𝐴𝑃𝐸
of 1.4% on the training data that the separation model. This overfitting
occurred with a L2 regularization. A regularization through dropout
was also considered but lowered the performances. This drop of per-
formance shows that the separation of the meteorological and calendar
features in the architecture helps the generalization capability of the
7

model.
The fact that the comparative model does not perform better than
the separation model provides confidence that the hypothesis of two
separate consumption mechanisms is respected on real data. Indeed,
consumption depending simultaneously on calendar and weather fea-
tures cannot be modeled by the separation model and would increase
the reconstruction error.

In comparison to the obtained scores, Pagliarini et al. achieve
1.3% MAPE on their best consumption approximation in [6]. They
reconstruct the daily consumption, fit their model on the same data that
they use to measure the MAPE and do not separate the consumptions.
Behm et al. achieve 2.8% MAPE on their load profiles in [28], without
separating calendar and meteorological effects. The data of these au-
thors are not available, and their approaches are too different from the
one proposed in this article to rigorously compare the performances.
These scores are given as an indication in order to better situate the
modeling abilities of the proposed models.

Two causes limiting the performance achievable with the models
can be identified:

• The features given to the model are not sufficient to explain all
consumption phenomena. For instance, the weather data is given
for only 12 locations for the entire country, and the different
public holidays and school holidays might not have the same
influence on people’s behavior but have the same encoding. This
choice was made to limit overfitting.

• The model only considers the temperature with few different av-
eraging (instant, 6, 12 and 24 h), while the temperature can have
effects on the consumption at different time scales. Adding more
temperature features does not improve the performances since
this pushes the models to overfit. However, an optimization of the
temperature averaging choice could improve the performances.
This will be the object of further work.

The total consumption reconstruction error is higher for mild tem-
peratures than for low or high temperatures (Fig. 9, upper left). An
explanation of this difference of performance could be that the me-
teorological and calendar consumptions are more intricated at mild
temperature than on temperatures where heating or cooling are con-
stantly used. The weekday has also an impact on the accuracy of
the reconstructed consumption (Fig. 9, lower left). Consumption is
more predictable during the weekend than during the working days.
Reconstruction quality varies from month to month. The model has a
greater reconstruction error on April, September an October (Fig. 9,
lower right). This could be due to an overestimation of the heating
consumption since some heaters are completely off. However, this
should not be overinterpreted since the test dataset consists of only one
year of consumption data. Finally, consumption over public holidays is
well reconstructed (Fig. 9, upper right). Even if public holidays are less
represented in the data, and if the specificity of the holidays are not
integrated in the data, the reconstruction error is just slightly greater
for public holiday than for regular days (1.95% versus 1.60% for the
daily power consumption).

4.3. Correlation based scores

4.3.1. Definition of the scores
Another performance indicator of the model is the correlation be-

tween the consumption and the temperatures. We are looking for two
different behaviors for these correlations.

• The meteorological consumption has to be highly correlated to
the temperature. The correlation has to be negative for cold
temperatures (1 ◦C more means less heating), and positive for hot
temperatures (1 ◦C more means more air conditioning consump-
tion).

• The calendar consumption is wanted to be independent from the
temperature. The daily calendar consumption and the average
daily temperature should be decorrelated
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Fig. 8. One week (left) and averaged one year (right) sample of the actual french power consumption of 2019 compared to the model’s prediction. The consumption modeling is
precise both on a daily scale and on a yearly scale.
Fig. 9. Consumption reconstruction error versus different calendar features. The total reconstructed consumption (𝑌 = ̂𝑌𝑀 +𝑌𝐶 ) is compared to the true consumption on the French
dataset.
Consumption increases during working hours due to human activity,
while at the same time the temperature increases. In order to avoid that
the scores are influenced by this correlation, the data used are total
daily consumptions and average daily temperature.

In order to measure these two effects, we have created adequate
scores.

The meteorological consumption has to be correlated in absolute
value with the temperature. The chosen score is the mean absolute
correlation between daily consumption and daily average temperature.
The correlations between daily meteorological consumption and daily
average temperature are computed over 14 days. The score is then
computed by taking the mean of the absolute value of the correlations.

CORR𝑚𝑒𝑡𝑒𝑜 = 1
𝑁

𝑁
∑

𝑖=1
|𝑐𝑜𝑟𝑟((𝑦24𝑀𝑖,… , 𝑦24𝑀𝑖+13), (𝑇

24
𝑖 ,… , 𝑇 24

𝑖+13))| (19)

Where 𝑦24𝑀𝑖 =
∑24∗𝑗+23

𝑡=24∗𝑗 𝑦𝑀𝑡 is the daily meteorological consumption of
he 𝑖th day and 𝑇 24

𝑖 is the average temperature of the 𝑖th day.
The correlation used is Spearman’s correlation because the relation

etween the temperature and the consumption is not necessary meant
o be linear. Spearman’s correlation uses the ranks of the value instead
f the values itself, allowing to conclude on the existence of monotonic
elationship between two variables rather than the existence of linear
elationship in the case of Pearson’s correlation.

This score is better when being high, but cannot reach 1 because
he consumption and temperatures are almost independent when the
emperature is mild, about 17 ◦C/19 ◦C. This effect can be observed on
ig. 10, and has been identified in Refs. [2,3].

Another score is defined for the calendar consumption. Since the
alendar consumption and the temperature should be independent,
heir correlation should be near to 0, but even independent variables
an have a non-zero correlation, and the variance of the correlation
8

can be high given the small size of the samples. For instance, there is a
10% chance of getting a Spearman correlation greater than 0.46 with
an uncorrelated sample of 14 data points [29]. To avoid misinterpreta-
tion of these correlations, the correlation coefficients are averaged on
temperature windows. We made this choice rather than the choice of
increasing the size of the samples because longer periods can contain
various temperature on which the temperature has different effects on
the consumption. The average on temperature windows is to make
sure that there are no effects that compensate from a temperature
to another (positive correlations for low temperature and negative
correlations for high temperatures for instance). Fig. 12 presents the
correlation between daily calendar consumption and daily temperature
versus mean temperature during the period. This figure shows that the
correlations are centered on 0. The score is computed by averaging
the correlations by temperature bins, as described by the following
equation:

CORR𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 = 1
𝑁𝑏𝑖𝑛𝑠

𝑁𝑏𝑖𝑛𝑠
∑

𝑖=1
|

1
𝑁𝑐𝑜𝑟𝑟,𝑖

∑

𝑗∈𝑏𝑖𝑛𝑖

𝑐𝑜𝑟𝑟((𝑦24𝐶 𝑗 ,… , 𝑦24𝐶 𝑗+13), (𝑇
24
𝑗 ,… , 𝑇 24

𝑗+13))|

(20)

where 𝑁𝑏𝑖𝑛𝑠 is the number of temperature bins, arbitrary chosen to
be 20, 𝑁𝑐𝑜𝑟𝑟,𝑖 is the number of correlations computed for the 𝑖th bin.
As in the meteorological correlation score, 𝑦24𝐶 𝑗 =

∑24∗𝑗+23
𝑡=24∗𝑗 𝑦𝐶 𝑡 is the

daily calendar consumption during the 𝑗th day, 𝑇 24
𝑗 is the average

temperature on the 𝑗th day and the correlation used is Spearman’s cor-
relation. Fig. 12 provides a more visual understanding of the averaging
by temperature bins used in the computation of the score.

We want our calendar consumption to be as independent as possible
from the temperatures, so a better score is a score with a value near to
0.
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Fig. 10. Correlation between daily meteorological consumption and daily temperature versus mean temperature on the period. The correlation used is Spearman’s correlation. The
correlation are computed on periods of 14 days in order to limit the overlap of cold days and warn days in a single period. The meteorological consumption and the temperature
are highly correlated: negatively during the cold temperatures and positively during hot temperatures. The intermediate zone, from 16 ◦C to 19 ◦C does not have a clearly visible
correlation.
Fig. 11. Correlation between daily calendar consumption and daily temperature versus mean temperature on the period. The correlations are computed the exact same way than
for Fig. 10. The small number of sample per correlation calculation makes it likely to have high correlations even for independent samples, and therefore makes the correlation
noisy.
Table 5
Correlation scores on our model. The high 𝐶𝑂𝑅𝑅𝑚𝑒𝑡𝑒𝑜 score indicates that the mete-
orological prediction is highly correlated to the temperature. The low 𝐶𝑂𝑅𝑅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟

indicates that the calendar consumption is nearly independent to the temperature.
Dataset CORR𝑚𝑒𝑡𝑒𝑜 CORR𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟

Real french data 0.74(𝜎 = 0.006) 0.14(𝜎 = 0.004)
Synthetic data no noise 0.818(𝜎 = 0.003) 0.112(𝜎 = 0.002)
Synthetic data with noise 0.818(𝜎 = 0.003) 0.112(𝜎 = 0.002)

4.3.2. Results

Figures 10 and 12 show the correlations on which the scores are
computed. The results obtained for the different models are presented
in Table 5.

The meteorological consumption is highly correlated with the tem-
perature as illustrated on Fig. 10 and with the CORR𝑚𝑒𝑡𝑒𝑜 score of 0.74.
It can be noticed that the absolute correlation is higher in the low
temperatures than in the hot temperatures. One explanation to the
reduced correlation on high temperatures is that the air conditioners
are less implanted than electric heaters, particularly in the northern
regions which are colder.

The high correlation between the meteorological consumption and
the temperature indicates that the meteorological consumption pre-
dicted by the model indeed captures consumption that is temperature
sensitive. In the same way, the low correlation between the calendar
consumption and the temperature indicates that this consumption is
mainly composed of temperature insensitive phenomena.
9

4.4. Compensatory bias of the models

The regression conducted by the proposed models is performed on
the sum of the meteorological and calendar consumption. A compen-
satory bias, added to 𝑓𝐶 and subtracted to 𝑓𝑀 would not have any
influence on the loss and would not influence the model’s training. The
meteorological and calendar consumptions are therefore learned to an
additive bias. To compensate these two biases, we add a constant to 𝑓𝐶
and subtract the same constant to 𝑓𝑀 .

RTE Provides a definition of the meteorological consumption and
sets its minimum value to 0 W [30]. The meteorological consump-
tion could thus be offset using this minimum value. The offsetted
meteorological model defined by

𝑓 ∗
𝑀 (𝐦𝑡) = 𝑓𝑀 (𝐦𝑡) − min

𝑖
𝑓𝑀 (𝐦𝑖). (21)

The same offset is also used to define the offsetted calendar consump-
tion model

𝑓 ∗
𝐶 (𝐜𝑡) = 𝑓𝐶 (𝐜𝑡) + min

𝑖
𝑓𝑀 (𝐦𝑖). (22)

This offsetting of the two models does not change the scores pre-
sented in this section, since the correlation is not affected by an offset,
and the sum of the two consumptions stays the same.

5. Discussion

An unsupervised deep learning approach has been proposed to
separate the consumption due to the weather from the consumption due
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Fig. 12. Correlation between daily calendar consumption and daily temperature versus mean temperature on the period, averaged on temperature windows. The correlations are
computed the exact same way than for Figs. 10 and 11. The averaging reduces the variance of the correlations. The calendar correlation score is computed by averaging the
ordinates of the points. We can see on the figure that there is no significant correlation between the calendar consumption and the temperature.
to other causes. It is non-intrusive, since it requires no measurements
other than total consumption and meteorological information. Our
results show that the model performs an accurate reconstruction of the
consumption at a country scale, with a MAPE of 2.09% on real data. In
the framework of this paper, the proposed approach has been applied
to French electricity consumption. Application to other countries is
straightforward once the consumption and meteorological data have
been collected and the variables impacting consumption have been
identified. The low complexity of the model makes it easy to use on
other data, with training possible on a desktop PC without GPU/TPU in
less than an hour. The comparison with a simple multilayer perceptron
model showed that the proposed approach helps in avoiding overfitting.

The hypothesis underlying this model, stipulating that weather con-
sumption is separated from the rest of consumption, cannot be formally
verified. It can be thought that this hypothesis is close to reality
for french data, since the model reconstructs the total consumption
accurately. This assumption may be too simplistic for data from other
countries. It is possible, for example, that there are countries in which
the HVAC systems in the home are very different from those in the
workplace. In this case, consumption due to temperature would not
be totally separated from that due to socio-economic factors, and the
proposed model would no longer be relevant. The overestimation of
consumption during the cold spells of April, September and October
could be due to lower thermosensitivity, as heaters were switched off
during this period. Nevertheless, consumption reconstruction remains
correct during this period, with an average error of 3.1%. Moreover,
the comparative model does not reconstruct consumption any better,
even though it is not constrained by this hypothesis. Another limiting
hypothesis of the model is that the consumption mechanisms do not
change from one year to another. The reconstruction performance leads
one to believe that these changes are indeed slow. If this model was
being considered for a use over a longer period, it should be retrained
periodically on recent data. In the event of a sudden change of the con-
sumption mechanisms (like during COVID19 lockdowns for instance),
the model would not adapt. This is not specific to the proposed model
but would also apply to other methods.

The presence of gas heating reduces thermosensitivity because the
presence of electric heating is reduced. However, this should not affect
the model’s performance as long as the distribution of heating types
remains constant, since the use of gas heating does not alter electricity
consumption. It would be possible to run a similar model to identify
the gas consumption due to temperature. To do this, it would be
necessary to identify the calendar variables specific to gas consumption.
Distributed generation, such as customer owned solar panels or small
wind turbines may have an impact on the model by reducing the
observed consumption. In the case of our data, the impact is limited,
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as self-consumption represents only 0.2% of the energy produced in
France in 2022 [31]. If this share were to increase significantly, the
model would have to be re-trained regularly to adapt to changes in
consumption. This would also mean reconsidering the features used by
the model, so that the drop in consumption due to self-consumption
can be predicted correctly. The wind at different locations, for example,
could provide useful information for the model.

6. Conclusion

A model is proposed to separate consumption due to the weather
from consumption due to other causes under the hypothesis of sepa-
ration of the consumption mechanisms. The performance achieved on
synthetic data shows that the separation is accurate when this hypoth-
esis is verified. The low reconstruction error and the comparison with a
model not constrained by the hypothesis leads one to believe that the
assumption of separated consumptions is close to reality. An analysis
of the correlations between consumption and temperature shows that,
as expected, weather consumption is highly correlated to temperature
(positively for hot temperatures, negatively for low temperatures) and
calendar consumption is uncorrelated with temperature.

Further investigation will focus on the identification of consumption
due to mixed causes, i.e. meteorological consumption influenced by
the time and the day and calendar consumption influenced by the
temperature. Relationships can indeed be observed between meteoro-
logical phenomena and temporal human behavior. The choice of the
averaging windows for the creating of the meteorological features may
have an impact on the model’s performances, which could be evaluated
in future work.
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