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Abstract: Cytosine methylation is an epigenetic mark present in most eukaryotic genomes that
contributes to the regulation of gene expression and the maintenance of genome stability. DNA
methylation mostly occurs at CG sequences, where it is initially deposited by de novo DNA methyl-
transferases and propagated by maintenance DNA methyltransferases (DNMT) during DNA replica-
tion. In this review, we first summarize the mechanisms maintaining CG methylation in mammals
that involve the DNA Methyltransferase 1 (DNMT1) enzyme and its cofactor, UHRF1 (Ubiquitin-like
with PHD and RING Finger domain 1). We then discuss the evolutionary conservation and diversifi-
cation of these two core factors in the plant kingdom and speculate on potential functions of novel
homologues typically observed in land plants but not in mammals.
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1. Introduction

DNA methylation is a highly conserved DNA modification, present across eukaryotes
of the plant and animal kingdoms [1–4]. However, it is not universal, as certain non-plant
eukaryotic genomes are devoid of DNA methylation [5,6]. DNA methylation is a covalent
DNA modification affecting cytosine residues. It is typically involved in the regulation
of gene expression and the silencing of transposable elements (TEs), by which it ensures
genomic stability. In addition, DNA methylation is central to developmental processes
such as genomic imprinting and X-chromosome inactivation [7,8].

Although DNA methylation occurs in CG and non-CG sites (CH, where H = A, T or
C) in both mammals and plants, these two types of DNA methylation vary in terms of
their genomic distribution and occurrence during development [3,9,10] as well as their
dedicated enzymatic machinery [2]. In mammals, CG methylation is the main type of
DNA methylation, and it covers the bodies of most genes and TEs [9–12]. In plants, CG
methylation is detected only on a limited set of genes and TEs are covered by both CG
and non-CG methylation [1,5,13,14]. CG methylation is ubiquitously detected during both
plant and mammalian life cycle. However, in contrast to plants, non-CG methylation is
only detected in specific mammalian tissues or cell types [15].

The establishment of a new DNA methylation pattern or de novo DNA methylation
corresponds to the addition of a methyl group at the position C5 of an unmodified cytosine
residue (5mC). As de novo methylation generates new DNA methylation patterns, the
corresponding enzymatic machineries need to be highly regulated and precisely targeted.
In mammals, de novo DNA methylation involves the de novo DNA methyltransferases
3 (DNMT3). DNMT3 enzymes methylate cytosine residues in all sequence contexts and are
targeted by direct interaction with histone post-translational marks [16,17]. In contrast, de
novo DNA methylation in plants involves the RNA-dependent DNA methylation (RdDM)
pathway, which targets the DOMAINS REARRANGED METHYLTRANSFERASE 1 and 2
(DRM1, DRM2) to cytosines, guided by small RNA molecules [1,18,19].

After the establishment of novel DNA methylation marks, the newly created pat-
terns must be faithfully transmitted by maintenance DNA methyltransferases during cell
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division [20,21]. CG methylation is maintained by two evolutionarily conserved core
partners: (1) a maintenance DNA methyltransferase called DNMT1 in mammals and
MET1 (DNA METHYLTRANSFERASE 1) in plants and (2) a cofactor named UHRF1 in
mammals and VIM (VARIANT IN METHYLATION) in plants [2]. In mammals, the main-
tenance of non-CG methylation typically involves DNMT3 enzymes [15]. In plants, non-CG
methylation is further divided in two classes of sequence—CHG and CHH [1,3,13,22]—and
requires distinct enzymatic machineries. The maintenance of CHG sites relies on the
plant-specific CHROMOMETHYLASE3 (CMT3) in cooperation with H3K9 histone methyl-
transferases [23–28]. Maintenance of the CHH context requires the combined action of the
CHROMOMETHYLASE2 (CMT2) and the de novo methylation machinery, i.e., the RdDM
pathway [26,27]. DNA methylation patterns can rapidly be lost by both passive and active
DNA demethylation. Passive demethylation results from the absence of the recruitment
of DNA methyltransferases during DNA replication while active DNA demethylation
requires specific enzymes that differ between plants and mammals. In plants, active
DNA demethylation is driven by DNA glycosylases that excise 5mC in all sequence con-
texts [29,30]. In mammals, ten-eleven translocation (TET) methylcytosine dioxygenases
catalyze the conversion of 5mC to 5hmC (5-hydroxymethylcytosines) and further oxidation
products. These modified cytosines can be retained or ultimately be replaced by naive
cytosines [17,31,32].

As several recent reviews on non-CG methylation machineries and their evolution
in plants are available [19,33–35], we focus here on the core actors of the maintenance of
CG methylation. We first summarize the molecular mechanisms of the maintenance CG
methylation in mammals and further discuss its conservation in plants. We then evaluate
the diversification of the central actors in this process during plant evolution. Finally, we
speculate on the potential roles of recently diversified factors in higher plants.

2. Molecular Mechanisms of the DNMT1/UHRF1 Pathway

During DNA replication, the parental DNA methylation pattern needs to be copied to
newly synthesized daughter strands, which are devoid of DNA methylation. In mammals,
multiple DNA replication-coupled methylation maintenance pathways are at play to
faithfully propagate CG methylation throughout the genome and involve two main players:
the DNMT1 enzyme and its cofactor UHRF1 (Figure 1) [36–38].

DNMT1 is the main CG maintenance DNA methyltransferase in mammals. It is recruited
concomitantly to DNA replication at hemi-methylated CG sites (hemi-mCG) to methylate
the cytosines on the newly synthetized DNA strands and is therefore key to maintaining
symmetrical CG methylation patterns. DNMT1 typically combines a N-terminal Replication
Foci Targeting Sequence (RFTS) domain responsible for its targeting to the replication foci,
a CXXC Zinc-finger domain, two bromodomain-adjacent homology (BAH) domains and a
large C-terminal methyltransferase (MTase) domain (Figure 2b) [39–41].

Biochemical studies on DNMT1 revealed a higher efficiency on hemi-methylated
targets compared to unmethylated targets therefore ensuring the proper maintenance
of DNA methylation [42,43]. The de novo methylation activity of DNMT1 is prevented
by two auto-inhibitory regulations: (1) an intramolecular interaction between the RFTS
domain with the MTase catalytic domain locks DNMT1 methyltransferase activity until
needed [44,45] and (2) the binding of the CXXC domain to unmethylated cytosines prevents
the DNMT1 catalytic cleft from accessing these sequences [39,40].

The recruitment of DNMT1 to replicated sites can occur through an interaction with
PCNA (Proliferating cell nuclear antigen) [46]. However, PCNA-binding deficient dnmt1
mutants were still able to rescue dnmt1 ES cells suggesting that PCNA-dependent recruit-
ment of DNMT1 is not essential in maintaining DNA methylation [46]. DNMT1 recruitment
and activation at hemi-mCG sequences is intimately linked to its cofactor UHRF1. Uhrf1
loss-of-function leads to genome-wide demethylation as observed for dnmt1 knock-out [47].
UHRF1 is a multidomain protein with a ubiquitin-like (UBL) domain, two adjacent his-
tone reader domains, a Tudor domain (TTD) followed by a PHD (Plant Homeodomain)
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finger that recognize, respectively, di/trimethylated lysine 9 on histone3 (H3K9me2/3) and
unmodified arginine on H3 (H3R2), a su(var)3-9, enhancer-of-zeste–trithorax (SET)- and
RING-associated (SRA) domain and a Really Interesting New Gene (RING) E3 ubiquitin
ligase domain (Figures 1 and 2a). UHRF1 can directly interact and recruit DNMT1 to
hemi-mCG via its SRA methyl-binding domain (Figure 1, arrow 1) [48,49].
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Figure 1. Molecular mechanisms of CG methylation maintenance in mammals. CG methylation 
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mains of UHRF1. UHRF1 is targeted to hemi-methylated DNA formed after DNA replication 
through its SRA domain (1) and ubiquitylates (ub) lysine (K) residues either on PAF15 (PCNA-

Figure 1. Molecular mechanisms of CG methylation maintenance in mammals. CG methylation
maintenance involves the maintenance DNA methyltransferase DNMT1 and distinct functional
domains of UHRF1. UHRF1 is targeted to hemi-methylated DNA formed after DNA replication
through its SRA domain (1) and ubiquitylates (ub) lysine (K) residues either on PAF15 (PCNA-
associated factor 15) (2) or on histone H3 (3) through its E3 ubiquitin ligase RING domain. DNMT1
recognizes these ubiquitinated residues via its RFTS domain and restores symmetric CG methylation.
In addition, The Tudor domain of UHRF1 binds H3K9me3 histone mark (4) and a methylated histone-
like motif in DNA ligase 1 (K-LIG1) (5) enzyme that joins Okazaki fragments generated in the lagging
strands. These interactions further facilitate the maintenance of CG methylation. Abbreviations: Me,
methylated; PHD, Plant Homeodomain finger; RING, Really Interesting New Gene domain; SRA,
su(var)3-9, enhancer-of-zeste–trithorax (SET) and RING-associated domain; TTD, Tudor domain;
UBL, Ubiquitin-like domain.
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Figure 2. Domain structures of the core players of CG methylation maintenance in plants (Arabidopsis) and mammals
(mouse). (a). Domains identified in DNMT1 DNA methyltransferase and corresponding homologs MET in Arabidopsis.
(b). Domains identified in DNMT1 cofactor UHRF1 and their corresponding homologs VIM in Arabidopsis. Abbreviations:
BAH, Bromodomain-adjacent homology domain; CXXC, CXXC Zinc-finger domain; MTransferase, methyltransferase
domain; PHD, Plant Homeodomain finger; RING, Really Interesting New Gene domain; RFTS, Replication Foci Targeting
Sequence domain; SRA, su(var)3-9, enhancer-of-zeste–trithorax (SET) and RING-associated domain; Tudor, Tudor domain;
UBL, Ubiquitinlike domain.

Interestingly, UHRF1 also provides a link between the maintenance of DNA methyla-
tion and histone or histone-like modifications. Indeed, the UHRF1 RING domain mono-
ubiquitylates lysine residues in histone H3 and a H3 mimic domain present in the DNA
replication factor PAF15 (PCNA-associated factor 15) (Figure 1, arrow 2 and 3). Each of
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these two modifications is recognized by the RFTS domain of DNMT1 and contributes
to the maintenance of CG methylation [50,51]. Additionally, a methylated histone H3K9
mimic domain lying within the DNA ligase 1 (LIG1)—an enzyme that joins nicks in the
lagging strand—is recognized by the UHRF1 histone reader TTD domain that ultimately
favors maintenance methylation (Figure 1, arrow 5) [52,53]. The UHRF1 TTD domain
also recognizes H3K9me2/me3 histone marks (Figure 1, arrow 4) [54,55] and contributes
to DNMT1 recruitment through its H3K9me RFTS reader domain to heterochromatin
regions [16]. Altogether the different domains of UHRF1 are thus essential to recruit and
activate DNMT1 at hemi-methylated CG DNA therefore ensuring the proper maintenance
of DNA methylation during DNA replication.

3. Molecular Mechanisms of the MET/VIM Pathway in Plants

In both plant and animal genomes, the presence of DNMT1/UHRF1 homologues
coincides with the detection of CG methylation [5,56]. For example, Drosophila and C.
elegans genomes typically lack both cytosine methylation and UHRF1 genes [3]. These
observations suggest a conservation of core mechanisms involved in the maintenance of
DNA methylation during evolution. DNMT1 and UHRF1 homologues have been identified
in plants and are called MET1 and VIM, respectively. Similarly to mammals, mutations
affecting those genes in Arabidopsis lead to a loss of CG methylation [9,57–59]. However,
not enough is known at present in plants to conclude whether molecular mechanisms
comparable to mammals (see above) are at play.

In Arabidopsis, the predicted MET proteins, including the functional MET1, share
most of the domains present in mouse DNMT1 [60,61]. For example, all MET proteins
in Arabidopsis have two RFTS domains (only one in DNMT1), two BAH domains and a
C-terminal methyltransferase domain. The main difference is the absence of the CXXC
domain in plant METs which, in DNMT1, reduces potential de novo activity [40]. Whether
this activity is regulated for MET1 is currently unknown but a potential de novo activity
of MET1 seems involved in de novo gene body methylation [62]. MET1 might, therefore,
be more prone to induce de novo methylation than its mammalian counterpart due to the
absence of the CXXC domain. Despite the presence of a conserved C-terminal methyl-
transferase domain in all Arabidopsis MET proteins, an enzymatic activity is only clear for
MET1 and further experiments are needed to test whether MET1 paralogues have retained
a functional methyltransferase activity.

In terms of domain structure, Arabidopsis VIMs show more differences than their
mammalian counterpart, especially on their N-terminal part. They all have a N-terminal
PHD domain and two RING domains flanking the SRA domain except VIM6 that lacks
the PHD domain and C-terminal RING domain. Although each of the two RING domains
of the tested VIM is sufficient to generate an E3 ligase activity [63] it is unclear whether
VIM6 is still a functional enzyme. VIM proteins have retained most of the UHRF1 domains
except the Tudor domain and the UBL domain localized on the N-terminal (Figure 2). The
absence of Tudor domain in VIM proteins suggests a potential loss of a direct link between
histone methylation and CG methylation maintenance. At present, biochemical analyses
confirmed that all the Arabidopsis VIM tested have an E3 ubiquitin ligase activity [63,64]
and preferentially bind to methylated CG in vitro but also to methylated CHG [25,65].
Some identified targets for ubiquitination by UHRF1 like LIG1 and histones H3 are well-
conserved in plant genomes [66,67]. However, further experiments are needed to determine
if these proteins are still targeted by VIM in plants.

4. Duplication of the MET and VIM Proteins in Plants

The mammalian genome (mouse and human) encodes only one DNMT1 gene but two
UHRF genes (UHRF1, UHRF2). As both DNMT1 and UHRF1 are essential to maintain CG
DNA methylation, dnmt1 and uhrf1 mutants suffer several defects and are embryo lethal.
Interestingly, UHRF2 does not act redundantly with UHRF1 in maintaining CG methylation
and uhrf2 does not complement the uhrf1 phenotype [41,68]. UHRF2 seems to be involved
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in cell cycle progression and possibly tumorigenesis via its binding to hydroxymethylated
DNA [69,70]. This suggests that these two highly similar UHRF proteins have distinct
functions in mammals.

To evaluate the degree of duplication as well as investigating the degree of conserva-
tion of MET and VIM protein in plants, we generated two phylogenetic trees (Figure 3a,b).
We narrowed our analyses to a few well-annotated species representing major clades of the
plant kingdom: A. lyrata, A. thaliana, C. rubella, E. salsugineum, P. trichocarpa, G. max, S. lycop-
ersicum, Z. mays, O. sativa, S. moellendorfii, P. patens, C. reinhardtii, V. carteri, M. polymorpha, C.
clementine, P. persica, B. distachyon. METs and VIMs protein sequences were obtained from
the PHYTOZOME database [71] and filtered for the presence of specific PFAM protein
domain: the C-5 cytosine-specific DNA methylase domain (PF00145) for MET proteins and
the SET and Ring finger Associated, YDG motif protein domain (SAD_SRA, PF02182) for
the VIM proteins. Details can be found in the legend of Figures S1 and S2.
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Figure 3. Phylogenetic trees inferring phylogenetic relationships of VIM cofactors (a) and MET (b) DNA methyltransferases
in green lineages. VIM proteins are shaded in blue (a) and MET proteins are shaded in red (b). Bootstrap values are
represented by circles and their corresponding legends. Branches corresponding to additional clades of SAD_SRA domain
proteins or DNA methylase proteins were collapsed. Genomes used for the phylogenetic analyses: Algae (C. reinhardtii,
V. carteri), Livewort (M. polymorpha), Spikemoss (S. moellendorfii), Earthmoss (P. patens), Monocot (B. distachyon, O. sativa,
Z. mays), Dicot (C. clementine, G. max, P. trichocarpa, P. persica, S. lycopersicum), Brassicacea (A. lyrata, A. thaliana, C. rubella,
E. salsugineum). The full trees can be found in Figure S1 for the SAD_SRA domain proteins and in Figure S2 for the DNA
methylase domain proteins.

The resulting trees show that both METs and VIMs clades are present in unicellular
algae and have most likely be inherited from a common eukaryotic ancestor. Additionally,
the SAD_SRA domain protein tree illustrates an early divergence of the VIM proteins
with the other plant SAD_SRA proteins like other histone methyltransferases such as
KRYPTONITE (KYP) proteins (H3K9 methyltransferases) (Figure S1). Similarly, the tree of
plant proteins containing a DNA methylase domain shows a clear separation between the
different classes of plant DNA methyltransferases: DRMs, CMTs and METs (Figure S2).
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In our phylogenic analysis of UHRF homologues in plants, we can see that all plant
genomes have at least one VIM protein (Figure 3a). In contrast to algae, which only possess
one VIM protein, all other plants analyzed have at least two copies. The number of VIM
homologs is particularly expanded in the Brassicaceae relative to other tested plants. While
E. salsugineum only has two copies, A. lyrata has five copies and even six copies are present
A. thaliana and C. rubella genomes. They are organized in three clades: a VIM2/3/4 clade, a
VIM1/5 clade and a VIM6 clade (Figure 3a). In Arabidopsis, redundancy between VIM
genes from different clades was observed. A reduction of CG methylation similar to the
one observed in met1 mutant was obtained only in the triple vim1;vim2;vim3 mutants and
not in single vim mutants [9,58,59]. RNA-seq analysis further showed an upregulation of a
similar set of genes between met1 and vim1;vim2;vim3 mutants [72]. Altogether, these data
suggest that VIM1, VIM2 and VIM3 proteins in Arabidopsis are the main contributors in
maintaining CG methylation, potentially by recruiting MET1 as demonstrated for animal
counterparts. Unexpectedly, VIM5 ubiquitin ligase activity targets MET1 for degradation
rather than to recruit this enzyme to methylated sequences [64]. As no data are currently
available for VIM from any other plants, it is unclear whether such novel function is present
outside Arabidopsis.

Similarly to VIM proteins, at least one DNA methyltransferase homolog to DNMT1
is detected in all the selected species of algae and land plants (Figure 3b) [56]. Although
only one MET copy can be detected in some species, the MET gene family has generally ex-
panded in land plants. In Brassicaceae, three MET homologs are detected in Capsella rubella
or Eutrema salsugineum and up to four in Arabidopsis thaliana (Figure 3b). Interestingly,
they are divided in two separate groups: a MET1 group and a MET2/3 group, suggesting
diverging function. Akin to mammals, knock-out mutants in the single MET gene in early
land plants such as Marchantia or Physcomitrella, display a genomewide demethylation
and pleiotropic developmental phenotypes [73,74]. In rice, mutations in each MET gene
(MET1a, MET1b) lead to methylation pattern defects but only met1b generated a marked
developmental defect [75,76]. This suggests that duplication of rice MET genes could have
led to the emergence of a distinct non-overlapping function during development. The rea-
son why the MET gene family expanded through evolution and why angiosperm plants are
maintaining several copies of potentially functional methyltransferases remains unknown.

Altogether these phylogenetic relationships suggest that homologues of DNMT1 and
UHRF1 are present in plant genomes surveyed displaying CG methylation and have been
duplicated in some species during plant evolution. Much is still to be done to determine if
these novel MET and VIM proteins are devoted to CG methylation maintenance or have
evolved other specific functions.

5. Alternative MET/VIM Pathways during Reproduction

In flowering plants such as the model plant Arabidopsis, reproduction is initiated
late in development when the flower generates organs producing the gametes after two
successive phases [77]. During the first phase, called sporogenesis, a diploid germline
precursor is selected to undergo meiosis and form the germ cells. During gametogenesis,
the male and female germ cells undergo several mitoses to generate, respectively, two
male gametes within a vegetative cell in the pollen grain and two female gametes (the
egg cell and the central cell) and accessory cells in embryo embedded in the ovule. Upon
fertilization, one sperm cell fuses with the egg cell, the second with the central cell to
generate, respectively the embryo and the endosperm in a seed. The endosperm is a
transient tissue supporting the growth of the embryo akin to the mammalian placenta. In
contrast to the embryo, the endosperm does not contribute to the next generation [7,78].

Although DNA methylation patterns are mostly stable over many generations in
plants [79–82], genome-wide DNA methylation profiling of reproductive cells (male meio-
cytes, sperm, egg and central cells) and fertilization products (embryo, endosperm) revealed
highly dynamic DNA methylation patterns in reproductive tissues [83–90].
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A genome-wide DNA demethylation was detected in isolated central cells, mainly at
non-CG sequences in Arabidopsis [91] due to an active demethylation by the DNA demethy-
lase DEMETER (DME) expressed in the central cell but barely in the endosperm [29,92].
A passive demethylation was proposed to contribute to this hypomethylated state as the
main methyltransferase MET1 is downregulated before central cell differentiation [93,94].
However, expected CG hypomethylation in DME-independent target sequences was not
observed, suggesting that the hypomethylated central cell genome only results from an
active demethylation process [91]. As MET1—but not DME—remains expressed in the
sperm cells [92,93], parental genomes are differentially methylated in the young endosperm.
This asymmetry in DNA methylation can lead to a biased expression of genes depending
on their parental origin, which corresponds to a phenomenon called imprinting also en-
countered in the mammalian placenta [7,95]. After fertilization, the initiated demethylation
in the central cell is amplified in the endosperm at non-CG sequences but only slightly
affected at CG sequences [91].

Interestingly, the three homologs of MET1 in Arabidopsis (MET2a, MET2b, MET3) are
expressed in cell types where the main methyltransferase MET1 is not. MET2a and MET2b
are detected in the central cell while MET3 is detected in the endosperm [94]. These three
proteins could constitute alternative CG methylation maintenance pathways during sexual
reproduction and potentially influence gene imprinting or seed development. Although the
activity of MET1 homologs has not been assessed yet, met2a mutant has a limited reduction
of methylation at selected transposons [96] and a met3 mutant called MATERNAL EFFECT
EMBRYO ARREST 57 (MEE57) shows an arrest in endosperm development [97]. Expression
data for MET proteins of other plants seem to suggest that duplicated MET genes also share
a complementary expression pattern. In wheat, the nine MET1-like genes are members
of three paralogous groups: MET2 (a, b and d), MET5 (a, b and d) and MET7 (a, b and
d) [60]. Genes of MET2 group are enriched in vegetative tissues while genes of MET5
and MET7 are, respectively expressed in grains and reproductive tissues [60]. In Brassica
rapa, BrMET1α is broadly expressed during plant development, while BrMET1β is only
expressed in pistils [98].

On the other hand, the expression pattern of the VIM gene family in plants is very
limited and restricted to Arabidopsis. The three canonical genes VIM1, 2 and 3 are ex-
pressed at least during the vegetative phase [65] and VIM5 is specifically expressed in
Arabidopsis endosperm [99]. Further investigations are needed to clarify the contribution
of the different MET/VIM proteins to CG methylation maintenance and understand why
the MET/VIM gene family diversified during plant evolution but not in mammals.

6. Conclusions and Perspectives

Tremendous efforts have been concentrated towards the elucidation of the pathways
contributing to non-CG methylation in plants and revealed that they differ from those
acting in mammals. In contrast, the pathways maintaining CG methylation in plants
remain poorly understood although the core players of CG methylation maintenance
DNMT1/MET and UHRF1/VIM are well-conserved between mammals and plants, and
that several distinct molecular mechanisms are now determined in mammals. Interestingly,
the MET and VIM gene families have diversified during land plant evolution compared
to the animal kingdom. The consequences of such an evolutionary trend that offer the
potential for functional diversification in CG methylation pathways remain to be explored.
This knowledge should also bring insights into whether the differences between the life
cycles and lifestyles of animals and plants were key drivers towards the diversification of
CG methylation machinery in plants.

Supplementary Materials: Supplementary Materials are available online at https://www.mdpi.
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