
HAL Id: hal-04748386
https://hal.science/hal-04748386v1

Submitted on 25 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Reduced Basis Method for Aeroacoustics with
Impedance Boundary Conditions
Rémi Roncen, Philip Edel, Christophe Peyret

To cite this version:
Rémi Roncen, Philip Edel, Christophe Peyret. Optimal Reduced Basis Method for Aeroacoustics
with Impedance Boundary Conditions. AIAA Journal, 2023, 61 (2), pp.640-652. �10.2514/1.J062138�.
�hal-04748386�

https://hal.science/hal-04748386v1
https://hal.archives-ouvertes.fr


Optimal Reduced Basis Method for Aeroacoustics with
Impedance Boundary Conditions

Rémi Roncen ∗

ONERA, Multi-physics department for energetics, Toulouse University, F-31055, Toulouse, France

Philip Edel †

ONERA, Information processing and systems department, Paris Saclay University, F-91123 Palaiseau, France
Sorbonne University, Paris University, CNRS, Jacques-Louis Lions Laboratory (LJLL), F-75005 Paris, France

Christophe Peyret ‡

ONERA, Aerodynamics, aeroelasticity, acoustics department, Paris Saclay University, F-92320 Châtillon, France

Solving the linearizedEuler equations in theharmonic frequencydomain amounts to solving
a large linear system. Doing so repetitively can be costly, especially when some parameters need
to be varied (e.g., the acoustic impedance of a liner), such as in optimization and impedance
eduction problems. To accelerate the calculations, the equations can first be projected onto a
basis of reduced dimension, only requiring a limited number of full solutions called snapshots,
calculated at different impedance values. This paper is concerned with finding an optimal
set of impedances allowing the greedy creation of a reduced basis that leads to the most
accurate surrogate modeling in the least number of calls to the direct solver. The optimal set of
impedance values is first obtained on a 2D duct configuration, and numerical verification tests
are performed on a three-dimensional engine nacelle.
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Nomenclature
Abbreviations:

BC Boundary Condition

DG Discontinuous Galerkin

HF High Fidelity

IL Insertion Loss

LEE Linearized Euler Equations

PDE Partial Differential Equations

RB Reduced Basis

re(), im() Functions taking the real and imaginary part of a complex number

SPL Sound Pressure Level

Variables:

Ax, Ay, B, S Matrices of the LEE

α Acoustic attenuation coefficient, dB
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c0 Mean speed of sound, m.s−1

∆α Absolute difference between two values of acoustic attenuation coefficient , dB

∆2
α Average of ∆2

α

∆p Quality index based on the pressure residual

ε p Approximation error on the pressure

f Frequency, Hz

γ Ratio of specific heats

H Height of aeroacoustic bench, m

L Length of the liner sample, m

i Acoustic intensity

j Complex unit number

L̃, L̃
1
, L̃

2
Discretized operators of the DG-LEE

N Dimension of the discretized DG-LEE system

ω Angular frequency, rad.s−1

p̃ Acoustic pressure, Pa

p Polynomial order of a DG cell

ϕ̃ State vector of the LEE

Ψ̃ Acoustic quantity of interest

R̃ Acoustic reflection coefficient

r̃ Discretized residual of the DG-LEE

r̃ Residual

r̃u, r̃v, r̃p Velocity and pressure components of the residual

ρ̃ Acoustic density, kg.m−3

ρ0 Mean density, kg.m−3

S Discretized source vector of the DG-LEE

S1, S2 Surfaces over which the acoustic intensity is evaluated, m2

Θ Parameter space of a liner geometry

ũ Acoustic velocity vector

u0 Mean velocity vector

U0,V0,W0 Mean flow speeds in the x, y and z directions, m.s−1

ũ, ṽ, w̃ Acoustic particle velocities in the x, y and z directions, m.s−1

Vm Reduced basis matrix of size (N × m)

ṽn Normal acoustic particle velocity, m.s−1
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D, Ξ Bounded sets on which the residual is evaluated

ξ POD mode of the DG-LEE

NΞ Number of elements in the discrete set Ξ

x, y, z Spatial coordinates

Z̃ Normalized acoustic surface impedance

I. Introduction
Despite decades of substantial improvements in noise reduction technologies [1], aircraft noise remains a significant

issue for communities neighboring airports. More generally, acoustic noise is a disturbance that interferes with speech
and cognitive performance [2], and an increasing interest is dedicated to noise mitigation. In aircraft, the two main
sources of noise are the airframe and the engine. For the latter noise contribution, acoustic liners are typically placed
within the engine nacelle.

Acoustic liners are passive sound absorption devices mounted within the walls of complex systems such as engine
nacelles, jet pumps, and can also be found in wind tunnels [3]. Acoustic liners are oftentimes made of a perforated
face-sheet placed over a rigidly backed cavity, but more complex configurations have been imagined to improve the
liner’s efficiency over an extended frequency range [4]. For the acoustic liner designer, the goal is to choose the physical
properties of the different elements leading to an optimal noise reduction.

Due to the small scale of the perforations in acoustic liners, a single complete direct numerical investigation of
the liner’s efficiency would be too computationally expensive for industrial applications. Full scale optimization
problems are out of reach. Fortunately, a different approach can be used, consisting in representing acoustic liners as
a homogenized boundary condition (BC), using the concept of surface impedance. Assuming that the liner can be
treated macroscopically and that it is locally reacting, i.e., no acoustic wave propagation in the transverse direction, the
surface impedance Z̃ is defined in the frequency domain as the ratio of the acoustic pressure p̃ and the normal acoustic
particle velocity ṽn at a liner surface. The impedance, obtained experimentally or as a function of the liner’s geometric
properties [5, 6], fully characterizes the acoustic behavior of the liner.

For the acoustic liner designer, the main task is to select the geometrical properties of the liner that best meet the
noise cancellation requirements, i.e., a target noise reduction for a given frequency range at a certain flight condition,
while satisfying some integration constraints (total thickness, weight, surface porosity, etc.). To do so, the system
(engine nacelle, duct, wind tunnel) can first be characterized numerically at all frequencies of interest, for a large range
of impedance values that potential liner candidates could attain. Following this large series of direct calculations,
acoustic quantities of interest can be mapped onto the impedance real and imaginary parts. One can then test different
liner models, changing their geometric properties to evaluate their impedance, and use the impedance map to evaluate
acoustic quantities. For large systems, where the cost of a high-fidelity (HF) calculation is important, the creation of
such impedance maps can become intractable.

The second task that arises in aeroacoustic problems involving liners is that of impedance eduction: using
experimental data retrieved in an aeroacoustic duct, one can indirectly measure the liner’s impedance via its influence
on the acoustic field [7–14], by solving an inverse problem. This experimental-numerical step is all the more important
because liner impedance has been shown to depend on the grazing flow profile [15–17], the sound pressure level
(SPL) [15, 18, 19], and even the direction of the propagating waves [20–25]. This eduction process often requires an
accurate numerical model, and many solver evaluations. Due to the influence of the flow on the educed impedance value,
there is a potential interest in using fully 3D calculations in impedance eduction with resolved flow profiles, instead of
2D calculations that oftentimes use a uniform flow profile. Adding a dimension to the problem is bound to slow down
all the eduction codes, and a faster approach is required.

Reduced order models (ROM) are thus necessary for problems of practical interest, where the system complexity
has to be reduced. Model order reduction is a well-known approach to relieve the computational burden associated with
numerous HF computations for a vast set of parameter values. It consists in replacing the costly HF solver by a ROM
featuring much fewer degrees of freedom [26]. Properly built, a ROM is able to approximate the HF solution for any
parameter value at very low cost and with high accuracy. In the context of noise cancellation in large systems, one
could benefit from such a model reduction when performing the optimization of the properties of an acoustic liner, for
instance. The approach followed in this work to reduce the computational effort is the reduced basis (RB) method. In
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this method, the HF solution at any parameter value is approximated by a linear combination of a small number of HF
solutions computed for a small set of parameter values [27]. The RB method has been successfully applied in acoustics
to the parametrized Helmholtz equation (see e.g. [28, 29]). To the best of our knowledge, Ref. [13] was the first to apply
the RB method in the context of impedance-parametrized linearized Euler equations (LEE). The authors reported a
speed-up factor of the order of 103, which was obtained at the price of 30 calls to the HF solver, where the impedance
was randomly sampled to generate the basis.

The main novelty of the present work, compared with that of Ref. [13], is the use of a greedy sampling strategy in
order to minimize the number of calls to the HF solver [27, 30, 31]. We address the critical question of the selection of
snapshots, i.e., how to choose the impedance values at which the direct solver needs to be evaluated? A numerical
investigation is set up to show the benefits of the greedy approach, which uses a particular indicator to iteratively select
the optimal impedance values.

The aeroacoustic problem is first recalled in Sec. II, and a Discontinuous-Galerkin (DG) harmonic solver is presented
to solve the LEE with an impedance BC in the frequency domain. In Sec. III, the RB technique is detailed. The crux of
the problem is addressed in Sec. III, where the residual-driven greedy approach is detailed. In Sec. IV, the technique is
applied on a 2D duct configuration to obtain an optimal set of impedance values, and different cases are explored. This
optimal set is then tested in a fully 3D configuration of an engine nacelle in Sec. V to evaluate the generalizability of the
optimal set of impedance values. Conclusions are drawn in Sec. VI.

II. High-fidelity solver
This section deals with the introduction of the HF solver, relying on a high-order numerical scheme that discretizes

the LEE onto a mesh. The 2D duct configuration used for numerical validation purposes is presented, as well as the
general strategy allowing one to only create the system matrices once.

The direct problem consists in numerically calculating the acoustic fields (pressure and velocity) in a grazing flow
duct, in the presence of a liner. A locally reacting liner is classically represented by an impedance BC. The 2D LEE are
solved using a harmonic DG scheme [11, 13], succinctly recalled here for completeness.

A small scale aeroacoustic bench is considered for the present numerical investigations. A schematic of ONERA’s
B2A bench is shown in Fig. 1, along with the area where measurements can be performed (microphone measurements
on the wall opposite the liner). An example of the 2D numerical mesh is also given (done in Gmsh [32]). The liner is
located at the bottom wall (y = 0) and has a length of L = 150 mm. The duct cross-section is square with a size of
H = 50 mm.
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Figure 1 a) Schematic of the B2A aeroacoustic bench; b) Schematic of the mesh used.

The method description presented in this section is mostly inherited from previous work in Ref. [13, II.B], with the
distinction that the current solver does not use an hypothesis of constant ambient speed of sound and density to simplify
the equations, hence the difference in the B matrix. The 2D simulations are carried out in the (x, y) plane at the center
of the duct span (see Fig. 1).

The LEE, written in non-conservative form with an e jωt time dependence (ω = 2π f , with f the frequency in Hz)
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are given by
jωϕ̃ + Ax∂x ϕ̃ + Ay∂y ϕ̃ + Bϕ̃ = S, (1)

where j is the complex unit, ϕ̃ is the state vector with the tilda mark ·̃ denoting a frequency dependent quantity, Ax, Ay, B
are flux matrices of size R3×3, and S is a source vector injecting waves in the domain. The matrices read

Ax =
*...
,

U0 0 c0

0 U0 0
c0 0 U0

+///
-

, Ay =
*...
,

V0 0 0
0 V0 c0

0 c0 V0

+///
-

, B =
*...
,

∂xU0 ∂yU0 ∂xc0

∂xV0 ∂yV0 ∂yc0
c0
ρ0
∂x ρ0

c0
ρ0
∂y ρ0

γ−1
2

(
∂xU0 + ∂yV0

)+///
-

. (2)

In Eq. 2, U0 and V0 are the x and y components of the mean flow velocity, ρ0 is the ambient fluid density, c0 the ambient
fluid speed of sound, and γ is the heat capacity ratio. Throughout the text, the 0 subscript denotes a mean flow quantity.
Components of the state vector ϕ̃ =

(
ũ, ṽ, p̃

ρ0c0

)
represent the acoustic perturbations around the mean flow, with ũ, ṽ the

x and y acoustic velocities, and p̃ the acoustic pressure. The present study is restricted to an incompressible mean flow.
Due to the homentropy condition, the energy equation is replaced by the state equation p̃ = c2

0 ρ̃, with ρ̃ the density
perturbation around the mean flow density ρ0.

A shear mean flow profile with a null mean flow velocity at the walls is considered, so the impedance BC writes

p̃ = ρ0c0 Z̃ ṽn, (3)

where ṽn is the normal component of the acoustic velocity (pointing into the liner, thus equal to −ṽ |y=0 in the present
case). The impedance Z̃ is normalized by ρ0c0 in this work. It is unpractical to work directly with the impedance,
since the quantity is unbounded. In Refs. [33, 34], it was shown to be more efficient to consider instead the reflection
coefficient R̃, defined by

R̃ =
Z̃ − 1
Z̃ + 1

, R̃ ∈ C, ���R̃
��� ≤ 1. (4)

In the remainder of this study, the reflection coefficient is used to represent an impedance BC.
A DG scheme is chosen to solve Eq. 1 and the associated BCs. Discontinuities are allowed at the interface between

two elements, and the communication between elements is enforced via a numerical flux. Let us denote N the number
of degrees of freedom which depends on the number of mesh elements (in the 2D case, ∼ 103 − 104) and the DG order
(here p = 2). In this situation, the discretization of Eq. 1 is

L̃
(
R̃
)
ϕ̃

(
R̃
)
= S, (5)

where a single underbar denotes an array element of size N , while a double underbar denotes a matrix of size N × N .
L̃

(
R̃
)
is a complex, non-hermitian and R̃-dependent matrix, and ϕ̃

(
R̃
)
∈ CN denotes the R̃-dependent numerical

approximation of acoustic pressure and velocity fields. Note that the source represented by S ∈ CN does not depend on
the reflection coefficient. It is to be noted that the matrix L̃

(
R̃
)
has an explicit dependency in R̃ , since one can write

L̃
(
R̃
)
= L̃

1
+ R̃L̃

2
, where L̃

1
and L̃

2
are two complex R̃-independent N × N matrices. This linear relationship comes

from the flux matrix of the reflection BC, as shown in [13, Eq. 4]∗. As a result of this linear dependency, one only has
to create L̃

1
and L̃

2
once, avoiding their potentially costly assembly each time one changes the value of R̃.

The DG method can handle discontinuities at hard-soft wall interfaces using numerical fluxes [11, 35–37]. These
fluxed properly enforce communication between neighboring cells, and with the BCs. The DG method stability was
shown in Ref. [38]. To avoid aliasing errors that could cause instabilities when a shear grazing flow is present, high
order quadrature rules are used (see e.g., Ref. [39, Sec. 5.3]).

III. Reduced basis approach
Solving the partial differential equations (PDEs) described by Eq. 1 repetitively would be prohibitively long,

especially when a large number of frequencies and different Mach numbers are considered to design a liner that is
optimal in a wide range of conditions. Without any acceleration, a single evaluation of the PDEs takes about a second in
a simple 2D configuration, at one frequency/flow profile. A quantity of interest Ψ̃

(
R̃
)
can then be derived from the

knowledge of the acoustic fields, and could be for example the insertion loss (IL†) of the system to be optimized. While
∗Note that in Ref. [13], we used the notation β instead of R̃.
†The IL is typically defined as the difference between the SPL of a rigid case configuration and the SPL of a lined configuration, in . High values

of IL correspond to efficient liners.
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it may seem fast, doing Neval function evaluations could still easily require over an hour without acceleration, for each
frequency/Mach number. In an optimization problem, the number of required evaluation depends on the complexity of
the liner geometry, represented by its parameter space Θ: R̃ = R̃ (Θ). Instead of performing an optimization directly on
Θ, i.e., optimizing Ψ̃

(
R̃ (Θ)

)
, it is much more efficient to split the problem into two sub-problems, due to the time-scale

disparity between the calculations of R̃ (Θ) and Ψ̃
(
R̃
)
. As discussed in the introduction, impedance maps of acoustic

quantities need only be created once (or rather, reflection coefficient maps), i.e., the calculation of Ψ̃
(
R̃
)
can be done

offline to cover a large number of reflection coefficient values in the unit complex circle. Then, an interpolation tool can
be used to return Ψ̃

(
R̃
)
for all possible values of R̃, at minimal cost. This map-building step is the numerically intensive

operation dominating the cost of the optimization, since calculating R̃ (Θ) is usually instantaneous on current machines.
Another advantage of this problem splitting approach is that one does not have to restart the problem from scratch when
attempting the optimization of another type of liner, since the reflection coefficient maps of the observation operator can
be reused.

To shorten the time-intensive operations described above, an efficient representation of the discretized state of the
system ϕ̃ is obtained at a lower cost by first building a reduced basis using the method of snapshots, as explained in
Pinnau [40] and used for Bayesian inference in the context of liner impedance eduction in Ref. [13]. The approach is
summarized again here for completeness.

The full discretized DG system (Eq. 5) is parameterized by the unknown parameters, here the reflection coefficient R̃.
A set of n parameter samples

{
R̃(1), . . . , R̃(n)

}
is generated (i.e., n different complex values of the reflection coefficient

are picked), yielding the associated system states, or snapshots:
{
ϕ̃(1), . . . , ϕ̃(n)

}
. Following standard proper orthogonal

decomposition (POD) practice [40], a singular value analysis is performed to extract the m < n dominant modes{
ξ (1), . . . , ξ (m)

}
and a reduced basis is defined as Vm =

[
ξ (1) |· · · | ξ (m)

]
∈ CN×m . Approximating Eq. 1 by a Galerkin

projection yields

Vm
∗L̃

(
R̃
)

Vm ϕ̃m
(
R̃
)
= Vm

∗S, (6)

where ∗ stands for the conjugate transpose. The solution ϕ̃m
(
R̃
)
∈ Cm of Eq. 6 is obtained via inversion of the m × m

matrix Vm
∗L̃

(
R̃
)

Vm . The latter matrix can be efficiently assembled for any value of R̃ once the two R̃-independent

m × m matrices Vm
∗L̃

1
Vm and Vm

∗L̃
2
Vm have been precomputed, thanks to the explicit dependency of L̃

(
R̃
)
in the

reflection coefficient R̃. This allows the approximation of the state ϕ̃ by a linear combination of vector elements of Vm as

ϕ̃
(
R̃
)
≈ Vm ϕ̃m

(
R̃
)
. (7)

When the decay of the singular values is fast, one may retain only a small number m of POD modes, which enables
m � N and so the reduced system represented by Eq. 6 is much faster to solve than the full system, while maintaining a
high level of accuracy.

The main issue with POD is that the set
{
R̃(1), . . . , R̃(n)

}
must be sufficiently large for

{
ϕ̃(1), . . . , ϕ̃(n)

}
, the n

snapshot solutions, to adequately account for the parametric variations. In practice, this amounts to computing a large
number n of HF solutions, when at the end, only a small number m < n of modes are retained for the reduced basis.
This limitation is tackled in Section III.

Residual-driven greedy selection
The greedy RBM presented in this Section circumvents the issue of needing a high number of snapshots, by

iteratively selecting the reflection coefficient values
{
R̃(1), . . . , R̃(n)

}
at which HF solutions are required, maintaining

their number n optimally low. All computed snapshot solutions
{
ϕ̃(1), . . . , ϕ̃(n)

}
are kept in the reduced basis, which

corresponds to m = n, so the process does not require singular value analysis.
Let us define the RB residual r̃ , given a RB space Vm of size m, as

r̃ = L̃
(
R̃
)

Vm ϕ̃m
(
R̃
)
− S, (8)

where ϕ̃m solves Eq. 1. Similarly to the state variable, which has three components ϕ̃ =
(
ũ, ṽ, p̃

ρ0c0

)
leading to the

DG-LEE state variable ϕ̃ ∈ CN , we note r̃ =
(
r̃u, r̃v, r̃p

)
, leading to the discretized state representation in r̃ ∈ C3×Nw ,
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with Nw the number of degrees of freedom on the wall opposite the liner, where the pressure has been extracted to
evaluate the residual. In this numerical investigation, the focus is placed on the pressure component r̃p ∈ CNw of the
residual, extracted from r̃, which in fact depends on both the reflection coefficient value R̃ and the RB space Vm , i.e.,

r̃p = r̃p
(
R̃,Vm

)
. The reflection coefficient R̃ takes values in some compact set D ⊂ C. It is proposed to measure the

quality ∆p of a given RB space Vm in terms of the maximum pressure residual over the compact set D ⊂ C, that is

∆p

(
Vm

)
=

max
R̃∈D

r̃p
(
R̃,Vm

)2

pin
, (9)

where pin is the amplitude of the incident pressure wave, and with a low value of ∆p indicating a high quality of the
approximation. To perform the maximization in Eq. 9, the global optimization algorithm pyMOO is selected [41].
The residual norm for any reflection coefficient value is inexpensive to compute, owing to the affine dependency in R̃
satisfied by the operator L̃

(
R̃
)
, allowing the efficient offline/online decoupling of the computational effort in the RB

method [27].
There are two selection strategies that were explored to select the snapshots:
� random selection of the reflection coefficients, followed by POD,
� residual-driven greedy selection [30, 31].

This last strategy consists in the following. First, the HF solution ϕ(1) obtained by solving Eq. 5 at some initial
reflection coefficient value R̃(1) ∈ D is computed and the RB is initialized to V1 = ϕ

(1) . Here, the value selected for the

initialization is R̃ = −0.998, which corresponds to Z̃ = 10−3. The reason for this choice will be detailed in Sec. IV.A.
Then, for n > 2, the algorithm is updated by finding

R̃(n) = argmax
R̃∈D

r̃p
(
R̃,Vn−1

)2
, (10)

where the arg max operator selected the value of R̃ that maximizes
r̃p

(
R̃,Vn−1

)2
. Then, the HF solution ϕ̃(n) is

obtained by solving Eq. 5 at this reflection coefficient value, and the RB space is updated via the concatenation of Vn−1

and ϕ̃(n):

Vn =

[
Vn−1, ϕ̃

(n)
]
. (11)

The iterations may be stopped once the quality indicator ∆p
(
Vn

)
has reached a prescribed tolerance. Notice from

Eq. 10 that the RB is successively enriched with solutions at reflection coefficient values leading to the worst (i.e., the
highest) residual. An intuitive rationale behind this choice is that the approximation error and the residual are positively
correlated, meaning that reducing one amounts to reducing the other (this is checked a posteriori in Sec. IV.C). Our goal
is to minimize the approximation error, and thus the residual. To do so, we elected to build the RB by selecting the value
of reflection coefficient that maximizes the residual (hence, the error) of the current iteration of the RB, in an attempt to
improve the approximation of the next iteration of the RB in this region of high error. The mathematical rationale for
the success of this greedy selection strategy can be found in the works of Binev et al. [30] and Buffa et al. [31].

IV. Exploration of the greedy selection method for an aeroacoustic problem
This Section deals with the analysis of the greedy-RB method for aeroacoustic problems. In Sec. IV.A, a first

example of a 2D duct without flow is considered at 500 Hz, with a single wave-inlet sending a plane wave, grazing
over a liner of 15 cm. The configuration matches the experimental bench B2A available at ONERA, and was used in
Ref. [13]. Noticing that the minimal value of the real part of the impedance, coined resistance, can be an important factor
contributing to the quality of the resulting RB, Sec. IV.B deals with a constrained greedy-RB where a minimal value of
the resistance is selected. From an experimental standpoint, the results are interesting to liner designers, especially in
typical aeronautical conditions with high speed flows and SPL, which often result in high values of the resistance. In
Sec. IV.D, the configuration is first complexified by considering two consecutive and distinct impedance BCs (each of
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length 7.5 cm), still at 500 Hz, and the greedy-RB approach is applied with two different impedance values to optimize.
In Sec. IV.E, a different 2D duct is considered, with two wave-inlets at a frequency of 2 kHz, leading to non-plane waves
in the computational domain. A flow is also present, with a maximum Mach number of 0.3 at the centerline.

A. Aeroacoustic 2D duct
To illustrate the interest of the greedy selection algorithm, the 2D duct geometry defined in Sec. II is first considered.

A plane wave at a frequency set to 500 Hz is imposed at the inlet. The mean velocity profile is taken constant and equal
to 0 everywhere. The 2 snapshot selection strategies are tested, namely “random” and “greedy”. The random strategy is
repeated 50 times, each time with a new set of snapshots.

A user might not always be interested in the full solution of the problem. In practice, the solution sometimes only
needs to be accurate at the microphone locations where the experimental data is obtained, i.e., where the quantity of
interest Ψ is defined. As such, two different residuals can be considered: one where the full pressure field is used to
calculate the maximum residual, and one where only the pressure on the wall opposite the liner is used. Since the results
were similar in trend ‡, the analysis is only performed with the residual calculated on the opposite wall pressure. The
convergence analyses of the maximum residual over the domain D =

{
R̃ ∈ C, ���R̃

��� ≤ 1
}
for the two snapshot-selection

strategies are displayed in Fig. 2, along with the location of said snapshots. Note that in the case of the random strategy,
the maximum residual is evaluated a posteriori for comparison purposes, but is not used to update the RB, as opposed
to the greedy approach. The best set of snapshots obtained in the random strategy, leading to the lowest residual, is
displayed with cross markers in Fig. 2, while the remaining values of reflection coefficients and residuals are in gray.

−1.0 −0.5 0.0 0.5 1.0
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−1.0
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0.0
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1.0
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(a) Location of the snapshots in the reflection coefficient space.

0 10 20 30
m

10−9

10−7

10−5

10−3

10−1

101

103
∆

p

( V m
)

Random

Random, best

Greedy

(b) Diminution of the maximum residual as the number of snapshots
increases.

Figure 2 Analysis of the snapshot-RB convergence. Only the pressure field on the wall opposite the liner is
used to calculate the maximum residual.

Compared with the random strategy, the residual-driven greedy selection leads to an improved RB after a few
iterations, as shown in Fig. 2b. As stated previously, when only the upper wall pressure is considered, the maximum
residual is lower than when the entire pressure field is considered. The associated results, which are not shown for
conciseness, gave very similar trends in both the locations of the snapshot and the residuals. When considering the
entire domain to evaluate the residual, as opposed to only the upper wall, a high residual is located near the impedance
discontinuities. Indeed, near an impedance discontinuity, a strong variation of the velocity fields, and, to a lower extent,
the pressure field, is observed: the vertical component of the velocity field is discontinuous. This local “feature” seems
difficult to encompass in the projection strategy of the snapshot approach, thus leading to a high residual. Interestingly,

‡The residual is lower when only the opposite wall is considered, as expected since it represents a subset of the total solution
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the snapshot locations, i.e., the reflection coefficients used to create the snapshots, tend to cluster near R̃ = −1 in Fig. 2a.
This corresponds to impedance values close to Z̃ = 0, associated with the largest possible impedance discontinuity.
Numerically speaking, the treatment of Z̃ = 0 is delicate, since it leads to an infinite normal velocity ṽn at the liner BC §,
and ṽn = 0 at the wall BC. Numerical dissipation naturally occurs and smooths this velocity discontinuity, but no mesh
convergence can be obtained. Indeed, refining the mesh locally leads to less dissipation, and a higher peak of velocity. It
has to be noted that physically, passive acoustic liners cannot exactly have Z̃ = 0 due to the presence of viscous effects.
As a result, we arbitrarily enforced a lower bound to the resistance, as re

(
Z̃
)
≥ 10−3 in the numerical analysis that led

to Fig. 2. The effect of the choice of this lower bound is more closely studied in Sec. IV.B. The clustering of snapshots
near R̃ = −1 validates a posteriori the choice of initial value, Z̃ = 10−3 in this case, since it is where the residual is the
highest. In the initial study leading to this work [42], the initial snapshot was evaluated at R̃ = 0 (Z̃ = 1) due to the
relative importance of this value to acousticians, since at normal incidence this represents a total absorption. While the
trend for the location of snapshots was similar, the snapshot calculated at R̃ = 0 might be wasted numerical resource in
terms of convergence of the greedy algorithm in this case.

B. Constrained greedy selection of the snapshots
In this section, an attempt is made at determining a set of reflection coefficient values that are optimal for a subset of

problems, where the resistance is known in advance to be larger than 0. Indeed, in aeroacoustic problems, the acoustic
liner is subject to a shear grazing flow, which in turn changes the impedance value. In most impedance models [15–17],
this change is mostly reflected on the real part of the impedance, where an increase is observed. In the presence of a
high SPL, models also tend to yield an increase in the resistance [15, 18, 19]. As a result, the liner designer might know
in advance, for a given application (engine nacelle, jet pump), the minimal value of the resistance.

The greedy strategy for snapshot selection is thus re-used, but only on the subset of reflection coefficient values
corresponding to a given minimal resistance value (a constrained global optimization is performed). Following the
reasoning in Sec. IV.A, the initial snapshot is evaluated at Z̃ = min

(
re

(
Z̃
))
, which corresponds to the “worst case”

in terms of residual (this was verified a posteriori by changing the initial snapshot). Different minimal values are
considered. The frequency of the input plane wave is set once again to 500 Hz, and a null mean flow is considered. The
corresponding greedy-optimal selected reflection coefficients and impedance values are displayed in Fig. 3, and the
corresponding decrease of the residual is shown in Fig. 4.
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(a) Location of the snapshots in the reflection coefficient space.
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(b) Location of the snapshots in a section of the impedance space.

Figure 3 Location of the optimal snapshots, for different minimal values of the resistance.

§Note that at normal incidence of an acoustic wave, one would have p̃ = 0 and thus avoid the problem.
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Figure 4 Diminution of the maximum residual as the number of snapshot increases.

Note that in Fig. 3, the reflection coefficient values that do not further improve the residue are not displayed, for
improved readability. As the minimum of resistance re

(
Z̃
)
is increased, the convergence of the maximum residual

value is faster (only 7 iterations of the greedy selection are necessary when re
(
Z̃
)
> 1). This was expected, since the

impedance discontinuity is not as marked when re
(
Z̃
)
> 1, meaning the pressure field features are smoother and thus

easier to be projected onto a linear basis. In all cases, the greedy algorithm seems to converge close to the imposed
constraint on the resistance value. Table 1 regroups the different values of reflection coefficient and impedance, in
“chronological” order, in terms of building the reduced basis.
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Table 1 Optimally selected values of the reflection coefficient, for different minimal values of the resistance.

min
(
re

(
Z̃
))

0.01 0.1 0.2 0.5 1

m re
(
R̃i

)
im

(
R̃i

)
re

(
R̃i

)
im

(
R̃i

)
re

(
R̃i

)
im

(
R̃i

)
re

(
R̃i

)
im

(
R̃i

)
re

(
R̃i

)
im

(
R̃i

)
1 -0.980 0.000 -0.818 0.000 -0.667 0.000 -0.333 0.000 0.000 0.000

2 -0.788 0.586 -0.113 0.886 0.410 0.797 0.933 0.290 1.000 0.000

3 -0.900 -0.332 0.515 -0.804 0.792 -0.551 0.235 0.659 0.557 0.495

4 -0.937 -0.150 0.954 0.286 -0.288 -0.698 0.287 -0.665 0.350 -0.474

5 0.529 -0.843 -0.588 -0.605 -0.582 -0.366 -0.214 -0.376 0.133 0.336

6 0.942 0.335 -0.767 -0.300 -0.471 0.537 -0.258 0.307 0.095 -0.293

7 -0.638 -0.749 -0.800 -0.180 -0.646 -0.176 0.791 -0.484 0.728 -0.444

8 -0.942 -0.273 -0.790 0.223 0.115 -0.831 -0.305 -0.178

9 -0.956 -0.219 -0.699 -0.449 -0.640 0.204 -0.088 0.514

10 -0.976 -0.091 -0.809 -0.104 -0.618 -0.272 -0.082 -0.518

11 -0.964 -0.178 -0.810 0.099 0.955 0.267

12 -0.970 -0.135 -0.300 -0.820 -0.662 -0.071

13 -0.979 -0.048 -0.788 -0.229 0.006 0.814

14 -0.978 0.056 -0.815 -0.049 -0.449 -0.561

15 -0.973 -0.115 -0.687 0.457

16 -0.980 -0.033 -0.615 -0.573

17 -0.974 -0.101

18 -0.976 -0.073

19 -0.980 -0.009

20 -0.979 -0.022

21 -0.976 -0.060

Interestingly, very similar trends were obtained in tests where the frequency was varied, and where a shear grazing
flow was present. This led us to think that perhaps the set of greedy-selected reflection coefficient values could still
be good candidates in drastically different configurations, i.e., that of a 3D engine nacelle (see Sec. V). Re-using
pre-selected reflection coefficient values has the advantage to allow to bypass the optimization in Eq. 10, which is quite
time consuming for large systems. Prior to considering 3D configurations, an additional validation test case will be
performed in Sec. IV.E with a 2D duct geometry in the presence of a shear grazing flow.

C. Link between residual and error
To assert the adequacy of the residual to guide the greedy algorithm, one must make sure that the overall error of the

ROM is indeed reduced as the residual decreases too. Here, we define the error ε p as the L2 norm of the difference
between the pressure fields at the wall opposite the liner (subscript w) obtained with ROM and with the HF solver, i.e.,

ε p =
p̃w, ROM − p̃w, HF2

pin
, (12)
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where pin is the amplitude of the incident pressure wave. In order to verify the link between error and residual, calls to
the HF solver are performed at each element of a fine discrete set Ξ ⊂ D containing ≈ 1600 elements, i.e., values of R̃
where the residual is evaluated. The calculation is repeated for different values of m, in the same 2D configuration as
the one studied in Sec. IV.B with re

(
Z̃
)
≥ 0.5. The comparison between error ε p and maximum residual ∆p

(
Vm

)
is

plotted in Fig. 5, where each marker corresponds to an element of Ξ (representing ≈ 1600 calls to the HF solver for each
m).
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Figure 5 Residual-error relationship for the 2D case of Sec. IV.A, where re
(
Z̃
)
≥ 0.5 and f = 500 Hz.

There is a positive correlation and an almost linear relationship between ε p and ∆p
(
Vm

)
up to m = 8, which

indicates that the use of the residual to control the greedy selection of snapshots is indeed a proper strategy. We estimate
that machine precision errors are responsible for the loss of linearity after m = 8.

D. Extension to multiple impedances
A common case encountered by liner designers is the simultaneous design of multiple acoustically treated surfaces.

It stands to reason to believe that the optimal impedance can be dissimilar between these surfaces. As a result, one
has more than one impedance to consider during the building of an impedance map, which drastically increases the
number of required calls to a HF solver. In the present section, we evaluate the greedy selection technique when two
different impedances are considered. The test case is again that of Sec. IV.A, however the liner is split in two equal
length BCs, with reflection coefficients R̃1 and R̃2 from left to right respectively in Fig. 1. Convergence results of
the greedy algorithm are displayed in Fig. 6 and compared with the regular case with only one impedance surface.
As expected, an increase in the size of the parameter space led to a increase in the size required by the RB to reach
convergence. Convergence was obtained in less than 30 iterations.
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Figure 6 Residual in the case where two impedance surfaces are present, where re
(
Z̃
)
≥ 0.5 and f = 500 Hz.

The locations of the snapshots are shown for R̃1 and R̃2 in the reflection coefficient space in Fig. 7. While the
locations seem similar to that obtained in the case where a single impedance was considered (see Fig. 3a), a lot more
snapshots are now located near the rigid wall limit R̃ = 1, which, at first, contradicts our previous statement on the
importance of an impedance discontinuity for the residual convergence. However, it is important to remember here that
the values of R̃1 and R̃2 displayed in Fig. 7 are obtained by the greedy algorithm in a particular order. In the case where
multiple impedance surfaces are present, the greedy algorithm converged towards couple of values that exhibited a high
impedance discontinuity in-between the surfaces: this is the case for instance when R̃1 = 1 and R̃2 = −1/3, where a
high impedance discontinuity is reached at the junction between the impedance surfaces, and also between the second
impedance surface and the rigid wall immediately downstream. This observation raises the question as to whether one
should also provide an upper limit to re

(
Z̃
)
when performing this type of optimization, thus reducing the number of

calls to rigid configurations, which can be of lesser interest to the liner designer. It is expected that for impedance
surfaces well apart from each other, the aforementioned effect be less pronounced, and the convergence faster.
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Figure 7 Location of the snapshots in the reflection coefficient space, when 2 impedance surfaces are considered.

13



E. Validation on a 2D problem with flow
To evaluate the possibility of using the optimally selected snapshot values of Table. 1 in a configuration more

complex than that of Sec. IV.A, a comparison between the HF solver and the RB one is made in a 2D case having
different features than the one used until now. The considered geometry is that of a duct having a height of H = 100 mm,
a liner length of 400 mm, and two inlets located on the upper and lower walls, respectively, as shown in Fig. 8. A shear
grazing flow of Mach 0.3 at the centerline is accounted for, flowing from right to left, opposed to the main acoustic
waves seen the liner. A Poiseuille flow is considered, while not realistic, as it is the least demanding in terms of near-wall
meshing (short of considering a uniform flow). Plane waves are imposed on both inlets at a frequency of 2 kHz (was
500 Hz in Sec. IV.A). Due to the orientation of the inlets relatively to the duct and due to the presence of impedance
discontinuities, non plane waves are allowed to propagate, as displayed in Fig. 8, making this configuration a priori
more challenging than the nominal case studied in Sec. IV.A.
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Poiseuille flow profile

}
Averaging zone

Figure 8 Real part of the pressure field and schematic of the treated 2D duct considered for the extended
validation, when Z̃ = 1 (not to scale).

A set of 900 different impedance values is considered, uniformly distributed over re
(
Z̃
)
∈ [0, 4] and im

(
Z̃
)
∈ [−4, 4].

The RB is built using the snapshot values contained in Table 1, in the column corresponding to re
(
Z̃
)
≥ 1, meaning

that the RB size is m = 7. This choice is made in order to test the configuration when the threshold resistance is higher
than the resistance of interest: is the approximation still correct in complex configurations at low resistance?

The indicator selected for display in this test case is an insertion loss (IL, in dB), evaluated downstream of the
liner test section. The IL is the difference between the average SPL when an impedance BC is considered with the
average SPL obtained when a wall BC is taken instead. This quantity is interesting in aeroacoustics, as minimizing it is
key to the efficient design of liners. The SPL average is evaluated over a length of 1 m, as indicated in Fig. 8, which
corresponds to almost 12 wave-lengths. The ILs obtained for both solvers are displayed in Fig. 9.
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Figure 9 Comparison between the ILs obtained with the HF and RB solvers on the extended 2D duct test case.

While the obtained ILs look very much alike, some discrepancies are obtained. Negative values of the IL, which are
only present in Fig. 9b for the RB solver, indicate a gain of energy in the system (the SPL is higher after the liner than it
would be with a rigid wall), which is unphysical. Apart from these two calculations (out of 900), circle in Fig. 9b, the
approximation error is quite low. It is worthwhile to note that despite using the snapshots optimized with the resistance
threshold re

(
Z̃
)
≥ 1, the RB solver can still be accurate for re

(
Z̃
)
< 1. To further investigate the disparity between

solvers, an error index is created as
ε IL = |ILHF − ILRB | . (13)

This error index represents the direct mismatch between solvers, and is quite small at almost every tested impedances.
The log of this error is represented in Fig. 10, along with the log of the average pressure residual, which is averaged in
the same zone as the IL. Even in this extended duct configuration, the residual proves to be an excellent a posteriori
error indicator. If one were interested in the IL at an impedance value where the residual is high, one would need to
perform another call to the HF solver and extend the RB using the approach described in Eq. 11.
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Figure 10 Error and pressure residual obtained with the RB solver on the extended 2D duct test case, with the
snapshots corresponding to the column re

(
Z̃
)
≥ 1 in Table 1. The red circles mark the location of snapshots

contained within the bounds of the considered impedances. One of the snapshots (Z̃ = ∞ associated to R̃ = 1) is
outside the bounds.

V. Extension to a 3D case with flow

A. 3D nacelle engine
The results of the previous sections are now used for the exploration of the impedance space associated with a 3D

engine nacelle configuration. An additional equation for the third component of velocity is present in the LEE, thus
extending Eq. 2. The mesh considered in this work is displayed in Fig. 11a and a schematic is presented in Fig. 11b,
where the different boundary conditions are made explicit. The liner is about 1.16 m long, while the nacelle has an
internal diameter of about 3 m.
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Figure 11 3D nacelle configuration.

Using previous knowledge on acoustic liners placed in aeroengines, the minimum value of resistance is fixed to 0.5
in the greedy selection algorithm (allowing the use of the corresponding column in Table 1). This choice is motivated
by the presence of a strong shear grazing flow and SPL in such nacelles, which results in an increase in the resistance.
Note that the previous hypothesis does not necessarily preclude precise solutions to be reached for re

(
Z̃
)
< 0.5. A

mean flow solution was first calculated using a dedicated flow solver, and then projected onto the DG mesh. The inlet
mean flow Mach number was around 0.27, flowing from right to left as represented in Fig. 11b.

Only a single frequency is considered ( f = 587 Hz), and the inlet condition consists in a high order acoustic mode
(radial order 0, azimuthal order 4), different from the plane wave mode used so far. Once the ROM is built, the quantity
of interest can be evaluated at all impedance values of interest, thus generating a map. Here, the observed acoustic
quantity is an attenuation coefficient α (in dB), defined using the acoustic intensity at surfaces before and after the liner,
respectively S1 and S2 in Fig. 11b, as

α = −10 log10

������

¸
S2

i · dS¸
S1

i · dS

������
. (14)

The intensity i (in W/m2) is defined by Cantrell and Hart [43] as

i = p̃ũ +
p̃2

ρ0c2
0
ũ + ρ0 (u0 · ũ) ũ +

p̃
c2

0
(u0 · ũ) u0, (15)

where ũ = [ũ, ṽ, w̃] and u0 = [U0,V0,W0], with w̃ and W0 the acoustic and mean flow velocities in the transverse
direction. A few calls to the HF solver were made at different impedance values to validate the precision of the reduced
basis, showing an excellent agreement. However, due to the numerical budget required for each full calculation, the total
attenuation coefficient map was not evaluated. In this 3D configuration, the size of the initial problem is N ≈ 106 and
the HF solver is run on 1024 processors in ≈ 3 min.

The impedance map of the attenuation coefficient is obtained using the greedy algorithm with m = 10, as per Table 1.
The attenuation coefficient map is displayed in Fig. 12, and consists in the interpolation of 2821 values of α obtained
with the RB. Each value of α was obtained in less than 0.3 s, which includes calculating the solution (Eqs. 6, 7), and
extracting and saving on disk the attenuation calculation. Calculating the approximated solution only took ≈ 0.15 ms,
meaning that the problem is now dominated by the postprocessing (and the initial snapshot calculations).
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Figure 12 Impedance map of the attenuation coefficient. The red cross marks the optimal value.

From the map in Fig. 12, one deduces the optimal impedance Z̃opt ≈ 1.1 + 0.11j. The difference between the
intensity fields of a rigid case (where the impedance is Z̃rigid = +∞) and a lined (not optimal) case is displayed in Fig. 13.
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Figure 13 Absolute value of the intensity field.

In order to test the convergence of the ROM as a function of the available numerical budget, different values of m
were selected. Comparisons between the different cases (m ∈ [2, 9]) are shown in Fig. 14, displaying the difference ∆α
of the impedance maps of the acoustic indicator with respect to the solution for m = 10, i.e.,

∆α = |α (i) − α (m = 10) | , i ∈ [2, 9]. (16)
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Figure 14 Difference of the impedance map of the attenuation coefficient with respect to the case m = 10.

As expected, high values of ∆α are concentrated towards the limit re
(
Z̃
)
= 0.5, where the maximum of impedance

discontinuity is realized. However, it is shown that for as little as m = 3, the error made on the map is relatively small
(2%) with respect to the maximum of attenuation of 16 dB. The averaged L2 difference ∆2

α made on these maps is
obtained on the fine discrete set Ξ ⊂ D and is given by

∆2
α =

1
NΞ

∑
R̃∈Ξ

∆
2
α

(
R̃
)
, (17)

here with NΞ ≈ 2.8 · 103 the number of elements in Ξ. The ∆2
α quantity is shown in Fig. 15. A quasi exponential

convergence of the average error ∆2
α is observed as a function of m, indicating the correctness of the chosen values of

reflection coefficients. It is remarkable that for a widely different case that the one where the reflection coefficient values
were optimized for, the created RB remains exploitable. Further work needs to be pursued in order to verify whether the
values in Table. 1 are universal enough to be used in any aeroacoustic problem, including ones where the linearized
Navier-Stokes equations are considered.
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Figure 15 Average quadratic error of the impedance map of the acoustic indicator with respect to the case
m = 10.

B. Discussion on the speed-up factors
When using a snapshot based ROM, defining a speed-up factor can be tricky. Clearly, once the ROM is built,

assembling the reduced system Eq. 6 at a given impedance value takes about O
(
m2

)
operations and inverting the

system requires about O
(
m3

)
operations using a direct solver. Expressing the RB solution in the DG basis using Eq. 7

amounts to O (mN ) operations. Thus, in the limit m � N , the cost of the RB solution at a given impedance value
requires roughly O (mN ) operations. This is incomparably cheap compared to the HF solver, which requires not only
the assembly of a large-scale N × N sparse linear system, but also its iterative resolution (here, we rely on the FETI-2LM
method [44]). As in the ROM literature [45, 46], the speed-up is evaluated here as the ratio between the elapsed time for
solving the ROM and the elapsed time for solving the HF problem. This omits the costs associated to the construction of
the ROM, which is dominated by the m HF solutions. In the 2D case presented in Sec. IV.A, the speed-up factor was
103, while it was ≈ 104 in the more complex 2D case of Sec. IV.E. In the 3D nacelle case of Sec. V, the speed-up factor
reached ≈ 1.2 · 106. Note that in practice, one needs to extract part of the solution in order to evaluate the quantity of
interest, and some of the solution needs to be saved on disk. These operations were, in the present case, dominating the
numerical cost of the 3D case, bringing back the speed-up factor to ≈ 6 · 102.

VI. Conclusion
An optimal set of reflection coefficient values (or equivalently, of impedance values) was obtained in order to build a

reduced basis. The time-harmonic linearized Euler equations, once projected onto this basis, yield a linear system for
the harmonic problem that is orders of magnitude faster to solve, thus enabling the fast exploration of solutions where
the impedance is varied. The optimal building of this reduced basis is obtained via a greedy algorithm, based on the
residual, and avoids the use of a proper orthogonal decomposition.

The greedy selection technique was first applied on a 2D geometry of a duct, equipped with an acoustic liner,
represented by an impedance boundary condition. It was discovered that when the real part of the impedance (the
resistance) was known to be above a certain value, the resulting reduced basis would need fewer elements to represent
the system, and thus fewer calls to the high-fidelity solver. This phenomenon is caused by the impedance discontinuity.
This lower limit of the resistance is consistent with the impedance models related to the presence of a shear grazing flow
or a high sound pressure level. Different sets of reflection coefficient values were given for different minimal values of
the resistance, for future users to select with respect to their own liner specifications. In order to evaluate the robustness
of the method, the same set of values were used in a different 2D duct geometry, in the presence of a shear grazing flow
of centerline Mach of 0.3, with non-plane waves at a frequency four times the one considered previously. The resulting
reduced basis was favorably compared against the high fidelity solver, displaying a good fit between the insertion loss
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evaluated by both solvers.
The 3D geometry of a nacelle was considered at yet a different frequency, in the presence of a shear grazing flow, and

with a higher order acoustic mode than for the 2D configuration. It was shown that with as little as 3 full high-fidelity
resolutions of the linearized Euler equations, one was then able to recover a precise mapping of the acoustic indicator,
here an attenuation coefficient. The initial speed-up factor for the 3D case was ≈ 1.2 · 106, and was then brought back to
≈ 6 · 102 due to the evaluation and saving on disk of the quantity of interest.

It is expected that this work could benefit liner designers and aeroacousticians dealing with impedance eduction
problems, leading to faster initial evaluation of designs, and faster impedance eductions. Compared with our initial
work in Ref. [13], the present work introduces a technique capable of drastically reducing the number of calls to the
high-fidelity solver to create an efficient reduced basis, which could render possible the routine use of 3D configurations
for liner eduction and optimisations. The immediate next step to consider is the introduction of a viscosity term in the
equations, by adopting a linearized Navier-Stokes formalism.
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