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Abstract

Background: Car driving is more and more automated, to such an extent that driving

without active steering control is becoming a reality. Although active driving requires

the use of visual information to guide actions (i.e., steering the vehicle), passive driving

only requires looking at the driving scene without any need to act (i.e., the human is

passively driven).

Materials & Methods: After a careful search of the scientific literature, 11 differ-

ent studies, providing 17 contrasts, were used to run a comprehensive meta-analysis

contrasting active driving with passive driving.

Results: Two brain regions were recruited more consistently for active driving com-

pared to passive driving, the left precentral gyrus (BA3 and BA4) and the left

postcentral gyrus (BA4andBA3/40),whereas a set of brain regionswas recruitedmore

consistently in passive driving compared to active driving: the left middle frontal gyrus

(BA6), the right anterior lobe and the left posterior lobe of the cerebellum, the right

sub-lobar thalamus, the right anterior prefrontal cortex (BA10), the right inferior occip-

ital gyrus (BA17/18/19), the right inferior temporal gyrus (BA37), and the left cuneus

(BA17).

Discussion: From a theoretical perspective, these findings support the idea that the

output requirement of the visual scanning process engaged for the same activity can

trigger different cerebral pathways, associated with different cognitive processes. A

dorsal stream dominance was found during active driving, whereas a ventral stream

dominancewas obtained during passive driving. From a practical perspective, and con-

trary to the dominant position in the Human Factors community, our findings support

the idea that a transition from passive to active driving would remain challenging as

passive and active driving engage distinct neural networks.
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1 INTRODUCTION

The primary function of scanning visually our environment is to pro-

vide the information required to perform everyday tasks (Land, 2009,

2006). When considering the relationships between vision and action,

mobility is key for our species, from walking on two legs to advanced

technologically mediated mobility solutions. Among those technologi-

callymediatedmobility solutions, car driving is a frequent, well-spread,

and often investigated activity (Lee, 2008). Despite being so com-

mon, driving is a complex activity that has been described to engage

different levels of cognitive control. Based on the combination of

ergonomics knowledge (Michon, 1985, 1979) and available neuroimag-

ing data recorded during simulated car driving, we proposed theDriver

NeuroErgonomical CascadeModel (DNCM).

The DNCM describes the driving activity from the driver’s inten-

tions to vehicle trajectory through three different levels of cognitive

control progressively less and less consciously controlled in a cascade

fashion (Navarro et al., 2018). The most explicit level referred to as

the strategical level (involved, e.g., in route planning and adapting the

driving behavior to contextual elements such as the emergency of the

driving situation, the risks associatedwith traffic rules violations or the

driver’s awareness) is engaged at first. This level of cognitive control

allows drivers to set driving plans (trip goal and itinerary) and relies on

three main cerebral areas: (i) the right temporoparietal junction in the

right superior temporal gyrus (BA39/22) associated with attentional

processes (Bzdok et al., 2013; Wilterson et al., 2021), especially in the

attentional ventral network (Corbetta et al., 2008; Vossel et al., 2014),

(ii) the left superior frontal gyrus (BA10) associated with the “branch-

ing” activity that consists to keep in mind relevant information for the

primary taskwhile completing another additional task (Koechlin, 2016;

Koechlin et al., 1999; Koechlin & Hyafil, 2007), and (iii) the left inferior

frontal gyrus (BA45) associated with semantic retrieval and working

memory processes (Buckner, 1996; Gabrieli et al., 1998; Wang et al.,

2019; Zhang et al., 2021).

The situation is then processed at the tactical level assumed to

adapt driving behaviors depending on the dynamic driving environ-

ment (overtaking a car, adjusting the vehicle speed before turning,

deciding to stop at a pedestrian crossing). This level of cognitive con-

trol relies on two cerebral areas: (i) the bilateral middle frontal areas,

associated with complex voluntary movement planning (Cordani et al.,

2022; Halsband et al., 1993), and (ii) the right middle temporal gyrus,

associated with the processing of the optic flow resulting from 3D

motion and visual recognition (Greenlee, 2000; Smith, Wall, et al.,

2006;Wurtz, 1998).

At the third and last level of cognitive control, referred to as opera-

tional control, the decisionsmade at the strategical and tactical levels of

control are implemented in terms of physical actions (such as turning

the steering wheel slightly to the left and accelerating or braking heav-

ily). According to the DNCM (Navarro et al., 2018), operational control

relies on three cerebral areas: (i) the right extrastriate cortex associ-

ated with the analysis of complex visual scenes, (ii) the anterior lobe of

the right cerebellumengaged inmotor control (King et al., 2019;Manto

et al., 2012; Schmahmann, 2019), and (iii) the rightmediodorsal nucleus

of the thalamus associated with the integration of various elements of

complex visual scene processing (Griffiths et al., 2022; Sherman, 2007).

Although car driving could be considered an evolved form of

technology-mediated mobility, ironically even an “automobile” can be

automated. There is a current trend to automate as much as possible

the driving activity (Hancock, 2014; Navarro, 2019; Navarro & Han-

cock, 2023; Stanton&Young, 1998). Following a technocentric line, the

main automation design philosophy is to replace humans whenever it

is possible to do so. Driving automation is often sorted using levels of

automation (LOA) (SAE International, 2018), ranging from the simplest

driving assistance—LOA 0—(e.g., lane departure warning) to a com-

pletely autonomous vehicle without pedals and steering wheel (LOA

5). It is a current reality to ride highly automated driving vehicles (SAE

level 3), able to control the trajectory of the car in both lateral and lon-

gitudinal dimensions, in an unknown environment that includes other

vehicles, automated or not, and road users as pedestrians and cyclists,

without any human action. The human behind thewheel then becomes

a “passive driver” but is still required to monitor the driving environ-

ment and to regain manual control of the vehicle in case automation

cannot (e.g., missing lane marking, foggy conditions, or sensor failure).

It is thus an important practical issue to understand and facilitate the

transition of control between passive and active driving.

To pursue this issue, drivers’ eye movements have been used as an

indicator of the cognitive processes engaged while driving (Lappi &

Mole, 2018), includingwhen drivingwith automation (Mars &Navarro,

2012;Navarro et al., 2021, 2020, 2019) or even during the transition of

control frompassive to active driving (seeDeniel &Navarro, 2023 for a

review). Although several neuroimaging studies have been carried out

on real and simulated driving, under a variety of experimental condi-

tions (seeWare et al., 2020 for a review), only sparse information about

the brain activity engaged during passive driving compared to active

driving is available (Sakihara et al., 2014).

Beyond the car driving domain, an important neuroscientific finding

relates to the existence of two anatomically distinct visual pathways

in the cortex of mammals and humans. The first functional concep-

tion of these dual visual streams was that the ventral occipitotemporal

streamwas devoted to the recognition of objects and referred to as the

“what” pathway, and the other dorsal occipitoparietal stream was sub-

serving the spatial properties of objects and referred to as the “where”

pathway (Ingle, 1973; Mishkin & Ungerleider, 1982; Schneider, 1969).

This initial conception was refined first based on neuropsychological

observations made with patient DF (Goodale et al., 1991). Goodale

andMilner (1992) proposed a fresh look at the functions processed by

the two streams and shifted the emphasis from the visual character-

istics of the object to the goal behavior guiding the vision (Goodale &

Westwood, 2004). This revised model states that the functional seg-

regation of the streams is based on the requirements of the situation,

the dorsal stream being involved in the visuospatial control of actions

(e.g., grasping and reaching targets), not specifically in spatial percep-

tion (Jeannerod, 2011). The ventral streamwould be used for “vision to

perception” (i.e., “what”) and thedorsal streamfor “vision toaction” (i.e.,

“how”). As these seminal contributions, numerous studies and investi-

gations have been conducted, confirming the existence and functions
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of the two visual pathways, and discussions about their level of rela-

tive independence or the unicity of representations inside pathways

arrayed (Milner & Goodale, 2008). In brief, the ventral “what” pathway

projects from the striate cortex to the inferior temporal lobe (posterior

inferotemporal, central inferotemporal, and anterior inferotemporal)

via occipital areas V2 and V4. The dorsal “how” pathway projects

from the striate cortex, V5/MT, through the intraparietal sulcus and

terminates in the superior parietal lobe.

Although active driving requires the use of visual information to

guide actions (i.e., steering the vehicle), passive driving only requires

looking at the driving scene without any need to act (i.e., the human

passively driven is out of the action control loop). Consequently, con-

sidering driving in the light of the dual-visual pathways for perception

or action could be highly informative on the differences between the

neurocognitive processes associated with these two driving modes.

Indeed, it is hypothesized that the same visual input would be pro-

cessed eithermore on the ventral stream ormore on the dorsal stream

depending on the output requirements: In the case of active driving,

where steering is required, drivers are expected to recruit mainly the

dorsal stream to perform the required goal-oriented actions. On the

contrary, in the case of passive driving, drivers are expected to engage

morewith the ventral stream to process their environmentwithout the

intention to act.Of course, the distinctionbetween the twovisual path-

ways is not expected to be as clear-cut as described by textbooks or by

neuropsychological evidence (Goodale & Milner, 1992). Here, the two

pathways can be engaged in parallel by drivers, especially in the case

of passive driving where drivers can supervise the drive and possibly

ghost the actions required to do so.

2 METHODS

2.1 Selection of studies

A search in PubMed, PsycINFO, ScienceDirect, and Web of Science

databases complemented with a search in Google Scholar carried out

on the logical conjunction of keywords (“brain mapping” OR “func-

tional magnetic resonance imaging” OR “fMRI” OR “positron emission

tomography” OR “PET”) AND ((“driving” OR “drive”) AND (“car” OR

“automobile”)) and published in English returned 424 scientific contri-

butions at the date of September 15, 2023. By using this combination

of search terms, we ensured that all published articles in English that

examined the subject of the neural correlates of car driving were

included in our results. The results of the searchwere then screened by

two reviewers independently (JN and ER). In the case of disagreement,

a consensus discussion solved the conflict. The screening procedure

was first carried out on abstracts, and then, full texts of the remaining

research articles were assessed for eligibility. The selection procedure

followed the Preferred Reporting Items for Systematic Reviews and

Meta-Analysis (PRISMA) guidelines (Page et al., 2021), and the corre-

sponding PRISMA flow diagram for eligibility of articles is presented

in Figure 1. The selection was guided by a list of exclusion criteria

gathering theoretical, methodological, or analytical pitfalls, namely:

1. Not on the topic of car driving,

2. No actual driving task in the experimental protocol (e.g., visuospa-

tial task),

3. No brain data collection performed with a hemodynamic neu-

roimagingmethod,

4. No research experiment performed (e.g., theoretical, technical, or

review articles),

5. Not on healthy adults (e.g., mild cognitive impairment population

and elderly),

6. Study on drivingwhile intoxicated (e.g., alcohol or antihistamines),

7. No report of foci or activation peak coordinates,

8. No neuroimaging results on whole-brain scanning were available

(e.g., results only on regions of interest),

9. Only results from conjunction or subtraction between two driv-

ing conditions were available (e.g., contrasts between two driving

tasks),

10. Analyses not conducted with the general linear model-

ing analysis—or equivalent—framework (e.g., independent

component analysis or multivariate pattern analyses).

Based on these criteria, 11 studies and 17 contrasts providing data

on 187 healthy participants were ultimately included in the meta-

analysis (see Table S1 for the details of the studies included). Together,

these studies comprised 285 peaks of activation.

2.2 Classification of the studies included

All the neuroimaging data available were grouped into two exclusive

categories of simulated driving: (i) active driving (i.e., a situation where

participants had to control both the vehicle position and its speed)

and (ii) passive driving (i.e., a situation where participants were pas-

sively driven by a vehicle without any control on the vehicle position

or its speed). A comprehensive meta-analysis including all available

functional neuroimaging results was carried out (Eickhoff et al., 2012,

2009).

2.3 Data analysis

Acoordinate-basedmeta-analysiswith an activation likelihood estima-

tion (ALE) technique (Chein et al., 2002; Turkeltaub et al., 2002) was

used to identify the anatomical locations consistently observed across

neuroimaging studies (GingerALE 2.3 software (http://www.brainmap.

org/ale/)).

The underlying principles of the ALE method are as follows: Based

on the coordinates of activation peaks in each study selected for

inclusion, the ALE method estimates the probability that an activa-

tion focus truly exists within a given voxel, with Gaussian assumptions

on spatial uncertainty. An ALE map is then created as the union of

probabilities over all activation foci. Clusters above a significance

threshold reveal convergence across included imaging studies at the

location.
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Records identified through 
database searching:  

(n = 424) 

Records removed before screening: 
Duplicate records removed 

(n = 135) 

Records screened  
(n = 289) 

Records excluded 
(n = 236) 

Full texts assessed for eligibility 
(n = 53) 

Reports excluded: 
Incomplete report of results (only 
specific contrasts, connectivity 
analysis, no table etc.) 
(n = 18) 
Not on healthy adults (specific 
population or intoxicated driving) 
(n = 11) 
Review or technical report (n = 5) 
Experimental protocol (n = 5) 
Neuroimaging technique used  
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Studies included in review 
(n = 11) 
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F IGURE 1 Preferred Reporting Items for Systematic Reviews andMeta-Analysis (PRISMA) flow diagram used for the literature search.

The computations behind the ALEmethod can be roughly described

as follows: To perform this meta-analysis, coordinates of every sig-

nificant activation peak for each included condition were collected,

either originally in the MNI reference space or transformed from the

Talairach space. For each study and at each voxel, the reported foci

are considered to be the centers of 3D Gaussian probability density

functions. Full widths at half maximum (FWHM) of 3D Gaussian func-

tionsdependon the sample size. Larger samples lead to smaller FWHM,

reducing the uncertainty attached to the related foci, and vice versa.

The probability distributions of all foci in an experiment are combined

in a modeled activation (MA) map. The union of all MAmaps for all the

experiments included allows computing an ALE score on a voxel-by-

voxel basis, quantifying the likelihood of convergent activations at each

voxel across all included studies. Significance tests allow to thresh-

old the union of ALE maps based on nonparametric p-values with a

false discovery rate (FDR) of p < .05. For specific contrasts between

two conditions (subtraction analysis), the ALE maps are compared by

subtracting one image from the other, taking into account the differ-

ent sample sizes via the individual MA maps pooled to form the ALE

map for an experimental condition. At the contrast level, ALE individ-

ual maps were thresholded at a level of p < .05 (FDR corrected) as

was the pooled map for both conditions. The results were reported

with a p-value threshold set to p < .05 uncorrected, following the

recommendations issued by the ALE experts against the use of FDR

corrections on contrast images for small sample sizes and favoring

the use of uncorrected thresholds for contrast analyses, and mini-

mum cluster sizes set to 60 mm3 (Laird et al., 2005; Turkeltaub et al.,

2012).

Significant clusters were overlaid onto an ICBM152 brain template

in MNI space provided by the open-source Surf Ice software (https://

github.com/neurolabusc/surf-ice).

3 RESULTS

3.1 Active driving > passive driving

The results of the active versus passive driving contrast are given in

Figure 2. They show that two brain clusters were recruited more con-

sistently for active driving compared to passive driving, namely, the left

precentral gyrus (BA3 and BA4) and the left postcentral gyrus (BA 4

and BA3/40).
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F IGURE 2 Clusters activatedmore consistently in active driving compared to passive driving. Clusters for the active> passive contrast. The
centers of the clusters are in bold, and the peaks inside clusters are below. Coordinates are in theMNI space.

3.2 Passive driving > active driving

The results of the passive versus active driving contrast are given

in Figure 3. They show that clusters in a set of brain regions were

recruitedmore consistently in passive driving compared to active driv-

ing, namely, the left middle frontal gyrus (BA6), the right anterior lobe

and the left posterior lobe of the cerebellum, the right sub-lobar tha-

lamus, the right anterior prefrontal cortex (BA10), the right inferior

occipital gyrus (BA17/18/19), the right inferior temporal gyrus (BA37),

and the left cuneus (BA17).

4 DISCUSSION

4.1 Active driving and the dorsal pathway

The consistent activations recorded in the left primary somatosen-

sory cortex (BA3) during active driving compared with passive driving

could be associated with the bodily sensations processing as well as

with coordinated movements. In more detail, these regions have been

repeatedly observed to be engaged by ipsilateral hand–foot combina-

tion of coordinated movements (Debaere et al., 2001; Nakagawa et al.,

2016; Rocca et al., 2007) and in haptic perception (Peltier et al., 2007).

In our case, this consistent area of activation could be associated with

the grip of the steering wheel with the right hand and the touch of the

gas and/or brake pedal with the right foot. Another notable activation

in active driving compared to passive driving was observed in a nearby

region (BA40), an area known to be associatedwithmotor control from

basic hand and finger motor tasks (Li et al., 2020; Smith, Chen, et al.,

2006), to performing everyday motor tasks, such as dressing (Witten-

berg et al., 2014), through grasping (Randerath et al., 2010; Ward &

Frackowiak, 2003), and elbow movements (Estévez et al., 2014; Van

Dokkum et al., 2017).

The left primary motor cortex (BA4) was also found to be acti-

vated more consistently in active driving than in passive driving. This

area is required to execute voluntary movements (Cordani et al.,

2022; Halsband et al., 1993). More precisely, the area activated was

previously observed as part of the network engaged for movement

control through the classic neuroscientific finger tapping tasks (Anwar

et al., 2016; Witt et al., 2008), but also during elbow movements

(Estévez et al., 2014). This region was also reported to be part of the

common car-driving circuit to allow driving at the motor execution

(“operational” level; Navarro et al., 2018).

Active driving showedmore consistently activated brain areas close

to the left central gyrus in both anterior and posterior locations. Other

brain regions typically associated with the dorsal stream could have

been expected, especially the superior parietal lobule. An explanation

could be that even in passive driving condition, drivers behaved as if

they were driving. Participants could have used motor imagery (Jean-

nerod, 1994), especially by imagining moving the steering wheel, an

activity known to engagemost areas associatedwith actual sensorimo-

tor control (Ehrsson et al., 2003; Savaki & Raos, 2019). In some of the

experiments included in the meta-analysis, they were even instructed

to do so. The absence of brain areas in the sensorimotor control net-

work (i.e., the supplementary motor area, the cingulate motor areas,

the premotor cortex, and the posterior parietal cortex) might then be

attributed to drivers preparing for steering action even in the passive

driving condition. This hypothesis would also be consistent with the
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F IGURE 3 Clusters activatedmore consistently in passive driving compared to active driving. Clusters for the active> passive contrast. The
centers of the clusters are in bold, and peaks inside clusters are below. Coordinates are in theMNI space.

observationof increasedbrain activations in brain areas corresponding

to action planning and action realization observed here.

4.2 Passive driving and the ventral pathway

Several brain areas were activated more consistently during passive

driving than during active driving. Those areas and associated func-

tions related to passive driving requirements are discussed in the

following lines.

The left middle frontal gyrus (BA6) was found to be activated more

consistently during passive driving. In the literature, this brain region

has been associatedwith action observation, such as reaching or grasp-

ing at rest (Molinari et al., 2013), gesture recognition (Villarreal et al.,

2008), motor imagery (Wei & Luo, 2010), and anticipatory behav-

iors (Bianco et al., 2021; Simó et al., 2005), especially to anticipate

objects’ location (Schubotz & von Cramon, 2001; Smith, 2016). Dur-

ing passive driving, this region would thus be involved in anticipating

the vehicle’s future location in space based on the observation of cur-

rent motion. This interpretation is reinforced as this brain region is

also engaged for spatial judgments (Kukolja et al., 2006), including

during real-world navigation in simulated driving (Spiers & Maguire,

2006).

The cerebellum (right anterior lobe and left posterior lobe), a struc-

ture associated with motor coordination (Ito, 1984; King et al., 2019;

Manto et al., 2012) and motor error correction (Miall et al., 1993;
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Popaet al., 2016),was associatedwithpassivedriving.Here, in linewith

previous observations, the cerebellumwould contribute to support the

visual perception of motion (Jokisch et al., 2005; Paradis et al., 2000)

andmonitor visual search (Vallesi, 2014), including establishing a direc-

tional expectation for movement (Hull, 2020; Shulman et al., 1999) in

the driving environment.

The right sub-lobar part of the thalamus was also part of the passive

driving network. Classically considered a relay for sensorimotor infor-

mation to the cortex, the thalamus has numerous connections with

cortical and subcortical areas (Ro et al., 2007; Sherman & Guillery,

2011). Here, the thalamus could support passive drivers’ alertness

(Yanaka et al., 2010).

The right anterior prefrontal cortex (BA10), and the specific region

activated here, is part of the mentalizing network (Lee, 2015), known

to support the ability to assess one’s mental states and to infer the

mental states of others (Hein & Singer, 2008; Kalbe et al., 2010; Thorn-

ton et al., 2019). A possible interpretation of these brain activities

would be that while performing passive driving individuals could eval-

uate their own current activity and mental state. Additionally, this

region is associated with the perception of human as well as humanoid

robot actions (Saygin et al., 2012). It could thus be hypothesized that

during passive driving people engage in the supervision of the artifi-

cial agent (i.e., driving automation) actions. This region has also been

specifically associated with stimulus-driven attentional shifts between

objects and locations (Stoppel et al., 2013). In passive driving, the visual

flow of the dynamic driving scene would thus require passive drivers

to switch between different elements of the environment, located at

different places. Altogether, this specific region could be described

as supporting the supervision of the agent actively controlling the

vehicle.

The right inferior occipital gyrus (BA17/18/19) and the left cuneus

(BA17), brain areas implied in visual selective attention (Kastner et al.,

1998; Moran & Desimone, 1985) and visual information processing

and especially perceptual identification of objects (Goodale & Milner,

1992; Grill-Spector et al., 2001; Zeki, 1993) in its ventral part. These

areas in the visual cortex have been associated with visual (Kriegesko-

rte et al., 2003) and audiovisual object recognition (Plank et al., 2012),

3D shape recognition (Georgieva et al., 2008) and visual object pro-

cessing in general (e.g., Rose et al., 2005). The areaMT/V5 is activated,

as previously reported in the common car driving network (Navarro

et al., 2018), to support motion perception and tracking (Culham et al.,

1998; Tootell et al., 1995; Watson et al., 1993; Zeki et al., 1991). Right

MT/V5 satellites are also systematically engaged during action obser-

vation including locomotion (Abdollahi et al., 2013). Here if steering

action cannot be directly observed, the outcome of another agent’s

actions is available to participants. The numerous activations recorded

in the extrastriate cortex are consistent with the need for participants

to explore visually the driving scene.

The right inferior temporal gyrus (BA37) is a region of the ventral

pathway (Deng et al., 2016), located very close to the lateral occipital

complex implicated in object perception and recognition (Grill-Spector

et al., 2000; Malach et al., 1995), a region also engaged during action

observation and execution (Abdollahi et al., 2013; Brihmat et al., 2018),

the processing of objects movement (Zacks et al., 2006) with a spe-

cialization for biological (Beauchamp et al., 2002) or biologically com-

patible movement processing (Crescentini et al., 2011). During passive

driving, this region could be engaged to (i) analyze the vehicle trajec-

tory, resulting from human-initiated or human-compatible actions on

steering and speed control and (ii) participate in the identification of

the various objects available on the driving scene.

4.3 General discussion

In the studies included in the meta-analysis, healthy participants were

invited to perform a complex, skilled, and well-known everyday task:

driving. The data collected showed consistently distinct brain activa-

tions whether that activity was performed actively or passively, thus

providing insight into how the vision for perception and vision for

action pathways are relevant to describe real-life behaviors.

From a theoretical perspective, the findings are in line with the

idea that the output requirement of visual scanning engaged for the

same activity can trigger different neural processes. Dorsal stream

dominance was found during active driving, whereas ventral stream

dominance was obtained during passive driving. Interestingly partici-

pants could have processed visual information during passive driving

as if driving actively, after all, participants were stuck in a driving

cockpit with nothing else to do but visually scan the driving scene.

This was not the case. This suggests that the vision for action path-

way is automatically switched on when actual action performance is

required and switched offwhen no action performance is needed. Even

if the two visual pathways can communicate (Ayzenberg et al., 2023;

Kriegeskorte et al., 2003), a switching costmay apply at least from ven-

tral dominance to dorsal dominance. This would explain the difficulties

observed to regain active steering after some time spent in passive

steering (Deniel & Navarro, 2023; Navarro et al., 2016; Zhang et al.,

2019).

From a practical perspective, our findings support the rationale

that a transition from passive to active driving (required at SAE level

3) would remain challenging no matter the quality of the monitoring

engaged during the passive driving task. This assertion is at odds with

the well-established and widely accepted idea that physical control of

the vehicle (i.e., steering control) and monitoring (i.e., supervision of

the vehicle trajectory) of the current driving situation are two inde-

pendent concepts (Merat et al., 2019). Indeed, the Trilateral Human

Factors Working Group proposed that “in a situation where physical

vehicle control is taken over by an automated system, the driver may

still be regarded as being on the loop if (s)he is still engaged in sit-

uation monitoring” (Merat et al., 2019). The current findings suggest

the reverse. Delegating physical control of the vehicle to an automated

system (i.e., passive driving) de facto implies situation monitoring dif-

ferent from the one engaged in active driving. The visual processing

of the situation goes hand in hand with action control. If no action is

required, situation monitoring would be carried out differently what-

ever the level of implication of the drivers during passive driving. This

sheds new light on the Human Factors definition and understanding of
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cognitive control in passive driving. One cannot expect that the drivers

who are regaining active control immediately after a period of passive

driving will perform as well as in active driving as the process of visual

information follows different paths in the brain.

The reported findings outline that under passive driving, peo-

ple’s neural activations are different than under active driving. This

observation was made based on several datasets where different

methodologies have been used and different instructions given to par-

ticipants. Still, across studies, the meta-analysis reported that people

consistently exhibit a different neural network in passive driving com-

pared to the one deployed in active driving. This aligns with the idea

that no matter the specific driving situations, conditions, or instruc-

tions, the neural regions engaged in passive driving differ from those

engaged in active driving. This neuroscientific evidence speaks against

the dichotomy made in Human Factors between physical control of

the vehicle on the one hand and monitoring of the current driving

situation on the other hand (Merat et al., 2019). From the neuroer-

gonomics perspective adopted here, physical control of the vehicle

andmonitoring of the driving situation are fundamentally linked. Thus,

it is impossible to delegate operational control to automation with-

out impacting the tactical and strategical levels of control (Navarro

et al., 2018). This new insight suggests that the DNCM needs to be

revised. Indeed, the model described behavioral and neural activi-

ties from the driver’s intentions to vehicle trajectory through three

different levels of cognitive control progressively less and less con-

sciously controlled in a cascade fashion (Navarro et al., 2018). The

reported findings indicate that the cascade nature of the model is

unsatisfying and that feedback from the operational level to the tac-

tical and strategical levels should be added. It can be hypothesized

that passive and active steering operations act as a bottom–up pro-

cess able to counterbalance the cascade top–down process described

in themodel.

4.4 Limitations

Quantitative meta-analyses are often considered the highest level of

scientific proof thanks to the combination of datasets gained through

several experiments. This combination not only offers the possibility

to add the observations made on different participants but also to

consider the common cerebral changes recorded across experiments

despite different experimental setups and other various methodolog-

ical choices. However, no control is possible on the experimental

manipulations made for the data included in the meta-analysis. Here,

the driving activity was systematically engaging a vehicle moving in

an environment, the vehicle trajectory being controlled either actively

or passively. But the driving activity may include a variety of sub-

tasks that are not strictly equivalent (McKnight & Adams, 1970) and

cognitively controlled at different levels (Navarro et al., 2018). It is

thus possible that the reported findings did not cover the complete

range of neural differences between passive and active driving. Rather,

the reported findings should be considered the minimum differences

betweenpassive and active driving. Further investigations are required

to investigate in more detail the differences between passive and

active driving, possibly depending on the specific driving situations

(e.g., steering along a bendy road, interacting with other drivers at an

intersection, and navigating). Still, the reported minimal differences

between passive and active driving constitute a solid basis observable

consistently across 11 experiments with various original protocols and

unstandardized driving activity.

In the same vein, in all passive driving studies, participants were

expected to monitor the vehicle moves in the driving environment

whereas active driving consisted of a variety of different actions to be

performed (e.g., negotiating an intersection, navigating in an unknown

environment, and follow a given route). The larger passive driving net-

work relative to the active driving network could be attributed to

a more homogenous passive driving situation across studies. Indeed,

monitoring different driving actions might be more similar than per-

forming different actions. Moreover, dorsal pathway activations may

be task-specific and could also be subdivided into distinct neural path-

ways (Rizzolatti & Matelli, 2003). To specifically address the question

of the transition of control between passive and active driving (i.e.,

takeover), such transitions should be investigated directly. Neural acti-

vations before, during, and after transitions of control would provide

insightful data not only about the transition of control during driving

but also shed some lighton theprocessesengagedwhile switching from

ventral to dorsal pathways. Another possibility to refine our under-

standing of the processes engaged in passive driving is to manipulate

the quality of the human supervision of passive driving (no supervision

required, or tight supervision required with a regular return to active

driving, for instance).

More broadly, meta-analyses also suffer from possible publication

and selection biases. Indeed, only published articles providing raw data

can be included in quantitative meta-analyses. There is thus a pos-

sibility that unpublished and/or unavailable data would impact the

reported findings.

Finally, the question of ecological validity (i.e., transferability of

the experimental findings to real-life driving) can be raised as most

data were collected under simulated driving conditions with physical

constraints due to the neuroimaging recording device. More real-life

investigationswould be required to confirm the validity of the reported

findings in real-life conditions.

5 CONCLUSION

The meta-analysis reported here aimed at addressing the question of

the cerebral bases of passive and active driving. The results showed

that active driving engages more consistently areas of the dorsal path-

way compared to passive driving, as an action needs to be performed.

On the contrary, the passive drivingmodeengages amore ventral set of

cerebral areas, probably associated with the visual analysis of the driv-

ing scene and the supervision of the automation in charge of driving.

It should be very clear that these two dorsal and ventral pathways of

activation supporting driving are not exclusive from one another, but

the switching cost between these two pathways could contribute to
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explaining the difficulties faced by humans when a transition from pas-

sive driving to active driving is required. The same visual information of

the driving environment is processed differently in passive driving than

in active driving. One cannot expect that the drivers who are regaining

active control immediately after aperiodofpassivedrivingwill perform

as if the same processeswere engaged. Therefore, these results should

be incorporated into future research and development on automated

driving.
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