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Abstract 45 

Genetic defects in the ability to deliver effective perforin have been reported in patients with 46 

hemophagocytic lymphohistiocytosis. We tested the hypothesis that a primary perforin 47 

deficiency might also be causal in severe SARS-CoV-2 infection. We recruited 56 volunteers 48 

confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to Intensive Care Units 49 

(ICU) or non-ICU, and age- and sex-matched healthy controls (HCs). Compared with HCs, 50 

the percentage of perforin-expressing CD3
-
CD56

+
 NK cells quantified by flow cytometry was 51 

low in COVID-19 patients (69.9 ± 17.7 vs 78.6 ± 14.6 %, p = 0.026). There was no 52 

correlation between the proportions of perforin-positive NK cells and T8 lymphocytes. 53 

Moreover, the frequency of NK cells producing perforin was neither linked to disease severity 54 

nor predictive of death. Although IL-6 is known to downregulate perforin production in NK 55 

cells, we did not find any link between perforin expression and IL-6 plasma level. Yet, we 56 

unveiled a negative correlation between the degranulation marker CD107A and perforin 57 

expression in NK cells (r = -0.488, p = 10
-4

). PRF1 gene expression and the frequency of NK 58 

cells harboring perforin were normal in patients one year after acute SARS-CoV-2 infection. 59 

A primary perforin defect does not seem to be a driver of COVID-19 since NK perforin 60 

expression is (i) linked neither to T8 perforin expression nor to disease severity, (ii) inversely 61 

correlated with NK degranulation, and (iii) normalized at distance from acute infection. Thus, 62 

the cause of low frequency of perforin-positive NK cells appears, rather, to be consumption. 63 

 64 

Key points 65 

COVID-19 present low percentages of perforin-expressing NK cells.  66 

This was not linked to disease severity but anticorrelated with NK degranulation.  67 

A primary perforin deficiency does not seem to be a driver of COVID-19. 68 

69 
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Introduction 70 

NK cells are type 1 innate lymphoid cells playing a key role in defense against tumors and 71 

intracellular pathogens, particularly via perforin- and granzyme B-mediated cytotoxicity (1). 72 

A panel of activating and inhibitory receptors displayed at their surface and sensing molecules 73 

at the surface of infected and tumoral cells determine their propensity to kill. The signals 74 

delivered by these receptors provoke the release of cytotoxic factors by NK cells, including 75 

perforin, resulting in the apoptosis of the target cells. Moreover, NK cells regulate T cell-76 

mediated antiviral immune response (2). NK cells are particularly well-known for being 77 

important actors in the immune defense against respiratory viral infections, including 78 

coronaviruses (3).  79 

Severe forms of COVID-19 have many similar features to hemophagocytic 80 

lymphohistiocytosis (HLH) (4-6). The frequency of HLH symptoms in COVID-19 is 81 

discussed, some authors reporting it as low (7-9), but others as higher than in non-COVID-19 82 

sepsis (10). Various articles (8, 11), but not all (9), established the prognostic value on 83 

mortality of these symptoms. Differences in the level of different markers have also been 84 

observed between severe COVID-19 and HLH. For instance, interleukin (IL)-12, IL-15, IL-85 

18,  IL-21, interferon (IFN)-, soluble Fas Ligand, were shown lower, and IL-8, IL-1 Receptor 86 

Antagonist, InterCellular Adhesion Molecule-1 higher in the former than in the latter (12, 87 

13). HLH is defined by the presence of at least 5 of the following criteria: fever, 88 

splenomegaly, cytopenia of at least 2 lineages, hyperferritinemia, an increase in soluble 89 

CD25, high triglyceridemia and low fibrinogenemia, decrease in NK activity, and 90 

hemophagocytosis (14). HLH may be primary, caused by a genetic deficiency in perforin or 91 

in factors involved in exocytosis, or secondary to malignant hemopathies, auto-immune 92 

disorders or infections, particularly viral infections. Even in secondary HLH, a deficiency in 93 

perforin or mutations in proteins mediating exocytosis have been found in up to 40% of 94 
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patients (15). This raises the possibility that cytotoxic deficiency is a key driver of HLH and, 95 

potentially, of the severity of COVID-19. This may be explained by the fact that perforin-96 

deficient cytotoxic cells produce more cytokines than wild-type cytotoxic cells (16). In fact, it 97 

is the target cell which triggers the detachment of the cytotoxic cell via a caspase-dependent 98 

signal. When perforin is deficient, the caspase pathway is not fully activated in the target cell 99 

so the contact time is drastically increased. This increase results in an overproduction of IL-2, 100 

tumor necrosis factor (TNF)-, and IFN- by the cytotoxic cell (17). IFN- induces the release 101 

of large amounts of IL-6 by myeloid cells, a marker of HLH and COVID-19 (4). In line with 102 

this observation, NK cells secrete greater quantities of inflammatory cytokines in perforin-103 

deficient mice infected with mouse cytomegalovirus (18). In addition, NK cells may kill T 104 

cells (19). Consequently, in mice infected with the lymphocytic choriomeningitis virus, 105 

perforin deficiency has been shown to result in the accumulation of exhausted CD8+ T cells, 106 

responsible for immune-mediated damage and death, as in severe forms of COVID-19 (20, 107 

21). NK cells may also kill NK cells and thereby downregulate immune activation (22). 108 

Finally, perforin has also been involved in NK and CD8+ T cell killing by regulatory T cells 109 

(23). Altogether, these findings argue for perforin’s role in reducing the intensity of immune 110 

responses. Moreover, the hypothesis of defective cytotoxicity as a causal factor of COVID-19 111 

ties in with the fact that aging (24) and comorbidities like diabetes (6), conditions known to 112 

reduce perforin expression (25), are predictive of a poor prognosis in SARS-CoV-2 infection. 113 

To better understand the pathogenic mechanisms of this disease, we analyzed perforin 114 

expression in the NK cells of COVID-19 patients, seeking arguments in favor of perforin 115 

deficiency having an etiologic role in the severity of this disease. 116 

In the present study, we show a low frequency of perforin-expressing NK cells in COVID-19 117 

patients, but we report arguments against a causal role of this impairment in COVID-19.  118 

119 
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Materials and methods 120 

Study design 121 

All patients were diagnosed as being SARS-CoV-2-infected by RT-PCR. Their blood was 122 

drawn on the first day of hospitalization at an intensive care unit (ICU) or a non-ICU in the 123 

University Hospital of Nîmes, France. ICU participants presented with oxygen saturation 124 

<90% in ambient air or <95% with 5L/mn of oxygen therapy and/or arterial oxygen tension of 125 

less than 60 mm Hg. Non-ICU participants presented with oxygen saturation <96% in 126 

ambient air. The French Île-de-France 1 Ethics Committee approved this study and all 127 

volunteers had provided written informed consent. The trial was registered on 128 

ClinicalTrials.gov under the reference NCT04351711. 129 

Flow cytometry 130 

Perforin expression was quantified by intracellular PBMC labeling. Frozen cells were first 131 

thawed, and washed twice. 200,000 cells were surface-labeled with the following antibody 132 

panel: CD3-allophycocyanine/Alexa750 (Beckman Coulter) + CD16-allophycocyanine 133 

(Beckman Coulter) + CD56-phycoerythrin/cyanine 5.5 (Beckman Coulter) + CD107A- 134 

phycoerythrin (Biolegend). IgG1- fluorescein isothiocyanate (clone REA293, Myltenyi 135 

Biotec) and IgG1- phycoerythrin (clone MOPC-21, Biolegend) were used as isotypic controls. 136 

The cells were then fixed using IMMUNOPREP Reagent System Kit and TQ Prep automate 137 

(Beckman Coulter), and permeabilized for Perforin labeling (perforin-fluorescein 138 

isothiocyanate, Myltenyi Biotec) using a cytofix-cytoperm kit (Becton-Dickinson). A 139 

minimum of 20,000 lymphocytes were run on a Navios flow cytometer and results were 140 

analyzed by using Kaluza software (Beckman Coulter).  141 

Biomarkers  142 

The plasma levels of IL-6, IL-12p70, and IFN- were determined by Luminex/xMAP 143 

immunoassay (ProcartaPlex, ThermoFisher scientific, Saint Aubin, France), and those of C-144 
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reactive protein (CRP) and lactate dehydrogenase (LDH) by turbidimetry. Peripheral blood 145 

lymphocytes and monocytes were counted by a hemocytometer (Sysmex XN-10).  146 

Perforin mRNA expression 147 

RNA was extracted with Trizol on a frozen dry pellet of 100,000 PBMCs from volunteers and 148 

resuspended in 20 ul of DEPC-treated water. 8 l were then reverse-transcribed with random 149 

hexamers using the Superscript III kit (Invitrogen). The cDNA was then amplified on a 150 

LightCycler 480 (Roche) with the Roche Sybr green master kit with the appropriate primers 151 

as technical triplicate. Perforin expression is estimated relative to GAPDH. Primer sequences: 152 

perforin: AACTTTGCAGCCCAGAAGACC and GTGCCGTAGTTGGAGATAAGCC. 153 

GAPDH: AGTTAAAAGCAGCCCTGGTG and AGTTAAAAGCAGCCCTGGTG. 154 

Statistical analysis 155 

Normality was assessed by the d’Agostino and Pearson test. A two-sided unpaired Student t 156 

test or Mann-Whitney test was used to compare groups, as appropriate. A two-sided Pearson 157 

or Spearman test evaluated correlations, as appropriate. A p-value of <0.05 was considered 158 

statistically significant. 159 

160 
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Results 161 

Patient characteristics 162 

Twenty-eight non-ICU volunteers (15 females and 13 males, 67.5 ± 20.8 years old, 163 

symptomatic for 6.3 ± 9.5 days) and 26 ICU volunteers (13 females and 13 males, 70.6 ± 13.4 164 

years old, symptomatic for 12.3 ± 7.3 days) were recruited. Their bioclinical characteristics 165 

had been previously reported (26). Twenty-nine age- and sex-matched healthy controls (HCs) 166 

were recruited in parallel (12 females and 17 males, 63.7 ± 19.0 years old).   167 

NK cell perforin expression in the course of severe SARS-CoV-2 infection 168 

Perforin expression was quantified in permeabilized CD3
-
CD56

+
 NK cells by flow cytometry 169 

(Fig. 1). As compared with HCs, we observed a decrease in the percentage of perforin-170 

positive NK cells in patients (69.9 ± 17.7 vs 78.6 ± 14.6 %, p = 0.026), particularly in ICU 171 

patients (67.5 ± 19.9 vs 78.6 ± 14.6 %, p = 0.037), as shown in Figure 2A. The frequency of 172 

perforin-expressing NK cells was independent of corticotherapy, either dexamethasone, 173 

prednisolone, methylprednisolone or hydrocortisone (supplementary Fig. 1A), and 174 

oxygenotherapy, either supplemental oxygen therapy or mechanical ventilation 175 

(supplementary Fig. 1B). 176 

If this perforin deficiency were genetically determined, one would expect patients with low 177 

NK perforin expression to also have low T cell perforin expression. We previously measured 178 

perforin expression in the T8 cells of patients we recruited (26). Yet, we observed no 179 

correlation between the proportion of perforin-positive NK cells and the proportion of 180 

perforin-positive T8 cells in ICU and non-ICU patients (r = 0.195, p = 0.167, Fig.2B). This 181 

observation is a first argument against the hypothesis of a primary perforin deficiency as a 182 

driver of COVID-19. 183 

In addition to the frequency of perforin-positive NK cells, we evaluated the amount of 184 

perforin per NK cell using the medianmean fluorescence intensity (MFI) of NK cells labeled 185 
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with the anti-perforin monoclonal antibody. As shown in Figure 2C, perforin expression in 186 

NK cell was elevated in ICU patients (59,599 ± 63,168 vs 54,380 ± 86,750 arbitrary units, p = 187 

0.059), and even more in non-ICU patients (120,130 ± 75,926 vs 54,380 ± 86,750 arbitrary 188 

units, p < 10
-4

), as compared with healthy controls. These findings, in line with previous data 189 

(27), are a second argument against the hypothesis of a primary perforin deficiency as a driver 190 

of COVID-19. 191 

Perforin expression and COVID-19 severity 192 

We tested the hypothesis of a causal link between the ability to produce perforin and the 193 

severity of SARS-CoV-2 infection. As shown in Fig. 2A, there was no difference in the 194 

percentage of perforin-positive NK cells between ICU and non-ICU patients (67.5 ± 19.9 % 195 

vs 72.0 ± 15.5 %, p = 0.497), whereas COVID-19 was more severe in the former than in the 196 

later. Secondly, we looked for correlations between perforin expression and established 197 

markers of severity (28). The frequency of perforin-expressing NK cells was linked neither to 198 

C-reactive protein (r = 0.231, p = 0.136, Fig. 3A), nor to lactate dehydrogenase (r = 0.131, p = 199 

0.507, Fig. 3B), nor to lymphocyte count (r = 0.025, p = 0.867, Fig. 3C), nor to monocyte 200 

count (r = 0.093, p = 0.531, Fig. 3D). There was not any negative correlation between the 201 

median level of perforin expression in NK cells and CRP (r = 0.086, p = 0.588, supplementary 202 

Fig. 2A), LDH (r = -0.240, p = 0.228, supplementary Fig. 2B), lymphocyte count (r = 0.270, p 203 

= 0.069, supplementary Fig. 2C), or monocyte count (r = 0.088, p = 0.560, supplementary 204 

Fig. 2D). 205 

Finally, we rationalized that, if a primary defect in perforin production was involved in the 206 

severity of COVID-19, low perforin expression should be predictive of an adverse prognosis. 207 

Yet, as shown in Figure 3E and 3F, the percentage of perforin-positive NK cells (63.8 ± 21.9 208 

vs. 78.3 ± 11.4 %, p = 0.243) and the median perforin expression per NK cell (34,139 ± 209 
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31,258 vs. 124,770 ± 137,681, p = 0.110) were not higher in ICU patients who survived than 210 

in those who did not.  211 

Perforin expression and cytokines 212 

As we did not find any argument for a primary deficiency in perforin production in patients, 213 

we looked for other potential causes of the low frequency of NK cells harboring perforin we 214 

had observed. IFN- and IL-12 are known to induce perforin expression in NK cells (25, 29). 215 

We therefore looked for, but did not find any positive correlation between the plasma level of 216 

each cytokine and the frequency of perforin-positive NK cells (r = -0.283, p = 0.049, Fig. 4A 217 

and r = -0.190, p = 0.196, Fig. 4B, respectively) or the NK cell content in perforin (r = 0.021, 218 

p = 0.890, Fig. 4D and r = -0.255, p = 0.084, Fig. 4E, respectively). By contrast, IL-6 is 219 

known to inhibit perforin expression in NK cells (30). Therefore, we sought a link between 220 

NK cell perforin expression and IL-6 production. To this aim, we measured IL-6 in plasma. 221 

However, we did not find a significant negative correlation between the percentage of 222 

perforin-positive NK cells (r = -0.198, p = 0.181, Fig. 4C) or the density in perforin in NK 223 

cells (r = 0.129, p = 0.397, Fig. 4F) and IL-6 plasma levels.  224 

Perforin expression and perforin consumption 225 

Another explanation for the low frequency NK cells expressing perforin we unveiled might be 226 

consumption. To test this possibility, we determined cell surface expression of the 227 

degranulation marker CD107a. Indeed, we observed a clear negative correlation between the 228 

percentage of CD107A-positive NK cells and the percentage of perforin-positive NK cells (r 229 

= -0.488, p = 10
-4

, Fig. 5A). There was also a negative correlation between CD107A cell 230 

surface expression and the intracellular perforin level (r = -0.269, p = 0.051, Fig. 5B). This is 231 

a strong argument in favor of perforin release as a cause of the low frequency of perforin-232 

positive NK cells. Of note, as compared with controls, the frequency of perforin 233 

degranulation, as evaluated by CD107a expression, was elevated in ICU patients (31.7 ± 25.3 234 
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% vs 17.3 ± 20.2 %, p = 0.014), but not in non-ICU patients (6.2 ± 9.7 % vs 17.3 ± 20.2 %, p 235 

< 10
-4

) where it was even low (Fig. 5C). The same tendency, but less significant, was 236 

observed for T8 cells (Fig. 5D). In our cohort, the mean duration of symptomatology was 7 237 

days for non-ICU patients and 12 days for ICU patients. Therefore, the low percentage of 238 

CD107A-positive NK cells we observed in non-ICU participants is in line with the previous 239 

report of a defect in NK degranulation during the first week of severe disease (31). 240 

Perforin expression in NK cells at distance from infection 241 

To definitively rule out the hypothesis of a constitutive quantitative deficiency in perforin as a 242 

cause of severe COVID-19 in cases of SARS-CoV-2 infection, we measured PRF1 243 

expression in 6 volunteer PBMCs one year after the acute episode of infection. At that time, 244 

their PRF1 mRNA was no different from that of 5 HCs (102.3 ± 60.6 vs. 59.4 ± 54.7 arbitrary 245 

units, p = 0.248, Fig. 6A). Likewise, there was no difference in the frequency of perforin-246 

positive NK cells (78.0 ± 10.0 % vs. 78.6 ± 14.6 %, p = 0.893, Fig. 6B) between 12 patients a 247 

year after the acute infection and HCs. 248 

 249 

250 
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Discussion 251 

SARS-CoV-2 appears to be able to block interferon production and signaling at the early 252 

phase of infection (32). Consequently, COVID-19 patients present with an impaired 253 

interferon type 1 (IFNI) activity (33). This allows its replication during an asymptomatic 254 

phase. In some patients, this results in an acute immune activation including a cytokine storm 255 

that might be co-responsible for the lung lesions that determine the prognosis (6). A key 256 

question is to unravel the reasons why individuals who develop a severe form of COVID-19 257 

fail to control this virus-induced immune response. Paradoxically, among the possibilities is a 258 

faint cytotoxic activity. Perforin impairment may result in inflammatory cytokine 259 

overproduction by the cytotoxic cells, insufficient clearance of infected cells and activated 260 

immune cells, and a regulatory T cell deficiency contributing to an acute immune activation 261 

(25). Accordingly, a deficiency in perforin production or release may be responsible for the 262 

HLH syndrome. As COVID-19 has fever, cytopenia, hyperferritinemia, increase in soluble 263 

CD25, high triglyceridemia and low fibrinogenemia, and hemophagocytosis in common with 264 

HLH (5), it is logical to propose cytotoxic deficiency as a driver of severe forms of COVID-265 

19. 266 

In the present study, we did observe a decrease in the frequency of perforin-expressing NK 267 

cells in patients hospitalized for COVID-19. Now, contradictory data on perforin expression 268 

in NK cells and NK cytotoxicity have previously been reported in COVID-19 patients. Most 269 

authors observed a decrease in NK perforin protein (34) (35) or mRNA (36) expression as 270 

well as a decrease in NK cytotoxicity (37, 38) (39, 40), whereas Y. Jiang et al. found an 271 

increase (41). Yet, in this latter study, mild COVID-19 was included, and the percentage of 272 

perforin-positive NK cells was very low in healthy controls.  273 

The low percentage of perforin-expressing NK cells we observed does not seem to be a 274 

primary etiologic factor in severe forms, since it was (i) not concurrently present in T8 cells 275 
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and even contrasted with the high frequency of perforin-positive T4 cells we previously 276 

reported (26), (ii) negatively correlated with a marker of degranulation, an argument in favor 277 

of perforin consumption, (iii) neither linked to bioclinical markers of severity, nor predictive 278 

of death, and (iv) not observed one year after the episode of acute infection. Interestingly, 279 

earlier on we described a decrease in NK perforin expression in HIV-1-infected individuals of 280 

approximately the same magnitude as what we are now reporting in COVID-19 patients (42). 281 

Yet, HIV patients do not suffer from cytokine storms. Altogether these data argue against a 282 

genetic background impairing perforin expression as a cause of severe COVID-19. In line 283 

with this, various authors have underlined differences in COVID-19 and HLH immune 284 

activation profiles. In particular, IL-6 and HScore (43) are usually lower in the former than in 285 

the latter. Nonetheless, the perforin gene variant A91V, which encodes for a perforin protein 286 

with impaired processing, was observed three times more frequently in 22 young patients with 287 

severe forms of COVID-19 (44). Moreover, the two A91V-positive patients who presented 288 

with a high HScore, a score of severity in HLH, progressed rapidly and died. It is therefore 289 

possible that perforin deficiency plays a role in young patients, but not in older ones.  290 

Lymphocyte DNA damage and apoptosis we have previously described in severe COVID-19 291 

might contribute to the low frequency of perforin-positive NK cells we observed here (45-47). 292 

This low frequency might also be due to the TGF overproduction (40), to anti-IFNI 293 

autoantibodies (48), or to the impaired IFNI production and signaling observed in COVID-19 294 

patients (32, 33, 49), as IFNI is a major inducer of perforin expression (25). Yet, in opposition 295 

to this scenario, we observed a negative - rather than positive - correlation between IFN- 296 

plasma levels and perforin expression in NK cells. As IFN- plasma levels have been linked 297 

to SARS-CoV-2 viral load (50) and, as a high viral load should provoke NK activation, this 298 

anticorrelation might be explained by the fact that low perforin expression is the consequence 299 

of NK degranulation. 300 
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Consequently, the most probable hypothesis is indeed that the reduced number of NK cells 301 

harboring perforin in COVID-19 is the consequence of the release of this cytolytic factor in 302 

the course of NK cytotoxicity. A major way in which NK cells kill is by delivering perforin 303 

and granzyme B to inside the target cells, thereby triggering apoptosis (25). Prager et al. 304 

reported that target cell contact reduced perforin in NK cells over time (51). Moreover, 305 

exposure to target cells has been reported to downregulate perforin mRNA in NK cells (52). 306 

Consequently, within 8 hours of their contact with the target cell, NK cells lose their cytotoxic 307 

efficiency (53). Accordingly, we have shown here an inverse correlation between perforin 308 

expression and degranulation in COVID-19 NK cells. It is therefore logical to expect that in 309 

vivo SARS-CoV-2-infected cell elimination also results in a decrease in intra-NK perforin 310 

level. Strikingly, the amount of perforin in COVID patients NK cells is increased. This might 311 

be a consequence of NK cell activation reported by various authors (54-56). Yet, here again, 312 

the inverse correlation between perforin load in NK cells and their degranulation argues for 313 

the consumption of this cytotoxic mediator. 314 

Whatever the causes of low perforin expression might be, our data argue for the 315 

administration of IFNI at the early stage of SARS-CoV-2 infection, in order not to increase 316 

the acute immune activation that may occur at later stages. In fact, we have already 317 

demonstrated that pegylated-IFN-2 administration restores NK perforin expression in people 318 

living with HIV-1 (42). It may also be noted that the positive effects of IFN treatment on the 319 

discharge rate and mortality have been reported (57, 58). 320 

 321 

  322 
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Figure legends 589 

Figure 1. Representative gating strategy for the identification of CD56+ NK cells expressing 590 

perforin and/or CD107A (lower right hand). The isotypic control is shown (upper right hand). 591 

Figure 2. (A) Perforin expression in COVID-19 patient cytotoxic cells. Frequency of 592 

perforin-expressing NK cells in patients and controls. Two to two comparisons were carried 593 

out using the Student t-test or the Mann-Whitney test, as appropriate. (B) Correlation between 594 

perforin expressions in NK cells and CD8+ T lymphocytes in all COVID-19 patients using 595 

the Pearson test. (C) Perforin density in patient and control NK cells. Perforin content was 596 

expressed in arbitrary units of median fluorescence intensity (MFI). Two to two comparisons 597 

were carried out using the Student t-test or the Mann-Whitney test, as appropriate. Each dot 598 

represents a participant. 599 

Figure 3. (A, B, C, D) Absence of link between the frequency of perforin expression in NK 600 

cells and markers of disease severity. Lack of correlation between the percentage of perforin-601 

positive NK cells and CRP (A), LDH (B), lymphocyte count (C), and monocyte count (D). 602 

The Pearson test or the Spearman test were used, as appropriate. (E, F) Absence of difference 603 

in the frequency of perforin-positive NK cells (E) and in the perforin density in NK cells (F) 604 

between ICU patients who survived or not. MFI, median fluorescence intensity. Differences 605 

were evaluated using the the Mann-Whitney test. Each dot represents a participant. 606 

Figure 4. Correlations between the frequency (A, B, C) and intensity (D, E, F) of perforin 607 

expression in NK cells on one hand and IFN- (A, D), IL-12 (B, E), and IL-6 (C, F) plasma 608 

levels on the other hand, as calculated with the Spearman test. MFI, median fluorescence 609 

intensity. Each dot represents a participant. 610 

Figure 5. (A, B) Correlation between perforin expression in NK cells and NK cell 611 

degranulation. The frequencies of perforin-harboring NK cells and of NK cells displaying the 612 

degranulation marker CD107A at their surface are shown (A). The median perforin content in 613 
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28 

NK cells and the frequency of NK cells displaying the degranulation marker CD107A at their 614 

surface are shown (B). MFI, median fluorescence intensity. The Spearman test was used to 615 

estimate the correlations. (C, D) Frequency of NK cells (C) and T8 cells (D) expressing the 616 

cell surface marker of degranulation CD107A. Two to two comparisons were carried out 617 

using the Student t-test or the Mann-Whitney test, as appropriate. Each dot represents a 618 

participant. 619 

Figure 6. (A, B) Normalization of perforin expression in patient NK cells one year after the 620 

acute phase of SARS-CoV-2 infection. PRF1 mRNA (A) and the frequency of perforin (B) in 621 

the NK cells of HCs and patients who had recovered. The Student t-test or the Mann-Whitney 622 

test were used, as appropriate. Each dot represents a participant. 623 
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