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Abstract

When applied to critical domains, machine learning models usually need to

comply with prior knowledge and domain-specific requirements. For example,

one may require that a learned decision tree model should be of limited size

and fair, so as to be easily interpretable, trusted, and adopted. However, most

state-of-the-art models, even on decision trees, only aim to maximising expected

accuracy. In this paper, we propose a framework in which a diverse family of

prior and domain knowledge can be formalised and imposed as constraints on

decision trees. This framework is built upon a newly introduced tree represen-

tation that leads to two generic linear programming formulations of the optimal

decision tree problem. The first one targets binary features, while the second

one handles continuous features without the need for discretisation. We the-

oretically show how a diverse family of constraints can be formalised in our

framework. We validate the framework with constraints on several applications

and perform extensive experiments, demonstrating empirical evidence of com-

parable performance w.r.t. state-of-the-art tree learners.
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1. Introduction

Decision trees are one of the most well-known classes of machine learning

models thanks to their interpretability and ability to learn decision rules with

relevant features [1, 2, 3]. They are even applied in critical domains involving

high-stakes decision-making such as medical diagnosis and finance [4, 5]. Yet,5

in these critical domains, machine learning models need to be simple to explain,

and meet ethical and domain-specific requirements [6]. For example, to predict

heart disease, similar to a medical doctor, learned decision trees should take into

consideration domain constraints like economic criteria when selecting features.

Moreover, to validate decision trees, practitioners and domain experts may re-10

quire a certain level of performance guarantee for an underrepresented target

group of sample [7]. In these scenarios, the lack of satisfaction with domain-

specific constraints and goals makes decision trees untrustworthy and likely to

be rejected [8]. As an illustration of its importance, the issue of trustworthy

artificial intelligence is also a major concern at the EU level 1. To learn more15

trustworthy models, constraint enforcement represents a theoretically supported

framework to customise the shape of the hypothesis set of models under a wide

range of settings. However, designing learning algorithms may be complex, even

for decision trees, when ethical and domain constraints must be met.

Recently, several decision tree methods [9, 10, 11, 12] have proposed to for-20

malise the optimal decision tree problem as a mixed integer programming (MIP),

a satisfiability (SAT) or a dynamic programming problem whose solutions of-

ten lead to small and accurate trees. A strong emphasis has been put on the

speed of optimisation, neglecting the possibility of easily modeling prior and

domain knowledge. Hence, these current methods are little to no applicable in25

settings where prior knowledge needs to be formalised, and enforced in order to

learn more comprehensible and trustworthy trees. Yet, in domains as critical

1Communication from the Commission of 8 April 2019, Building Trust in Human-Centric

Artificial Intelligence, COM (2019) 168.
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as medicine and justice, the satisfaction of domain-knowledge constraints may

be more important than providing a good level of accuracy [13, 14, 15]. This

suggests that a broader family of constraints should be considered when mod-30

eling the decision tree learning problem. In this paper, we, therefore, model

the optimal decision tree problem so as to easily formalise constraints while al-

lowing an explicit control of their complexity through both the number of leaf

nodes and the maximum depth. We present a tree representation based on con-

strained matrices that leads to two generic linear formulations of the optimal35

decision tree problem. The first formulation targets binary features while the

second one copes with continuous features without the need for discretisation.

Moreover, in contrast to recent depth-centric models, our tree representation is

a branch-like model. We show its flexibility to straightforwardly formalise and

enforce a broad class of constraints that include but are not limited to ordering40

on features, exclusion of features over branches, feature costs, and fairness.

The contributions of this paper can be summed up as follows: (1) we propose

a tree representation based on constrained matrices that leads to two new generic

linear programming formulations of the optimal decision tree problem allowing

to easily integrate domain-knowledge constraints; (2) both formulations give45

the possibility for users to easily control complexity through the constraints

on the number of leaf nodes and the maximum depth of the decision tree; (3)

we theoretically show that elements of these matrices give the ability to easily

formalise domain knowledge as constraints to improve trustworthiness.

The rest of the paper is organised as follows: Section 2 presents related50

works, Section 3 introduces our tree representation, and our first generic linear

programming formulation for binary features (the second formulation is detailed

in Appendix2 A.1); Section 4 formalises the expression of domain-knowledge

constraints; Section 5 shows application to real-world applications; Section 6

benchmarks the performance of our models w.r.t. recent models and discusses55

the results; Section 7 analyses computational time before concluding.

2Appendix is added via the link to ”Supplementary Material for on-line publication only”.
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2. Related Works

Several works exist to learn decision trees under constraints. We thoroughly

present them in what follows.

Building upon standard top-down induction trees such as CART [16] and60

C4.5 [17], many works have attempted to enforce constraints on decision trees by

learning in a greedy top-down fashion. The minimum description length (MDL)

presented by Quinlan and Rivest [18], inspired the work of Garofalakis et al.

[19] that proposed to find a trade-off between the size of the tree and its accu-

racy with a branch-and-bound algorithm. It learns either the smallest decision65

tree given the accuracy or, the other way around, retrieves the most accurate

decision tree given the size of the tree. Although it is possible to incorporate

some domain-knowledge constraints like test and misclassification costs on de-

cision trees via data and feature engineering (e.g., by creating virtual instances

or features), the such process remains highly non-trivial [20], supporting, there-70

fore, the common approach of enforcing constraints directly through the model

formulation. The former approach is all the more challenging for complex mis-

classification costs in multiclass settings and for feature acquisition costs. Also,

data engineering may raise stability issues in learning procedures, e.g., when

misclassification costs are highly different. Related to constraint enforcement75

through the model formulation, Núñez [21] encodes a hierarchy of features with

ISA (Is A) relationships and feature costs on a cost-sensitive measure to learn

decision trees in a greedy top-down fashion. By doing that, they suppose that

learned trees will make more sense for domain experts. López-Vallverdú et al.

[22, 23] also present an algorithm based on the priority and relevance of fea-80

tures. They propose to modify the list of features on a given node and also

formalise background knowledge using healthcare criteria. However, top-down

algorithms often produce sub-optimal trees which may result in poor solutions

when constraints need to be enforced [24].

Some works try to learn optimal solutions under tree-structure constraints85

by enumerating possible solutions via dynamic programming. Garofalakis et al.
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[25] build up on their previous work and learn an overfitted decision tree that

they prune to satisfy constraints. One major drawback of post-pruning methods

is that new interesting rules are not learned since the top of the tree remains

unchanged while the bottom is cut-off. To get rid of it, Nijssen and Fromont [26]90

present the DL8 algorithm using dynamic programming. Later, it is transposed

into a more general framework [24] which uses an item-set mining approach.

They are able to learn optimal decision trees for different types of constraints

(e.g., size of the tree and test costs). As stated by the authors, DL8 needs mem-

ory to encapsulate the huge amount of item sets. To address the limitations of95

DL8, Aglin et al. [27] propose DL8.5 that focuses on the task of minimising the

misclassification error under depth constraint. To enforce the depth constraint,

the authors had to drastically modify the DL8 algorithm. Authors highlight

that “optimisation [of DL8] is hard to combine with a constraint on the depth of

a tree” [27], to argue why they had to completely change DL8. As a result, the100

size of the tree is left aside and cannot be constrained, at the profit of accelerat-

ing learning through a branch-and-bound search. Moreover, without requiring

another drastic change, DL8.5 cannot enforce constraints over test costs or the

hierarchy of features which are both tree-structure dependent constraints [24].

Inspired by Angelino et al. [28], Hu et al. [29] proposed optimal sparse de-105

cision trees (OSDT) that also use branch-and-bound search, but are limited

to binary classification. Analytic bounds are used to prune the search space

while the number of leaves is constrained using a regularised loss function that

balances accuracy and the number of leaves. Because OSDT and its extended

version GOSDT [30] use a customised branch-and-bound search, similarly to110

DL8.5, integrating tree-structure dependent constraints that are not directly

expressed in the objective function will need to completely accommodate the

learning algorithm. Nonetheless, our work shares similarities with OSDT since

our model also allows constraining directly the number of leaves.

Because of the speed improvement of machines, several works [10, 9, 12, 31]115

propose to exploit MIP and SAT solvers to learn optimal decision trees by

constraining the depth. More specifically, Narodytska et al. [11] and Florent
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Constraints/Setting BinOCT [32] DL8.5 OSDT3

Number of leaves 7 7 7 3
Depth 3 3 3 3
Hierarchy/ordering 3 3 7 3
Features/Misclassification costs 7 7 7 7
Minimum #instances in the same leaf 7 3 3 7
Instances belonging to the same leaf 3 3 7 7
Range of threshold splits cont. features 7 7 7 7
Multiclass setting 3 7 3 7

Table 1: Comparison of state-of-the-art tree learning methods in terms of their ability to

enforce the constraints considered in this paper. 3 (resp. 7 ) indicates that the current

method allows (resp. does not allow) the integration of a specific constraint or is (resp. is

not) able to deal with the multiclass setting.

[31] use SAT solvers to learn the smallest tree for perfect classification. We do

not tackle the same problem in this paper. Bertsimas and Dunn [10] present a

MIP formulation of the optimal decision tree problem for a given depth. Their120

model (called OCT) handles both univariate and multivariate splits. As stated

in [29], OCT is not easily reproducible and no public code is available [29].

A more recent MIP formulation (BinOCT) has been proposed by [9] to be

efficient in computations. To speed up optimisation, BinOCT considers full and

complete binary trees under depth constraints. This raises a question about125

the optimality of their learned trees when the optimal solution is not full and

complete. In particular, in presence of domain constraints, BinOCT will not find

a solution if trees do not need to be full and complete. Moreover, in order to

accelerate optimisation, BinOCT does not keep track of misclassified instances

through decision variables, making it impractical to change objective function130

in order to integrate instance-dependent constraints like misclassifition costs.

The work [32] uses constraint programming to learn optimal decision trees, but

only under depth constraint, and targets only binary classification.

To date, previous models have focused on accelerating the learning of optimal

decision trees. This work instead focuses on the enforcement of a broad class of135

3PyGOSDT [30], an improvement of OSDT, does multiclass but only through one-vs-all.
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constraints for trustworthiness. As it is not the focus of previous works, they do

not natively offer mechanisms to do that. For example, they may allow the set-

ting of a depth constraint, but shallow decision trees may be over-simplistic and

not meet domain-knowledge constraints. Such decision trees may be rejected by

domain experts [1, 15]. Table 1 illustrates this with a representative sample of140

types of constraints that the above methods are (or are not) able to cope with,

so as to incorporate a broad class of domain knowledge. For example, BinOCT,

DL8.5 and Verhaeghe et al. [32] are depth-centric models that are not directly

formulated to find the optimal decision tree for a fixed number of leaf nodes.

Also, while BinOCT with its discretisation heuristic can cope with continuous145

features, all other methods require binary features. As a result, they (BinOCT

included) cannot integrate the constraint that threshold splits must belong to

a given interval, which is useful when seeking for relevant decision rules with

respect to the domain expertise [33, 4, 34]. Some of the above methods could

be modified at a significant cost to take into account some of the considered150

constraints (or even other ones). However, as they are not designed for that

purpose, it is neither formally nor technically obvious how to do so (e.g., the

transition from DL8 to DL8.5). This motivates our work to make constraint

enforcement easier, thanks to a specifically designed tree representation.

The above analysis of the state of the art shows the need for a general155

framework to i) efficiently handle complexity control for generalisation of de-

cision trees; ii) and learn decision trees under domain constraints that are im-

portant for safety and trustworthiness. Therefore, we propose a tree represen-

tation based on constrained matrices that leads to two generic flexible linear

programming formulations of the optimal decision tree problem, which eases160

the integration of a broad class of constraints. Indeed, based on a branch-like

tree representation, our formulations take into account structural constraints

such as the number of leaves and the maximum depth. Furthermore, thanks to

the constrained matrices encoding this representation, our method allows us to

enforce a broad class of constraints, which include those listed in Table 1.165
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Figure 1: Tree encoding detailed for a branch. (a) An example of a decision tree on which

depths are depicted and the first branch of the tree is circled. (b) The corresponding encoding

for only the branch 0 (circled in (a) ) with pointers representing how to pass from one dimen-

sion to another (c) The encoding matrix Q for all branches. The branch label is at dimension

0, the depth at dimension 1, attributes and their values are at dimension 3 and 4. Note that

here, attribute X0 is not selected on the tree in (a) but it is encoded in the matrix Q.

3. Tree Representation and the New Formulation to Enforce Con-

straints on Decision Trees

This section presents our tree representation and the first formulation of the

tree learning classification problem via binary variables and linear constraints.

Let us consider a dataset where all features have been transformed into bi-170

nary features (numeric features being discretised and binarised). A decision tree

from this dataset is characterised by its number of leaf nodes L, its maximum

depth K, and its size. In what follows, X ∈ {0, 1}N×M×V denotes the dataset

(without labels), N is the number of instances, M is the number of features and

V is the number of values which can be taken by a feature. Here, it is assumed175

that data only have binary features, thus V = 2. However, the following can

be easily extended to V > 2 for V -array trees. T ∈ {0, 1}N×C is the matrix

providing the labels of instances (into their one-hot-encoding form) and C is

the number of classes. Finally, [n] denotes the set {0, 1, ..., n− 1}, for n ∈ N.

3.1. Tree Representation180

We need a convenient and efficient way to encode trees so as to easily for-

malise domain constraints such as those related to the path of decisions (e.g.,

ordering on tests and test costs on branches). Rather than a tree representation
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that decomposes a tree into a set of nodes, our decision trees are decomposed

in terms of the set of branches. We propose to encode branches with the (mul-185

tidimensional) matrix Q ∈ {0, 1}L×K×M×V . To illustrate, Qijlp = 1 if the p-th

value of the l-th feature is selected, at depth j of the i-th branch. Therefore,

Qi,∗ encodes the i-th branch of the tree, Qij,∗ encodes the selection of features

and its values at depth j of branch i, and Qijl,∗ is the vector encoding whether

the l-th feature has been selected4 at depth j of branch i. Figure 1 shows an190

example of a decision tree with its encoding matrix. As an illustration, on the

branch 0 at depth 0 of the decision tree of Figure 1 (a), the attribute X1 is

selected with value 1. This means that Q0,0,1,1 = 1, as shown in Figure 1 (c).

From this description, Q can be represented as a 4-dimensional binary ma-

trix. The following constraints need to be added in order to encode the selection195

of features over branches of trees. We give an example for the first constraint.

Similar examples can be derived for the rest of the constraints.

• The same feature is chosen at the top of all branches:

∀i ∈ [L], a ∈ [L], l ∈ [M ] :
∑
p∈[V ]

Qi,0,l,p =
∑
p∈[V ]

Qa,0,l,p. (1)

Linking it to Figure 1, at depth j = 0, the attribute X1 (i.e., l = 1) is se-

lected on branches i = 0 and a = 1, i.e.,
∑

p∈[V ]Qi,0,l,p =
∑

p∈[V ]Qa,0,l,p.

• No more than one feature must be chosen on a branch i, at depth j:

∀i ∈ [L], j ∈ [K] :
∑
l∈[M ]

∑
p∈[V ]

Qijlp ≤ 1. (2)

• Each feature is chosen at most once on a branch:

∀i ∈ [L], l ∈ [M ] :
∑
j∈[K]

∑
p∈[V ]

Qijlp ≤ 1. (3)

• For every branch, if a feature is chosen at depth j, on all previous depths

0, ..., j − 1, a feature must be selected:

∀i ∈ [L], j ∈ [K − 1] :
∑
l∈[M ]

∑
p∈[V ]

Qijlp ≥
∑
l∈[M ]

∑
p∈[V ]

Qi(j+1)lp. (4)

4The l-th feature is selected if at least one its value is 6= 0.
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Figure 2: Relationship between branches (matrix Z). Left: branches of the tree. Center: the

relationship between the first branch (branch 0) and the other branches; the deepest vector

(with 3 bits horizontally aligned) defines the 3 possibilities of pair of branches given a depth:

(i) branches are equal up to that depth, (ii) branches are siblings, (iii) branches are different

with a variable or a value before the given depth. Right: the corresponding matrix Z which

encodes the relationship between all the branches.

From what has been described, Q models a set of L branches with at most K200

features selected per branch. However, for Q to represent a valid tree, relations

between branches need to be defined. In particular, two branches i and a are

siblings at depth j if all features and values that are selected on branch i and

a until depth j, are equal, but on depth j, chosen features to remain the same

between the two branches and only their values differ (e.g., branch 1 and 2205

at depth 0). Formally, branch relations are encoded using the 4-dimensional

matrix 5 Z ∈ {0, 1}L×K×L×3 and we define three types of relations: (i) Zija,0 =

1 if all the features and their values on branches i and a are equals up to and

including depth j; (ii) Zija,1 = 1 if branches i and a are siblings at depth j; and

(iii) Zija,2 = 1 if it exists one feature or one value of feature selected on depth210

j1 < j which differs from branches a and i. For example, in Figure 2, at depth

1, branches 0 and 1 are siblings, so Z011,1 = 1; and at depth 1 branches 0 and

2 fall into the third case; so Z012,2 = 1.

With the above definitions for the Q and Z matrices, we can now express

the constraints that a valid tree representation should satisfy.215

5The Symmetry on this matrix Z w.r.t. branch indexes i and a at their respective dimen-

sions 0 and 2 has been technically broken in the implementation by considering that i < a.
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• All branches must be pairwise different:

∀i ∈ [L], a ∈ [L] \ {i} : Zi,K−1,a,0 = 0. (5)

• Every pair of branches matches only one of the previous cases:

∀i, a ∈ [L], j ∈ [K] :
∑

q∈{0,1,2}

Zijaq = 1. (6)

• Every pair of branches in case (i) at depth j must have selected on depths

j1 ≤ j the same feature and have the same values of those features:

∀i, a ∈ [L], j ∈ [K], j1 ∈ [j + 1], p ∈ [V ] : Zija,0 = 1 � Qij1lp = Qaj1lp. (7)

• On a branch, if no feature is chosen at a specific depth j, no other branch

can be in case (i) at depth j − 1:

∀i ∈ [L], a ∈ [L] \ {i}, j ∈ [K − 1] : Zija,0 ≤
∑
l∈[M ]

∑
p∈[V ]

Qi,j+1,lp. (8)

• Every pair of branches in case (iii), which are different on at least one

depth before j must have a depth where feature/value is different. This

relationship appears when earlier on depth j1 < j, the branches were

siblings. Therefore, the constraint can be simply written as:

∀i ∈ [L], j ∈ [K], j1 ∈ [j], a ∈ [L] \ {i} : Zija,2 ≥ Zij1a,1. (9)

• If a feature is selected on a depth of a branch, the branch must have at

least one sibling:

∀i ∈ [L], j ∈ [K] :
∑

a∈[L]\{i}

Zija,1 ≥
∑
l∈[M ]

∑
p∈[V ]

Qijlp. (10)

• Every pair of sibling branches must be equal (in terms of features and

values) up to depth j − 1:

∀i, a ∈ [L], j ∈ [K] \ {0}, j1 ∈ [j], l ∈ [M ], p ∈ [V ] : Zija,1 = 1⇒ Qij1lp = Qaj1lp.

(11)

11



• Every pair of sibling branches on depth j must have the same feature

chosen on this depth:

∀i, a ∈ [L], j ∈ [K], l ∈ [M ] : Zija,1 = 1⇒
∑
p∈[V ]

Qijlp =
∑
p∈[V ]

Qajlp. (12)

• Values of features for each pair of sibling branches at depth j must be

different if the feature is selected and equal to zero otherwise:

∀i, a ∈ [L], l ∈ [M ], j ∈ [K], p1 ∈ [V ] : Zija,1 = 1⇒ Qijlp1 +Qajlp1 =
∑
p∈[V ]

Qijlp.

(13)

• If no feature is selected at depth j of the branch i, no branch can be a

sibling of another branch i:

∀i ∈ [L], a ∈ [L] \ {i}, l ∈ [M ], j ∈ [K], p ∈ [V ] : Zija,1 ≤
∑

p∈[V ],l∈[M ]

Qijlp.

(14)

Our tree representation is composed of matrices Q and Z on which constraints

(1–14) are applied. MatricesQ and Z respectively have L×K×M and L2×K vari-

ables. To learn trees, one needs to create an objective function where instance-

dependent variables need to be explicitly introduced, as shown hereafter.

3.2. Encoding Global Objective Functions220

This section introduces variables and constraints used to encode the global

objective function. Section 4 will show how constraints can be easily enforced.

Let S ∈ {0, 1}N×L denote the mapping between the set of examples of the

dataset and the set of leaves (e.g., Sei = 1 if example e belongs to the i-th

leaf/branch and 0 otherwise). Let H ∈ {0, 1}L×C denote the mapping between225

the set of branches and the set of classes (e.g., Hic = 1 if c is the predicted class

of branch i and 0 otherwise). Finally, R ∈ {0, 1}N defines the 0 − 1 loss over

the example e. For recall, T ∈ {0, 1}N×C represents labels of the dataset, as

defined at beginning of this section.

The following constraints describe how to encode global objective functions.230
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• Each example must belong to one leaf:

∀e ∈ [N ] :
∑
i∈[L]

Sei = 1. (15)

• If an example belongs to a leaf node, all the features/values chosen on the

corresponding branch must be the same as this example:

∀e ∈ [N ], i ∈ [L], j ∈ [K], l ∈ [M ], p ∈ [V ] :

Qijlp = 1⇒ Sei ≤ 1−Xelp +Qijlp, (16a)

Qijlp = 1⇒ Sei ≤ 1 + Xelp −Qijlp. (16b)

• Each branch of a leaf node must predict exactly one class:

∀i ∈ [L] :
∑
c∈[C]

Hic = 1. (17)

• The class of a leaf node (or branch) is the majority vote of examples

belonging to this branch:

∀i ∈ [L], c1, c2 ∈ [C] : Hic1 = 1⇒
∑
e∈[N ]

Sei ∗Tec1 ≥
∑
e∈[N ]

Sei ∗Tec2 . (18)

• The error of the predicted class of an example is equal to one if the class

of its branch is different from the true class and equal to zero, otherwise:

∀e ∈ [N ], c ∈ [C], i ∈ [L] :

Sei = 1⇒ Re ≥ −Hic + Tec, (19a)

Sei = 1⇒ Re ≤ 2−Hic −Tec. (19b)

Using the above results, the misclassification error of the tree is∑
e∈[N ]

Re. (20)

This objective function can be used by solvers to search for an optimal tree.

Proposition 1. The complexity C in terms of the number of variables of the

entire constraint program of our formulation is O
(
L×K(L+M) +N ×L

)
. It

can be reduced to O
(
L(L + M + N)

)
for shallow trees when prior values of L

and K are known.235
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Proof. The tree encoding complexity (in terms of the number of variables) is

O(L×K ×M +L2×K). The objective function encoding is O(N ×L). Then,

the total complexity is

C = O(L×K ×M + L2 ×K +N × L) = O
(
L×K(L+M) +N × L

)
For shallow trees, K is small, therefore less than a fixed maximum value. So,

C = O(L2 + L×M + L×N).

The time to find the optimal solution increases proportionally with the size of

the dataset and the number of leaves. Another important insight from Propo-

sition 1 is the fact that, in terms of the number of variables, the complexity240

C highly varies depending on which term is the biggest term between N and

K(L+M). In particular, N is not usually tunable (except with sub-sampling)

whereas M could be because of the binarisation step. Hence, Proposition 1

shows that in practical implementations with binary features, M should be ide-

ally negligible w.r.t. N (i.e., a o(N)), when prior values of K and L are known.245

Constraints 7, 11, 12, 13, 16a, 16b, 18, 19a and 19b are not directly expressed

in a linear form. They are presented in a form called indicator constraints, but

modern linear programming solvers generally prefer this form. Nonetheless,

they can be linearised using big-M constraints (e.g., constraint 7 can be written

as Qijlp−Qajlp ≤M ∗ (1−Zija,0), with M being a big positive number so that250

when Zija,0 = 1, the left part of the inequality must be null).

It is worth mentioning that, in contrast to [10, 32, 9], our first model does

not rely on a specific type of solver since we exploit only binary variables and

linear constraints. Therefore, it has the advantage to be implementable on CP

solvers as well as MIP and ILP solvers.255

4. Formalising Domain Knowledge as Constraints

With the tree representation and the first formulation (the second one is

detailed in Appendix A.1) presented in the previous section, in the following,
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we show how useful domain knowledge can be straightforwardly formalised as

constraints and integrated into our models.260

4.1. Ordering of Features

It often appears that domain experts have a prior belief in a specific ordering

of features. This prior may directly come from their background knowledge or

hard material constraints which favor asking patients to perform tests before

others. As an illustration, to predict liver diseases, doctors will ask patients

their age before performing a bilirubin test since the interpretation of this test

depends on the age of the patient [35]. Therefore, a comprehensible decision

tree for domain experts should encode this prior knowledge. The constraint

”feature Xl2 must not appear before Xl1” is expressed as

∀i ∈ [L], j ∈ [K] \ {0},
∑
j1∈[j]

∑
p∈[V ]

Qij1l2p ≤ 1−
∑
p∈[V ]

Qijl1p.

4.2. Test Costs on Features

Experts can also be constrained by economic considerations to ask patients

to do tests before taking decisions [21]. A good illustration of this importance is

the case of the application of machine learning algorithms in domains with a lack

of available material resources to perform medical tests. Hence, one can specify

test costs on features in order to limit the total cost to perform before reaching

a decision. With our framework, it is possible to learn trees with a maximum

classification cost τ on a cost-sensitive dataset. This constraint becomes

∀i ∈ [L] :
∑
j∈[K]

∑
l∈[M ]

∑
p∈[V ]

Qijlp ∗ cost(l) ≤ τ.

where cost(l) denotes the test cost of feature Xl.

4.3. Expected Cost for Classification

As for the same reasons with test costs, certain applications may require to

constrain the expected classification cost. The weighted test cost of a branch i
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is 1
N

∑
e∈[N ]

∑
l∈[M ] Sei ∗ cost(l) ∗

(∑
p∈[V ]Qijlp). As this previous term is non-

linear, it is possible to linearise it with variables Nij representing the weighted

test cost of the branch i at depth j, with the constraints:

∀i ∈ [L], j ∈ [M ], l ∈ [L],
∑
p∈[V ]

Qijlp = 1⇒ Nij = cost(l) ∗
∑
e∈[N ]

Sei,

and ∀i ∈ [L], j ∈ [M ],
∑

l∈[M ]p∈[V ]

Qijlp = 0⇒ Nij = 0.

Therefore, the expected cost for classification is Ecost = 1
N

∑
i∈[L]

∑
j∈[K]Nij .

Imposing a maximum expected cost for a decision tree can be stated as∑
i∈[L]

∑
j∈[K]

Nij ≤ N ∗ τ.

4.4. Number of Instances on Leaf Nodes265

To reduce the growth of a tree, one can also give the minimum number of

instances on leaf nodes. This can be easily done by adding

∀i ∈ [L],
∑
e∈[N ]

Sei ≥ minNumberInstances.

4.5. Instances that Must Be in the Same Leaf

It often appears that datasets come with instance names and domain ex-

perts may have background knowledge of specific instances. Similarly to clus-

tering [36], practitioners may want to impose that certain instances satisfy the

same decision rule, i.e., belong to the same leaf node. One can also specify that

two instances must be in the same leaf node with the proposed framework using

the constraint expressed as

∀i ∈ [L], Se1,i = Se2,i, if e1 and e2 has to be in the same leaf node.

4.6. Presence or Exclusion of a Feature Over the Tree or Over a Branch

It often appears that in several situations (e.g., due to noisy data), the

selected features of a decision tree are not properly the domain-related relevant

features [23]. In such situations, domain experts may not trust the learned tree.
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Using our formulation, it is possible to impose the selection of a feature Xl

(without even knowing where it should be selected) thanks to the constraint∑
i∈[L]

∑
j∈[K]

∑
p∈[V ]

Qijlp ≥ 1.

Additionally, two or more features may be redundant in a decision rule (i.e.,

over a specific branch). For some specific reasons, they should not be selected

simultaneously in a branch (i.e., decision-wise) or in the whole tree (i.e., model-

wise). Domain experts can provide this knowledge which can be infused as

constraints. It can be guaranteed that two features Xl1 and Xl2 do not appear

on the same branch of a decision tree with

∀i ∈ [L],
∑
j∈[K]

∑
p∈[V ]

Qij,l1,p +Qij,l2,p ≤ 1.

Xl1 and Xl2 will not appear simultaneously into the tree if∑
i∈[L]

∑
j∈[K]

∑
p∈[V ]

Qij,l1,p +Qij,l2,p ≤ 3.

4.7. Fairness through Demographic Parity and Minimum Accuracy for a Group

4.7.1. Demographic Parity

One of the most popular measures to quantify the unfairness is the demog-

raphy parity [37, 38]. Demographic parity fairness aims to ensure that the

predictions of a classifier do not depend on a sensitive feature z such as gender

or race, i.e., p(ŷ = 1|xz) = p(ŷ = 1|xz̄) [39]. In practice, the demographic parity

fairness is evaluated on a sample, through the difference of demography parity

(DDP) given by

DDP =
∣∣∣ ∣∣{x ∈ D; ŷ = 1,xz = 1}

∣∣∣∣{x ∈ D;xz = 1}
∣∣ −

∣∣{x ∈ D; ŷ = 1,xz = 0}
∣∣∣∣{x ∈ D;xz = 0}

∣∣ ∣∣∣.
Let Nz (resp. Nz̄) be the number of samples belonging to the first (second)

category of the binary sensitive feature, N+
z (resp. N+

z̄ ) be the number of

positively predicted samples belonging to the first (resp. second) category of

the sensitive feature. Therefore, the DDP can be expressed as DDP =
∣∣N+

z /Nz−
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N+
z̄ /Nz̄|. Looking back at our tree formulation, thanks to the partitioning of the

branch representation, we can partition samples according to branches/leaves

i ∈ [L], create variables N+
iz (resp. N+

iz̄) for each branch and express the DDP

as
∣∣Nz̄∗

∑
i∈[L] N

+
iz−Nz∗

∑
i∈[L] N

+
iz̄

Nz̄∗Nz
|. Hence, using our tree formulation, a decision

tree satisfies the ε-DDP if

−ε ∗Nz̄ ∗Nz ≤ Nz̄ ∗
∑
i∈[L]

N+
iz −Nz ∗

∑
i∈[L]

N+
iz̄ ≤ ε ∗Nz̄ ∗Nz,

where N+
iz and N+

iz̄ are variables defined thanks to the following constraints:

∀i ∈ [L], Hi,1 = 0⇒

N
+
iz̄ = 0

N+
iz = 0

, Hi,1 = 1⇒

N
+
iz̄ =

∑
e∈[N ] Sei ∗ (1−Xez)

N+
iz =

∑
e∈[N ] Sei ∗Xez

.

4.7.2. Minimum Accuracy on an Underrepresented Group270

In the same direction, if one would like to guarantee that a certain percentage

ε of instances from a targeted group G should not be misclassified, it can be

easily imposed using the following constraint:
∑

e∈G re ≤ (1− ε) ∗ |G|.

More broadly, it is important to note that, by drawing inspiration from

demographic parity measures and minimum accuracy, other constraints called275

in [7] as rate constraints (evaluated using input/outputs of models) can be

formalised and expressed within the proposed formulation.

5. Domain-knowledge Constraint Enforcement on Real-world Data

This section demonstrates empirically the capability of our model to en-

force various types of domain-knowledge constraints. We now refer to our de-280

cision trees as CPTrees. Following the methodology in [40] and [7], we ex-

perimentally validate the ability of our framework to enforce a broad class of

domain-knowledge constraints on several real-world applications with prior do-

main knowledge that should be enforced. In the following, for each application,

we briefly discuss the results obtained with CPTree and constrained CPTree in285

terms of trees and decision rules. In order to have a point of comparison, we also

include CART in our experiments, although any other method benchmarked in

18



Section 6 could be chosen. We report the accuracy in our experiments to study

whether constraint enforcement impacts it: constrained decision trees should

remain reliable and accurate. Finally, datasets are split using the 67 − 33%290

train-test percentage (except on COMPAS with the 40− 60%).

5.1. Ordering Constraint Applied to the Prediction of Breast Cancer Survival

The first application is related to the Haberman’s survival dataset [41], which

contains features like age and positive nodes (number of positive axillary nodes

detected), etc. The goal is to predict whether a patient survives after surgery295

for breast cancer. In this domain, breast cancer is extremely violent for younger

patients because it can weaken the patient and make the surgery dangerous.

On the other hand, older patients usually have difficulties recovering from surg-

eries (in general) since it puts the body under high stress. In between these

two categories, patients have more chances to survive breast cancer surgery300

[42]. Moreover, it is established that knowing the age, the evolution of posi-

tive nodes is piece-wise linear [39] and that the feature age precedes the feature

positive nodes on a causal directed graph [43]. Therefore, a medically valid

decision tree should first select the feature age before the feature positive nodes.

Results. Figure 3 shows learned trees (CART, unconstrained, and constrained305

CPTrees) from this dataset. It can be observed that both CART and the uncon-

strained CPTree violate the ordering constraint. In contrast, the constrained

CPTree does not only satisfy the constraint but also, the new top feature is the

feature age, which appears to be to some extent more natural since it is likely

to be the first question a medical doctor would ask a breast-cancer patient.310

Additionally, Table 2 confirms that this prior knowledge is in phase with data

since predictive accuracy is slightly improved for the constrained CPTree.

5.2. Must-be-selected Constraint Applied to Diabetes Prediction

Here, we study the problem of predicting diabetes on patients of the dataset

Pima Indian diabetes [41]. Patients of this dataset are women of at least twenty-315

one years old [44]. The dataset contains socio-demographic features such as
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Haberman’s survival Diabetes

Train Test Train Test

CART 77.07 71.28 79.96 68.50
CPTree 80.97 68.31 81.90 68.89

C-CPTree 78.53 73.26 79.57 74.40

Table 2: Accuracy of CART, (unconstrained) CPTree and (constrained CPTree) C-CPTree.

positive_node ≤ 4.5
samples = 205

value = [151, 54]
class = Survived

age_patient ≤ 77.5
samples = 153

value = [124, 29]
class = Survived

True

age_patient ≤ 42.5
samples = 52

value = [27, 25]
class = Survived

False

positive_node ≤ 0.5
samples = 151

value = [124, 27]
class = Survived

samples = 2
value = [0, 2]
class = Died

samples = 91
value = [79, 12]
class = Survived

age_patient ≤ 60.5
samples = 60

value = [45, 15]
class = Survived

samples = 49
value = [40, 9]

class = Survived

samples = 11
value = [5, 6]
class = Died

samples = 10
value = [8, 2]

class = Survived

year_of_operation ≤ 59.5
samples = 42

value = [19, 23]
class = Died

samples = 4
value = [0, 4]
class = Died

samples = 38
value = [19, 19]
class = Survived

(a) CART

positive_node<=20.00024
samples=205

value=[151, 54]
class=Survived

year_of_operation<=64.99996
samples=192

value=[145, 47]
class=Survived

True

age_patient<=59.00001
samples=13
value=[6, 7]
class=Died

False

positive_node<=10.94808
samples=137

value=[101, 36]
class=Survived

True

samples=55
value=[44, 11]
class=Survived

False

year_of_operation<=65.98897
samples=10
value=[3, 7]
class=Died

True

samples=3
value=[3, 0]

class=Survived

False

age_patient<=69.94716
samples=127

value=[99, 28]
class=Survived

True

samples=10
value=[2, 8]
class=Died

False

samples=8
value=[1, 7]
class=Died

True

samples=2
value=[2, 0]

class=Survived

False

samples=118
value=[96, 22]
class=Survived

True

samples=9
value=[3, 6]
class=Died

False

(b) Unconstrained CPTree

age_patient<=67.0
samples=205

value=[151, 54]
class=Survived

positive_node<=14.0
samples=184

value=[137, 47]
class=Survived

True

year_of_operation<=58.00011
samples=21

value=[14, 7]
class=Survived

False

year_of_operation<=63.0
samples=164

value=[128, 36]
class=Survived

True

year_of_operation<=66.0
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value=[9, 11]
class=Died

False

samples=3
value=[0, 3]
class=Died

True

samples=18
value=[14, 4]

class=Survived

False

positive_node<=10.0
samples=80

value=[64, 16]
class=Survived

True

samples=84
value=[64, 20]
class=Survived

False

samples=15
value=[5, 10]

class=Died

True

samples=5
value=[4, 1]

class=Survived

False

samples=74
value=[62, 12]
class=Survived

True

samples=6
value=[2, 4]
class=Died

False

(c) Constrained CPTree

Figure 3: Ordering constraints. Decision trees were obtained on Haberman’s survival dataset

using (a) CART, (b) CPTree without constraints, and (c) CPTree with the constraint: ”feature

age patient must appear before feature positive nodes”.

Glucose ≤ 123.5
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class = No_Diabete

Glucose ≤ 100.5
samples = 89
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samples = 35
value = [30, 5]

class = No_Diabete

samples = 54
value = [25, 29]
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samples = 66
value = [44, 22]

class = No_Diabete

Glucose ≤ 157.5
samples = 154

value = [41, 113]
class = Diabete

samples = 93
value = [34, 59]
class = Diabete

samples = 61
value = [7, 54]

class = Diabete

(a) CART

Age<=35.1174
samples=514

value=[335, 179]
class=No_diabete

Glucose<=143.80146
samples=340

value=[253, 87]
class=No_diabete

True

Glucose<=107.8011
samples=174

value=[82, 92]
class=Diabete

False

Glucose<=124.6212
samples=286

value=[239, 47]
class=No_diabete

True

samples=54
value=[14, 40]
class=Diabete

False

samples=39
value=[31, 8]

class=No_diabete

True

BMI<=28.79999
samples=135

value=[51, 84]
class=Diabete

False

samples=233
value=[208, 25]

class=No_diabete

True

BMI<=34.50014
samples=53

value=[31, 22]
class=No_diabete

False

samples=41
value=[30, 11]

class=No_diabete

True

samples=94
value=[21, 73]
class=Diabete

False

samples=37
value=[27, 10]

class=No_diabete

True

samples=16
value=[4, 12]
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False

(b) Unconstrained CPTree
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samples=514

value=[335, 179]
class=No_diabete
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samples=435

value=[300, 135]
class=No_diabete

True
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samples=79

value=[35, 44]
class=Diabete

False
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samples=420

value=[288, 132]
class=No_diabete

True

samples=15
value=[12, 3]

class=No_diabete

False

Glucose<=139.80186
samples=56

value=[33, 23]
class=No_diabete

True

samples=23
value=[2, 21]
class=Diabete

False

Glucose<=157.00014
samples=404

value=[285, 119]
class=No_diabete

True

samples=16
value=[3, 13]
class=Diabete

False

samples=40
value=[29, 11]

class=No_diabete

True

samples=16
value=[4, 12]
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False

samples=349
value=[276, 73]
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True

samples=55
value=[9, 46]
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(c) Constrained CPTree

Figure 4: Must-be-selected constraints. Decision trees were obtained on the Diabetes dataset

using (a) CART, (b) CPTree without constraints, and (c) CPTree with the constraint: ”feature

pregnancy must appear on the tree”. Zoomed versions of the trees are left in Appendix B.2.

age, clinical features such as body max index (BMI), and pregnancy-related

features. In this use-case, we impose the constraint that a feature related to

the pregnancy (pregnancy) should be selected on the tree. Indeed, women who

have been pregnant may have developed gestational diabetes, which may result320

20



Train Test

CART 83.33 53.33
CPTree 85.00 56.67

P-CART 80.00 63.63
C-CPTree 83.33 66.67

Table 3: Accuracy of CART, CPTree, P-CART (trained without the L-CORE feature) and

constrained CPTree (C-CPTree) on Post-operative data.

in diabetes after giving birth [45].

Results. Figure 4 shows learned trees from this diabetes dataset. According

to the figure both CART and unconstrained CPTree select the same features

but with different decision rules. They also fail to select a feature related to

pregnancy. With these trees, it is difficult to quickly differentiate patients who325

are likely to have developed gestational diabetes. In contrast, when infusing

the prior information of the selection of the pregnancy feature the constrained

CPTree provides decision rules where it may be possible to differentiate those

patients. Furthermore, as shown in Table 2, this prior knowledge does not harm

predictive accuracy but helps to better generalise on unseen data.330

5.3. Exclusion Constraint Applied to Prediction of Post-operative Action

This application aims to predict whether a patient should stay in the same

service, go to an intensive care unit or go back home for recovery after surgery.

We use the Post-operative dataset [41]. Here, from prior knowledge, on average,

the difference between the core temperature (L-CORE ) and the surface tem-335

perature (L-SURF ) is generally constant. So it would be surprising and useless

to select these two (strongly correlated) features on the same branch.

Results. Table 3 shows the performance of CART, CPTree, and P-CART (CART

with the feature L-CORE removed). It can be seen that adding this prior knowl-

edge does not impair predictive accuracy. It further improves generalisation.340

Moreover, as shown in Figure 5, both CART and CPTree violate the constraint

while P-CART and C-CPTree satisfy by design.
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L-BP_mid ≤ 0.5
samples = 60

value = [2, 44, 14]
class = go home

COMFORT ≤ 10.471
samples = 21

value = [1, 18, 2]
class = go home

True

L-SURF_low ≤ 0.5
samples = 39

value = [1, 26, 12]
class = go home

False
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value = [0, 2, 0]
class = go home

samples = 2
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value = [0, 4, 0]
class = go home

(a) CART
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value = [0, 16, 1]
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value = [1, 2, 1]
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value = [0, 2, 0]
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L-SURF_mid ≤ 0.5
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(b) CART on preprocessed data
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(c) Unconstrained CPTree
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value=[1, 4, 4]
class=go home

False

samples=5
value=[1, 0, 4]

class=general hospital floor

True

samples=4
value=[0, 4, 0]
class=go home

False

(d) Constrained CPTree (C-CPTree).

Figure 5: Exclusion constraints. Decision trees obtained on the Post-operative patient dataset

with (a) CART without constraints, (b) CPTree without constraints, (c) CART with one of the

two highly correlated features removed, (d) CPTree with the constraint: ”L-SURF (surface

temperature) and L-CORE (internal temperature) are mutually exclusive in a branch”.

5.4. Minimum Accuracy on an Underrepresented Group and Test Cost Con-

straints Applied to Heart Disease Prediction

In this application, we use the heart disease dataset for heart disease predic-345

tion. In this application, men are usually of higher risk to develop heart disease

than women. Sick women represent therefore an underrepresented group in this

domain application and very often they present atypical symptoms compared

to men [46]. Since even medical doctors have to be cautious [47] when exam-

Train Test Train Group Test Group

CART 82.32 77.78 68.75 55.56
CPTree 85.35 83.84 68.75 66.67

C-CPTree 81.82 79.80 93.75 88.89

Table 4: Accuracy of CART, CPTree, and constrained CPTree (C-CPTree) on heart disease.

Group represents the group of sick women patients.
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thal ≤ 4.5
samples = 198

value = [109, 89]
class = Not_sick

cp ≤ 3.5
samples = 111
value = [88, 23]
class = Not_sick

True

oldpeak ≤ 0.7
samples = 87

value = [21, 66]
class = Sick

False

samples = 75
value = [67, 8]

class = Not_sick

ca ≤ 0.5
samples = 36

value = [21, 15]
class = Not_sick

samples = 23
value = [18, 5]

class = Not_sick

samples = 13
value = [3, 10]
class = Sick

samples = 28
value = [15, 13]
class = Not_sick

cp ≤ 3.5
samples = 59
value = [6, 53]
class = Sick

samples = 15
value = [6, 9]
class = Sick

samples = 44
value = [0, 44]
class = Sick

(a) CART

cp<=3.00001
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value=[109, 89]
class=safe

thal<=5.0
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value=[38, 9]
class=safe

True

thal<=5.996
samples=97

value=[28, 69]
class=sick

False

samples=33
value=[30, 3]

class=safe

True

ca<=0.96474
samples=14
value=[8, 6]
class=safe

False

ca<=0.99699
samples=36

value=[21, 15]
class=safe

True

samples=61
value=[7, 54]

class=sick

False

samples=12
value=[8, 4]
class=safe

True

samples=2
value=[0, 2]
class=sick

False

samples=23
value=[18, 5]

class=safe

True

samples=13
value=[3, 10]

class=sick

False

(b) CPTree

ca<=3e-05
samples=198

value=[109, 89]
class=safe

trestbps<=117.89452
samples=113

value=[84, 29]
class=safe

True

cp<=3.997
samples=85

value=[25, 60]
class=sick

False

samples=20
value=[16, 4]

class=safe

True

cp<=3.997
samples=93

value=[68, 25]
class=safe

False

thal<=5.996
samples=32

value=[20, 12]
class=safe

True

samples=53
value=[5, 48]

class=sick

False

samples=57
value=[52, 5]

class=safe

True

samples=36
value=[16, 20]

class=sick

False

samples=22
value=[18, 4]

class=safe

True

samples=10
value=[2, 8]
class=sick

False

(c) Constrained CPTree

Figure 6: Minimum accuracy on a targeted group. Decision trees obtained on the heart

disease dataset with (a) CART without constraints and (b) CPTree without constraint and

(c) CPTree with the constraint: ”90% of sick women should not be misclassified”.

Train Test Train DDP Test DDP

CART 83.60 83.76 8.09 7.49
CPTree 83.14 83.45 12.25 12.80

C-CPTree 81.64 82.18 1.68 1.37

Table 5: Accuracy and DDP of CART, CPTree, constrained CPTree (C-CPTree) on Compas.

ining women patients for this disease, it is likely that a classifier will struggle350

to correctly classify these examples. In order to enhance the possible trust of

learned decision trees, we, therefore, impose the constraint that a high percent-

age (90%) of sick women should not be misclassified. We additionally impose

the constraint on test costs, which we leave in Appendix C.3.

Results. Table 4 shows results obtained on CART, unconstrained CPTree, and355

the constrained one. Without the constraint, both CART and CPTree correctly

classify only 68.75% of sick women. However, when imposing the constraint,

the constrained CPTree does not only increase this percentage on the training

distribution (93.75%), but also on the test distribution (88.89%). Nonetheless,

in this case, the accuracy of the constrained CPTree is slightly below the one of360

the unconstrained CPTrees.
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5.5. Fairness constraint Applied to Recidivism Prediction

In this application, we use the ProPublicas COMPAS recidivism data. The

task is to predict recidivism based on historical crime and demographic features.

Studies have reported that the system built around this dataset was racially365

biased against African American defendants [40]. Inspired by Cotter et al. [7],

we impose the constraint that the DDP (with race as the protected feature)

should be less than 5%.

Results. Table 5 shows results6 obtained on CART, unconstrained CPTree,

and constrained CPTree. It appears on one hand that, both CART and un-370

constrained have approximately the same predictive accuracy, but the uncon-

strained CPTree is less fair than CART according to DDP. On the other hand,

when enforcing the fairness constraint DDP decreases by approximately at least

6% (down to ±1%) while keeping the same level of accuracy of unconstrained

trees.375

In summary for these use cases, this section showed that our framework al-

lows enforcing domain-knowledge constraints in diverse real-world applications.

For each application, our constrained CPTrees enforce constraints without loss

in accuracy performance with respect to the unconstrained ones and CART

baselines. In what follows, we show that if no constraints are enforced, CPTrees380

obtain competitive results with respect to state-of-the-art tree learners. We aim

to show that domain experts can safely use our approach to obtain trees that (i)

are reliable and (ii) straightforwardly enforce constraints that the models need

to comply with.

6. Comparison to State-of-the-Art Decision Tree Learners385

This section benchmarks the proposed CPTrees with respect to state-of-the-

art decision tree learners in order to validate their relevance from an accuracy

perspective. Indeed, Section 5 has shown that CPTrees can enforce domain

6Trees are left in Appendix D.4. due to a lack of space.
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Dataset name N M Type of features C

Balance scale 625 4 categorical 3
Bankote authentication 1372 5 numeric 2
Car evaluation 1728 6 categorical 3
Credit approval 690 15 categorical, numeric 2
Hepatitis 155 19 categorical, numeric 2
Ionosphere 351 34 numeric 2
Iris 150 4 numeric 3
Mammographic masses 961 6 categorical, numeric 2
Monk1 432 6 categorical 2
Monk2 432 6 categorical 2
Monk3 432 6 categorical 2
Pima indian diabetes 768 10 numeric 2
QSAR biodegradation 1055 41 numeric 2
Post operative patient 90 8 categorical, numeric 3
Seismic-bumps 2584 19 numeric 2
Spambase 4601 57 numeric 2
Spect heart 267 22 categorical 2
Thoracy surgery 470 17 numeric 2
Tic tac toe 958 9 categorical 2
Wine 178 13 numeric 3

Table 6: Datasets. N , M , C denote respectively the number of instances, features and classes.

knowledge constraints, but they must also provide competitive accuracy to be

of practical interest.390

6.1. Experimental Settings

Most of the experiment settings that we use in this section have been set

in accordance with [9] and [10]. Experiments have been performed on 20 UCI

datasets [41] (mostly taken from the list of datasets used by Verwer and Zhang

[9] plus additional ones as seen in Table 6). Depending on the datasets, the395

number of classes varies from 2 to 3 and the number of instances from 90 to

4601.

No code for preprocessing datasets was found on any of the following source

code repositories: BinOCT 7[9], Verhaeghe et al. [32]8 , OSDT9 [29] and DL8.510

[27]. However, some datasets that we have used, were found on the BinOCT400

7https://github.com/SiccoVerwer/binoct
8https://bitbucket.org/helene verhaeghe/classificationtree
9https://github.com/xiyanghu/OSDT

10https://github.com/aglingael/dl8.5
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Dataset CART BinOCT1 BinOCT2 [32] DL8.5 OSDT CPTree-1 CPTree-1∗ CPTree-2

Balance 61.15 63.06 65.35 N/A 65.35 N/A 65.35 66.50 66.62
Bank. A. 86.30 88.28 91.31 89.21 88.28 87.07 88.28 87.46 90.38
Biodeg 75.53 75.98 77.05 76.52 75.99 76.67 75.76 76.67 69.32
Car 77.13 77.13 77.13 N/A 77.13 N/A 77.13 77.13 72.08
Credit A. 85.37 84.27 84.63 85.37 84.03 85.37 84.27 85.61 74.27
Hepatitis 78.97 83.59 83.08 83.08 83.08 80.51 84.10 86.67 82.05
Ionosphere 78.64 81.82 88.86 81.82 81.82 78.18 82.27 80.45 89.55
Iris 93.68 93.68 90.53 N/A 94.21 N/A 93.68 93.68 92.11
Mam. M. 82.12 82.40 83.85 82.40 82.40 82.21 82.40 82.60 82.12
Monk1 76.83 75.02 75.02 74.55 75.02 74.59 75.97 75.54 75.97
Monk2 65.56 64.30 64.30 60.65 64.58 65.88 65.56 65.56 65.56
Monk3 95.83 95.70 95.70 95.96 95.70 95.70 95.83 95.83 95.83
Pima 74.58 74.58 74.38 74.58 74.58 73.75 74.58 74.58 73.02
Post O. 73.64 73.64 73.64 N/A 70.91 N/A 65.45 66.36 67.27
Seismic 93.44 93.34 93.10 93.03 93.34 93.44 93.34 93.34 93.19
Spambase 77.98 77.65 85.14 77.65 77.65 77.98 77.65 77.98 T/O
Spect H. 76.42 77.51 77.51 71.12 77.50 77.51 76.42 76.42 76.42
Thoracy S. 83.22 83.73 82.37 83.90 83.90 83.90 83.90 83.56 83.05
Tic T. T. 68.92 67.50 67.50 67.33 67.50 68.58 67.50 68.00 68.67
Wine 88.89 91.56 93.33 N/A 91.55 N/A 91.56 89.78 92.00

(a) Average test accuracy with maximum depth 2 over 5 repetitions.

Balance 66.75 68.15 68.79 N/A 69.94 N/A 69.68 69.68 64.33
Bank. A. 86.30 92.54 96.15 94.46 92.54 92.30 92.59 90.50 92.13
Biodeg 76.67 78.41 78.33 82.58 80.08 80.53 79.09 80.30 66.67
Car 78.89 80.0 80.00 N/A 79.82 N/A 79.81 79.81 T/O
Credit 84.39 85.12 85.49 87.20 85.74 85.61 85.98 86.10 76.52
Hepatitis 79.49 81.03 80.51 82.05 81.54 80.51 81.03 81.03 82.56
Ionosphere 81.14 85.45 87.05 89.32 88.64 80.91 86.36 86.82 80.91
Iris 93.16 94.21 92.11 N/A 93.68 N/A 95.26 93.68 96.32
Mammo. 82.98 83.56 83.46 83.56 83.46 83.75 83.37 83.65 80.29
Monk1 80.43 86.27 86.27 86.70 86.27 85.16 85.18 80.86 82.45
Monk2 63.71 58.92 57.59 59.08 59.31 63.89 57.75 61.46 63.44
Monk3 98.42 99.14 99.14 99.28 96.36 98.58 98.99 98.99 97.41
Pima 73.96 72.71 73.65 70.52 70.52 73.75 70.62 73.02 71.48
Post O. 72.73 69.09 69.09 N/A 66.36 N/A 59.09 62.73 61.82
Seismic 93.44 93.28 93.13 93.28 93.19 93.44 93.22 93.19 93.34
Spambase 83.25 83.35 84.36 83.75 83.76 83.84 83.75 83.75 T/O
Spect H. 75.82 76.86 76.86 74.62 77.67 77.51 78.51 79.10 77.91
Thoracy S. 82.54 82.54 81.86 81.86 80.85 83.39 81.53 82.54 83.73
Tic T. T. 72.83 72.00 71.75 73.17 73.33 73.67 73.17 74.25 T/O
Wine 87.56 92.00 90.22 N/A 92.44 N/A 90.22 93.33 94.22

(b) Average test accuracy with maximum depth 3 over 5 repetitions.

Balance 65.48 72.61 71.08 N/A 72.49 N/A 72.61 71.46 61.31
Bank. 92.36 93.94 97.26 95.63 94.58 92.77 94.46 93.76 93.41
Biodeg 77.42 78.79 79.09 81.06 80.38 78.56 78.26 79.17 T/O
Car 79.44 82.59 83.29 N/A 82.82 N/A 82.18 82.36 T/O
Credit A. 85.85 85.49 84.63 84.76 85.25 85.61 84.76 85.73 T/O
Hepatitis 78.97 74.87 82.56 78.46 78.46 76.92 82.56 83.08 82.05
Ionosphere 87.27 85.45 88.18 84.32 84.32 86.36 86.59 85.91 89.77
Iris 93.16 93.68 95.26 N/A 93.68 N/A 95.26 94.21 95.79
Mammo. 82.79 83.17 82.31 82.60 82.60 83.46 81.92 84.13 83.17
Monk1 82.88 100.00 100.00 100.00100.00100.00 100.00 100.00 81.58
Monk2 65.03 60.35 59.11 60.59 60.13 64.02 56.82 62.78 63.25
Monk3 98.99 97.47 97.47 96.19 97.28 98.58 98.56 98.99 96.83
Pima 71.88 71.77 71.25 69.27 70.52 72.92 69.38 72.08 74.35
Post O. 65.45 60.91 60.91 N/A 65.45 N/A 56.36 63.64 60.91
Seismic 93.44 93.13 92.94 93.13 93.06 93.44 93.07 93.16 93.30
Spambase 83.79 83.28 83.37 84.40 84.40 81.06 83.54 83.72 T/O
Spect H. 77.31 75.86 75.56 74.37 76.73 77.51 74.93 77.91 75.75
Thoracy S. 81.86 83.22 82.20 80.68 80.17 84.24 81.02 81.86 84.18
Tic T. T. 81.75 78.42 78.92 80.83 81.25 77.92 80.33 77.08 T/O
Wine 92.00 92.89 89.33 N/A 89.33 N/A 88.44 92.89 92.89

(c) Average test accuracy with maximum depth 4 over 5 repetitions.

Table 7: Test accuracy for several maximum depths. N/A means that the method cannot do

multiclass classification. T/O means that no solution was found within the time limit (600s).
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Dataset CART BinOCT1 BinOCT2 [32] DL8.5 OSDT CPTree-1 CPTree-1∗ CPTree-2

Balance 65.64 69.87 69.10 N/A 69.10 N/A 69.10 68.72 68.68
Bank. 87.27 88.80 92.93 88.34 88.80 87.77 88.80 87.81 92.30
Biodeg 78.66 79.32 80.43 79.27 79.32 79.24 79.32 79.24 70.47
Car 77.99 77.99 77.99 N/A 77.99 N/A 77.99 77.99 71.40
Credit A. 86.95 87.28 87.53 86.71 87.28 86.71 87.28 87.03 75.01
Hepatitis 82.76 86.21 89.83 86.21 86.21 80.69 86.21 85.17 89.66
Ionosphere 80.99 86.01 91.94 86.01 86.01 83.88 86.01 85.32 90.42
Iris 95.18 95.54 92.86 N/A 95.54 N/A 95.54 95.18 93.93
Mammo. 83.18 84.08 84.66 84.08 84.08 83.47 84.08 83.89 84.12
Monk1 73.91 78.99 78.99 81.62 79.00 78.32 78.13 77.46 78.13
Monk2 65.78 65.88 65.88 76.80 65.88 65.05 65.78 65.78 65.78
Monk3 96.58 96.09 96.09 96.42 96.09 96.09 96.58 96.58 96.58
Pima 76.70 76.70 78.68 76.70 76.70 76.32 76.70 76.70 78.23
Post O. 72.62 75.38 75.38 N/A 80.00 N/A 75.38 73.85 75.38
Seismic 93.42 93.43 93.68 93.45 93.43 93.42 93.43 93.43 93.61
Spambase 78.67 78.99 85.43 78.99 78.99 78.67 78.99 78.67 T/O
Spect H. 80.00 79.35 79.35 85.12 79.35 79.35 80.00 80.00 80.00
Thoracy S. 86.08 86.48 86.82 86.48 86.48 85.85 86.48 86.14 86.42
Tic T. T. 70.75 71.23 71.23 71.23 71.23 70.81 71.23 71.17 69.67
Wine 93.08 93.83 97.29 N/A 93.83 N/A 93.83 93.53 96.99

(a) Average train accuracy with maximum depth 2 over 5 repetitions.

Balance 70.34 75.00 74.87 N/A 75.00 N/A 75.09 73.80 66.32
Bank. 87.27 93.37 97.26 92.61 93.37 93.00 93.37 92.23 93.22
Biodeg 79.87 82.23 83.34 83.06 83.54 82.23 83.16 82.78 68.27
Car 79.63 81.20 81.20 N/A 81.57 N/A 81.57 81.57 T/O
Credit A. 87.28 88.71 88.63 89.16 89.57 86.99 89.57 88.63 78.53
Hepatitis 87.07 91.03 93.28 91.55 91.38 81.38 91.55 88.10 90.86
Ionosphere 85.40 92.02 93.92 93.16 93.08 85.32 92.17 90.57 86.84
Iris 95.54 98.39 99.64 N/A 98.22 N/A 98.39 96.79 98.75
Mammo. 84.50 85.14 85.34 85.31 85.27 83.92 85.31 84.57 78.91
Monk1 77.84 90.71 90.71 91.86 90.72 90.55 90.46 85.28 83.65
Monk2 66.09 69.71 69.76 73.59 69.71 65.63 68.62 67.47 66.71
Monk3 98.41 98.15 98.15 98.22 98.15 97.82 98.89 98.89 98.07
Pima 76.77 77.78 80.69 78.33 78.33 76.32 78.33 77.74 78.78
Post O. 75.38 81.85 81.85 N/A 84.92 N/A 82.15 77.54 77.54
Seismic 93.42 93.47 93.80 93.47 93.47 93.42 93.47 93.47 93.53
Spambase 84.08 83.86 84.61 84.22 84.22 84.22 84.22 84.22 T/O
Spect H. 81.00 82.25 82.25 84.29 82.00 79.35 82.20 82.10 81.90
Thoracy S. 86.76 87.44 87.90 88.12 88.01 86.02 88.12 86.82 86.31
Tic T. T. 75.96 77.30 77.19 78.80 78.50 76.77 78.77 76.96 T/O
Wine 95.19 97.89 99.85 N/A 97.89 N/A 97.89 96.39 99.40

(b) Average train accuracy with maximum depth 3 over 5 repetitions.

Balance 72.01 78.21 77.95 N/A 79.06 N/A 78.93 76.79 61.75
Bank. 93.26 94.52 98.10 94.27 94.83 93.59 94.83 94.36 94.50
Biodeg 83.08 83.84 83.69 86.60 86.78 81.95 82.76 83.19 T/O
Car 80.19 83.63 83.53 N/A 84.55 N/A 83.89 83.80 T/O
Credit A. 89.98 89.61 89.08 91.41 91.74 88.02 90.67 89.53 T/O
Hepatitis 90.00 94.83 97.41 97.76 97.76 84.48 97.59 90.00 91.38
Ionosphere 90.11 94.52 95.59 97.26 97.26 89.05 95.59 92.02 91.33
Iris 97.50 98.39 100.00 N/A 98.39 N/A 98.39 97.68 97.68
Mammo. 85.14 85.92 86.11 86.43 86.40 84.21 86.21 85.24 81.94
Monk1 83.69 100.00 100.00 100.00100.00100.00 100.00 100.00 81.97
Monk2 68.53 73.93 73.83 77.78 74.51 69.40 72.22 70.13 66.89
Monk3 98.89 98.48 98.48 98.92 98.81 97.82 98.94 98.89 96.92
Pima 78.44 79.79 80.87 81.11 80.97 77.22 79.90 79.06 77.82
Post O. 77.85 86.46 86.77 N/A 91.69 N/A 90.46 79.08 78.77
Seismic 93.42 93.52 93.89 93.57 93.57 93.42 93.56 93.51 93.50
Spambase 84.60 84.84 84.01 85.50 85.50 81.88 84.57 84.52 T/O
Spect H. 82.90 85.95 85.95 88.54 86.95 79.35 86.90 84.60 82.25
Thoracy S. 88.01 88.81 88.86 90.28 90.17 85.51 89.77 88.12 86.08
Tic T. T. 83.62 83.82 83.87 87.05 86.69 81.78 84.43 80.84 T/O
Wine 98.80 99.10 100.00 N/A 100.00N/A 100.00 97.44 98.80

(c) Average train accuracy with maximum depth 4 over 5 repetitions.

Table 8: Train accuracy obtained for several maximum depths. N/A means that the method

cannot do multiclass classification. T/O means that no solution was found within the time

limit (600s).
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repository7, were already preprocessed. In order to extend preproprecessing

for other datasets, we had to preprocess the datasets, which may explain lit-

tle differences with published performances (e.g., slightly different accuracy)

on a few datasets. Additionally, the small differences with published perfor-

mances may also be explained by the division, which does not match exactly405

the one done in the papers. For methods that require binary features (DL8.5,

OSDT, Verhaeghe et al. [32] and our first model), datasets are preprocessed by

transforming numeric features into (3 bins using the quantile discretiser from

Scikit-learn11) categorical ones and then transforming all categorical features

into binary features through one-hot-encoding.410

Datasets have been divided into 3 sets: training (50%), validation (25%), and

testing (25%). BinOCT, DL8.5 and Verhaeghe et al. [32] do not have any addi-

tional hyperparameters nor the number of leaves to tune. We ran these models

directly on training plus validation sets. Since BinOCT has an intrinsic heuristic

to binarise numeric features, we keep datasets with their numeric features for415

experiments with BinOCT. This gives two versions of BinOCT (BinOCT1 for

only binary features and BinOCT2 with numeric features). Other methods only

work with binary features according to their released code. In the experiments,

we also include CART [16] from Scikit-learn using the entropy as a heuristic.

OSDT and CPTree require cross-validation to select hyperparameters λ and420

L, respectively. Therefore, λ has been selected after validation according to the

default range of values provided by Hu et al. [29]. The number of leaves L of

our model CPTrees has also been validated considering values from 3(K − 1)

to 2K , where K is the maximum depth. Once tuning is done, we ran OSDT

and our model on training plus validation sets, according to the best λ and L,425

respectively. Since our model is more general than [9], we made three versions

of CPTrees. CPTree-1 and CPTree-1∗ come from the first formulation and are

respectively the model for complete tree structures (L = 2K as BinOCT) and

the model for which the number of leaves has been validated. Second, CPTree-2

11We used KBinsDiscretizer from the preprocessing package.
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is the third model related to the second formulation (i.e., with numeric features)430

detailed in Appendix A.1.

To be fair, all models ran without a warm start such as CART. No additional

constraint has been added since the goal of this section is to assess the ability

of our method to produce decision trees that achieve similar accuracy to those

obtained by state-of-the-art methods described in Section 2.435

Since our first formulation uses linear constraints and binary variables, it

can be implemented into CP or MIP solvers. We used the CP-SAT solver of

the Google OR-Tools library [48], which is freely available in Python. For our

second formulation, we used the MIP solver of Gurobi [49].

Based on the work of BinOCT [9], we set to 10 minutes the time limit for each440

run of all the methods. Experiments have been conducted on 5 independent runs

by dataset, by depth (the maximal depth was set to 2, 3, and 4) also according

to [9]. We ran them sequentially (to be fair with all methods) on a server with a

Common KVM processor (2.294 GHz) and 16GB of RAM. Running completely

all the evaluations took more than 2 weeks12 of extensive computations.445

The code for CPTrees is available13 and learned trees can be inspected and

visualised as in Scikit-learn. All scripts that we used to benchmark all these

recent models are also available for future reproducibility.

6.2. How do CPTrees Perform Comparatively to BinOCT, OSDT and DL8.5?

Our benchmarking procedure aims to evaluate the generalisation of optimal450

decision tree models rather than how close they are to optimal solutions. There-

fore, Table 7a, 7b and 7c present the average test accuracy (on depth 2, 3 and 4,

respectively) over 5 independent runs as detailed in Section 6.1. Similarly, Ta-

ble 8 shows the average training accuracy. Here, the training accuracy of optimal

methods differs because, as a reminder, in accordance with Verwer and Zhang455

[9], all runs were done within the time limit of 10 minutes. Figure 7a, Figure 7b

12The total number of runs is ≈ 20(datasets)× 3(depths)× 8(models)× 5(runs) = 2400.
13https://github.com/gerald4/CPTree
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(a) Maximum depth 2. (b) Maximum depth 3.

(c) Maximum depth 4.

Figure 7: Nemenyi statistical significance test. From left to right, algorithms are ranked from

best to worst. The bold horizontal line indicates no significant difference between algorithms.

and Figure 7c show results of the Nemenyi statistical significant test, which is

a non-parametric test that compares algorithms pairwise of their performance.

Figure 7 shows that none of the compared methods outperforms the others, in

terms of generalisation, according to the Nemenyi test. This is confirmed by460

the analysis of Table 7, which shows predictive performance. In terms of test

accuracy, Table 7 shows that OSDT and CPTree-1∗ are usually close to each

other, which is not surprising since they both are branch-like models. In terms

of train accuracy, Table 8 shows that CPTrees are similar to state-of-the-art

learners that are designed to find optimal decision trees.465

It is also worth noting that, CPTree-2 is the only model (with CART) in

Table 7 and Table 8, which does not involve preprocessing or heuristic discreti-

sation of features. It is usually slow to reach an optimal solution, in particular

for datasets with categorical features. This is due to the existence of multiple

choices of splits that give the same semantic explanation. However, for pure470

numeric features (e.g., Bank., Ionosphere, Iris, Pima, etc.), it usually provides

good results, making it especially suitable for enforcing domain constraints in

cases where datasets present numeric features.

Overall, CPTree-1, CPTree-1∗, and CPTree-2 generally have similar perfor-
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(a) Maximum depth 3.

(b) Maximum depth 4.

Figure 8: Accuracy curve within 3 hours of optimisation.

mances. They perform sometimes better (or worse) than state-of-the-art meth-475

ods, but overall, there is no significant difference, according to the Nemenyi

statistical tests. However, the particularity of CPTrees is to be as flexible as

possible to incorporate a broad class of domain constraints as in Section 5.

7. Computational Time

This section examines how much computational time does CPTree requires480

to find a good decision tree that generalises well. We ran additional experiments

on three datasets with maximum depths (K = 3, 4;L = 2 ∗K) and a time limit

of 3 hours to explore more feasible space. We implemented a callback to keep

track of both the training and testing accuracy during optimisation.

Figure 8 shows results obtained along optimisation path. At the first glance,485

it appears that predictive accuracy saturates and sometimes decreases after a

reasonable amount of time. This confirms that we can avoid increasing the time

limit. More specifically, at depth 3, Figure 8a shows that for Pima Indian di-

abetes and Mammographic masses, the time required to learn a good CPTree

is less than 103s. This time is slightly higher for Ionosphere. On the other490
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hand, at depth 4, from Figure 8b, this time is less than or around 6× 103s. For

Ionosphere (maximum depth 3) and Mammographic masses (maximum depth

4), the occasional drop in predictive accuracy is due to the oversearching prob-

lem, a well-known issue for optimal searching methods [50]. This question needs

further investigation, especially on tree learners and we leave it for future work.495

In brief, our finding from this optimisation time/path analysis is that it is

not necessary to reach optimality with CPTree since this may harm predictive

performance without any strategies to counter overfitting from oversearching.

8. Conclusion

This paper introduces a tree representation that leads to two new formu-500

lations to enforce domain-knowledge constraints on decision trees. With these

formulations, we are able to enforce a broader family of constraints compared

to recently proposed methods. These constraints include but are not limited to

the number of leaf nodes, the maximum depth, domain-knowledge constraints

like the ordering of features on a branch of the tree or costs on features, or even505

regarding fairness. These formulations provide a flexible framework in which

several constraints both regarding the complexity and domain knowledge can

be easily formulated seeking to learn more interpretable and trustworthy trees.

The learned CPTrees ensure that the constraints are satisfied while keeping the

same level of accuracy with baselines. However, users should also make sure,510

when adding constraints, that the optimisation problem has feasible solutions.

Otherwise, the problem may not have a feasible solution simply because it is

overconstrained. Finally, future work includes more experiments to validate

interpretability’s improvement directly with users or domain experts.
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