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Abstract

Background: The water splash patterns strongly depend on the surface conditions
of the solid object. The present paper discusses the influence of the surface
conditions of the solids falling into the water on the formation of the splashes,
employing the experimental method with the high speed video camera and the
numerical approach by the particle method.

Methods: We propose two engineering models for calculating the Navier–Stokes
flows to distinguish the different surface conditions of the solids falling into the
water. One is to add the attractive or repulsive force between the water and the
surfaces of the solids, and the other is to consider the swelling ratio as the slip
condition, which causes the different wall shear stresses at the interfaces between
the solids and the water.

Results: The above models are successfully employed to study the effects of the
differences of the surface conditions of the falling objects on the splash formations.

Conclusions: We have successfully calculated the splashes caused by the different
surface conditions of spheres using the MPS method.

Keywords: Splash; Surface condition; Slip; Swelling ratio; Particle method; MPS
method
Background
Fluid Structure Interaction (FSI) is one of the most important themes in the computa-

tional mechanics and many related studies have been performed in the wide fields such

as structures, vehicles, medicine and biomechanics (Idelsohn et al. [1], Saksono and

Perić [2], Angeles et al. [3]).

In the fields of biology and biomechanics, the studies of an aneurysm model by the

groups of Takizawa et al. [4], an aneurysm or arteriosclerosis by Borghi et al. [5] and

Khanafer et al. [6] and an interfere between blood and deformed vessel by Tallec et al.

[7], Gerbeau et al. [8] and Yokoyama and Mochizuki [9] have been performed among

others. Regarding the relation with the bionics, there are some interesting researches

of flow dynamics caused by creature [10-12].

Creatures living in water such as frog or fish have a slimy mucus skin, where the

principal ingredient of the mucus is a hydrogel known as mucin [13]. Kikuchi et al.

[14] investigated the flow near the hydrogel surface as a hydrophilic material, where

they studied the slippery flow on the hydrogel surface and determined the relation
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between the strength of the hydrophilicity of hydrogel and the slip velocity on the

hydrogel surface. One of the topics on the Fluid Structure Interaction related above is

the mechanics of splash caused by creatures living in water. Manservisi et al. [15] studies

the interaction between a droplet and the surface of a wall and numerically simulated the

spreading of a single droplet impacting over horizontal dry surfaces. Some focused on the

contact angle of a droplet on a solid surface [16,17], studying the surface tension related

with the multiphase flow [18,19]. Rebouillat et al. [20] and Idelsohn et al. [21] calculated

the sloshing of a liquid filled partially in a container as problems of solid and fluid inter-

action. They used the Finite Element Method (FEM) to solve the flow with free surface

with large deformation and many droplets. Alam et al. [22] indicated that the surface

tension of a splash becomes prominent with small-scale phenomena.

The milk crown formed by a droplet falling into milk was studied by several

researchers [23,24]. The splash by splining sphere was studied by Truscott and Techet

[25]. Kubota et al. [26] experimentally observed different splash patterns due to the

different impact speed of a solid sphere impinging on the surface of water. Bussmann

et al. [27] studied the formation of the finger at the edge of water film. Akers et al. [28]

studied the influence of the non-Newtonian fluid on the splash formation, focusing on the

property of water. Duez et al. [29] reported the relation between the splash formation and

the sound generation, studying the effect of the hydrophobic or hydrophilic surface of the

body on the mechanism of the splash. Some studies were reported on the splash and the

droplet dealing with the free surface flow employing the particle methods [30-33].

However, most of the above researches, assuming the non-slip condition at the solid–fluid

interface, have ignored the effects of the surface properties of the solid on the results.

The need to consider the surface properties in the splash formation can be seen in

the experimental results as shown in Figure 1, where Figure 1(A) shows the crown-type

splash generated by a hydrophilic object (hydrogel) and Figure 1(B), on the other hand,

the column-type splash generated by an object of the weaker hydrophilicity (acrylic resin).

The comparison of these figures shows that the splash patterns strongly depend on the
Figure 1 Experimental comparison of splash patterns between hydrogel and acrylic resin; Radius of
sphere = 10 mm and Impact velocity = 2.21 m/sec.
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surface conditions of the solid object. It is noted that the fact that the forms of splash

caused by a solid sphere with the same weight and the same diameter differ according to

the surface condition is not known in general.

In the present paper, a model for calculating the flow on the special boundary condi-

tion such a slip on biological surface or an electrical attractive/repulsive force of resin

is proposed and applied it to the splash simulation.

Methods
Experimental observation

An experiment on the splash generated by a diving sphere with different surface condi-

tions is performed to observe the influence of different surface conditions on the splash

formation, where we use the diving sphere made of agar as the hydrophilic material.

The agar is a kind of hydrogel like gelatin, and known to be easy to control its water

content and to create arbitrary shape. For example, Eddington et al. [34] reported the use of

the hydrogel as the valve for flow control of a microchannel, and Beebe et al. [35] discussed

the effectiveness of hydrogel structure for flow control on micro fluidic channels.

The test condition is as follows: the radius of a sphere R is 10 mm, the initial height

h is 50R, and the impact velocity of the sphere at the water surface Vi is 2.4 m/s. The

impact velocity is determined according to the conservation of energy, because the air

drag is negligible for the range of heights in this study. The dynamic views of the splash are

recorded by using a high speed CMOS camera (Vision Research Inc., Phantom v7.1), where

the camera is set as 4000 frames per second so that precision timing between consecutive

images is 0.25 ms.

The experimental results of a splash formed by a sphere impinging on water surface

are shown in Figure 1, comparing the primary splash formed by a hydrogel sphere

(Figure 1(A)) with that by an acrylic sphere (Figure 1(B)). The primary splash means

the splash, which rises first after an object plunging. The primary splash formed in

the case of the hydrogel is a kind of the crown-type. On the other hand, the acrylic

sphere makes the column type primary splash. The splashes are considered to be

formed by the dynamics of the film-flow [26], which is a thin water flow around a

sphere surface and generated immediately after the sphere impacts the water surface.

The difference between the formation processes of Figures 1(A) and (B) is due to the

difference of the film separation from the sphere surface.

When the film is separated from the sphere surface, a crown-type splash is formed.

The above film separation is presumably caused by the increase in the film velocity accord-

ing to the hydrophilic property of the solid wall and the attractive or repulsive force such as

the electrostatic force between the solid wall and the water. This experimental observation

suggests that the numerical simulation should take into consideration the various surface

conditions as the interaction between the object and the water.

Governing equations and MPS method

The governing equation of the present flow is the incompressible Navier–Stokes equation

as follows,

Du
→

Dt
¼ F−

1
ρ
∇P þ ν∇2 u→ ð1Þ
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where u is the velocity vector of fluid, ρ is the density of fluid, P is the pressure, ν is the

kinematic viscosity of fluid and F is the external force including the gravity.

Employed in the present paper is the Moving Particle Semi-implicit (MPS) method,

which is one of the particle methods. Assuming two particles i and j, where there exist,

respectively, pressure pi and pj. The gradient of pressure at the point i is written as [30]

∇P ¼ d
n0

X
j≠i

pj−pi

r→j− r
→
i

��� ���2 r→j− r
→
i

� �
κ r→j− r

→
i

��� ���� �2
64

3
75 ð2Þ

where d is the constant value, which is equal to the dimension of space to be analyzed

and n0 is called the particle number density. The Laplacian of velocity at xthe point i is

written as [30]

∇2 u
→¼ 2d

λn0
X
i≠j

u
→
j−u

→
i

� �
κ r

→
j− r

→
i

��� ���� �h i
ð3Þ

where λ is a parameter, which is introduced in order to make statistical distribution

coincided with an analytic solution [28], and κ is the weight function assumed as follows,

κ rð Þ ¼
re
r
−1 0≤r≤reð Þ
0 re≤rð Þ

(
ð4Þ

Here, r is the distance between two particles and re is the cut-off radius.

The algorism of MPS method takes the following steps:

i) The tentative velocity u− is calculated at the explicit stage with the Navier–Stokes

equation (1),

ii) The Poison’s equation is solved at the implicit calculation stage to solve the

pressure p. Then, the velocity u* is modified with p solved above in order that the

particle number density within a domain is conserved. Finally, u* is added to u− to

obtain the target velocity u at t.

iii)The time step is updated as t = t + dt, where dt is set 0.001 sec in the present paper.

Swelling ratio and slip ratio on hydro-gel surface

We discuss here how we introduce the influence of slip in the horizontal direction on

the hydro-gel wall into the calculation, which is a heuristic approach.

Figure 2 shows the velocity distributions of water flow near the surface of the acrylic

resin versus that of the agar, where δ is the height of water flow and u is the velocity of

water [14]. Here, τ being the wall shear stress under the no-slip condition and τ’ that

under the slip condition, the slip ratio α is defined as follows,

α ¼ τ′=τ ð5Þ

Figure 3 shows the experimental relations between the swelling ratio S and the slip
ratio α for the agar-gel and the carrageenan-gel, respectively, where the swelling ratio S

is defined as follows [36],

S ¼ mwater þmgel
� �

=mgel ð6Þ



Figure 2 Schematic views (Left) and experimental results (Right) of flow profiles near no-slip wall
(acrylic resin) and slippery wall (hydrogel) [14].
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where mwater is the mass of water and mgel that of the solid-gel. S increases with the

amount of water contained in the solid-gel. The agar employed in this study is a kind

of hydrogel, which is easy in handling and controlling its shape and the degree of the

swelling. Figure 3 suggests that α decreases with the increase of S, or can be expressed as

α ¼ 1−βS ð7Þ

where β is estimated to be 1.2 × 10−3 in the case of the agar. It is summarized that larger S

gives more slip on the surface.

In this paper, the above relation between the increase of the swelling ratio and the

reduction of the wall friction from our experiment is taken into consideration near the

wall in the viscous term of the Navier–Stokes equation in a heuristic manner. Since the

shear force acting between the wall and the fluid is directly related with the viscosity

term of Eq. (3), we modify the term as

∇2 u
→¼ 2d

λn0
X
i≠j

u
→
j−u

→
i

� �
κH r

→
j− r

→
i

��� ���� �h i
ð8Þ
Figure 3 Experimental relationships of slip ratio α versus swelling parameter S.



Yokoyama et al. Advanced Modeling and Simulation in Engineering Sciences 2014, 1:9 Page 6 of 14
http://www.amses-journal.com/content/1/1/9
with

κ rð Þ ¼ ακ rð Þ ð9Þ
H

where index i denotes the water particle near hydro-gel wall and j the surface particle

of hydro-gel wall. Namely, α is set effective only near the hydrogel wall, because the

effect of slip is available near this area. The effective length of the above reduced weight

function near the wall is assumed to be re in this study, and set to be 2.1l0 , where l0 is the

initial distance between the particles.

Summarizing the above procedure, i) select S according to the hydrophilicity of the solid

object, ii) estimate α using Eq. (7), and iii) apply α to the weight function of viscous term

of Navier–Stokes equation for the calculation of shear force near the hydrogel wall using

by Eqs. (8) and (9).

Attractive and repulsive forces due to electrostatic effect

In order to simulate the column-type splash, which occurs in the case of acrylic resin

sphere, a model of the external force F is discussed here, which is the attractive or

repulsive electrostatic force on the interface between water and the wall. Here, we

propose a heuristic model of the force acting between water molecules.

The attractive or repulsive force between water and the wall is modeled as an electro-

static force [37] in an intuitive and engineering manner. Namely, F in Eq. (1) is assumed

to consist of the gravity g and the electrostatic force TE as

F ¼ g þ TE ð10Þ

where TE is the attractive or repulsive force between the particles i and j, which is defined as

TE;ij ¼ CE;ij
dϕij rð Þ
dr

ð11Þ

with

CE;ij ¼ ≠0 i ¼ waterparticle and j ¼ particle at thewallð Þ; or viceversa:Þ
¼ 0 otherwiseð Þ

�
ð12Þ

and

ϕij rð Þ ¼ 1
4πε0

qiqj
rij

ð13Þ

where qi and qj are the electric charges and rij is the distance between the particle i and j.

In the present study, we assume the case of water, namely, the electric charge qi and

qj = 1.6 × 10−19 [C] [38], and the vacuous dielectric constant ε0 = 8.854 × 10−12 [F/m].

The effective range from the wall of TE is assumed to be equal to be re, which is 2.1l0.

Results and discussion
Condition for simulation

In the present paper, the behaviors of the fluid when the solid sphere is dropped into it

are simulated with the MPS under the following conditions: The fluid is assumed to be

water, namely, its mass density ρwater is 1000 kg/m3. The radius R of sphere is 10 mm and

the impact velocity of the sphere is 2.4 m/s, which are the same as the experimental setup

described in Section Experimental observation. The particles for the simulation are
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uniformly arranged in the lattice pattern and the initial distance between particles l0 is set

4 × 10−3 m after some test. The cut-off radius re is set to be 3.1 [30]. Because these values,

l0 and re, give influence on the result, we compare the dependency of l0 and re to confirm

the consistency and the convergence on the solutions in what follows.

Figure 4 shows the comparison of the crown-type splash patterns with different

values of re. The patterns of splash are almost the same between re = 3.1 and 4.1, then we

set re = 3.1 in this paper. Figure 5, on the other hand, shows the snapshots of the crown-

type splash with different values of l0. Since the simulation results with l0 = 2 × 10−3 m and

l0 = 4 × 10−3 m are similar and compared well with the experimental result, we have decided

to employ l0 = 4 × 10−3 m in the present simulation.

Both the width and the depth of the water tank are 20R, which are set to be sufficiently

large so that the effects of the size of these are negligible. The boundary condition of the

tank’s wall is no-slip condition with 3 lattices of solid particles. The regular time step of

this calculation is set to be 1 m sec, but it is controlled automatically according to the

Courant conditions.

The simulated pattern of the collapse of the water column is compared with the ex-

perimental result [39], confirming that its behavior is similar to that of the experimen-

tal result. The sphere is assumed as a rigid body, which sinks due to the gravity and the

buoyancy, but the rotation of the sphere is not considered as its effect on the solution

could be very small. The surface tension is not considered either in the present calculation,

which will be an issue to be discussed in the future study.

Selection of CE about acrylic resin

As the behavior of the splash directly depends on CE, the influence of the parameter on

the formation of the splash is discussed here.

Figure 6 shows the path lines of a particle, where the tip of primary splash is plotted

for the various values of CE in the case of a sphere made of the acrylic resin. It is seen

from the figure that the particle, creating the film, moves upward along the surface of

the sphere when the value of CE is 3000 or over. On the other hand, when the value of

CE is smaller than this value, no film-flow appears and the exfoliation of water particles

causes the crown-type splash, which is not observed in our experiment with the acrylic

resin. Thus, we presume that there works a kind of electrostatic attractive force

between the sphere made of the acrylic resin and the water.

Figure 7 compares the results of the simulation in the case of CE =5000 with the

experimental results. Figure 7(A) shows the film flow rises up along the sphere at

t = 0.015 sec.
Figure 4 Effect of value of re on crown-type splash. t = 0.035 sec and S = 100.



Figure 5 Effect of value of l0 on crown-type splash. t = 0.03 sec and S = 100.
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As shown in the left hand side of Figure 7(B), the primary splash by the numerical

simulation at t = 0.020 sec is column-like, which is similar to the experimental result

shown in the right hand side of the same figure. In the case of the column-type splash

caused by the acrylic resin, the water flow does not exfoliate and the film flow rising up

along the surface of sphere, which is considered to create the column-type splash. Thus, it

seems appropriate to set the value of CE to be 5000 in the case of the acrylic resin.

Although the unphysical numerical oscillation of pressure has been reported with the

use of the MPS [40,41], this is found very small as far as the present simulation is concerned

with any particle arrangement tested. The reason may be due to the fact that the present

splash simulation is related with the behavior of the free surface and the droplet in the air

and the time duration is rather short.

Effect of slip ratio α about hydrogel

As we have discussed in Subsection 3.2, the effect of the slip ratio α on the flow around

a hydrogel sphere could be taken care with Eq. (8). The comparison of the simulation

result with S = 100 and the experimental one is shown in Figure 8, where the effect of
Figure 6 Path lines of particles for various values of CE.



Figure 7 Comparison between simulation and experiment for acrylic resin sphere (CE = 5 × 103).
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the attractive force discussed in the previous Subsection is not considered and the

radius of sphere R is 10 mm and the initial height h is 50R in the both simulation and

experiment. The width and the height of the splash and the fusiform air cavity are

compared well between the simulation and the experiment as shown in Figure 8(A).

The hourglass cavity is also simulated well as shown in Figure 8(B).

Figure 9 shows the crown-type splash and the path trajectories of particles for the dif-

ferent swelling ratios. The dotted solid lines are the path trajectories of particles when

S is 50 or α = 0.94, whereas the dotted lines those when S is 350 or α = 0.7. It is seen

from the figure that the splash is wider with larger value of S or α, or the velocity of the

water near the wall is larger with the swelling ratio, which causes the earlier exfoliation,

creating the wider primary splash.
Behavior of primary splash and flow pattern around sphere of hydro-gel

It is known difficult to observe experimentally which water particles originally stored in a

tank cause the primary splash. Since the seed particles in the water are mixed with the air



Figure 8 Comparison between simulation and experiment for hydrogel sphere (S = 100).

Figure 9 Comparison between simulation results of representative path lines of water particles,
showing path lines of primary splash for hydrogel spheres of different values of swelling
parameter S.
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bubbles of the splash, it is almost impossible to trace the movement of them in an experi-

mental environment such as PTV.

Figure 10 shows the path lines of some ten representative particles, which are origin-

ally located at the surface or near the surface of water at t = 0, when the falling object

touches the surface of the water. This figure indicates that the water particles, which

are originally located near the surface of the water and under the falling sphere,

become the primary splash and after exfoliating from the surface of the sphere, form

the tip droplet of the crown-type splash.

The flow induced by the crown-type splash of the hydrogel sphere is shown in Figure 11,

where the path lines of representative particles are depicted between t = 0 to 0.5 sec. while

the sphere sinks in a water tank after plunging to the surface of the water. The

arrows of the path lines indicate the direction of the moving particles. It is seen from

the figure that the particles turn around and return to their initial positions and the

loci of the particles located near the contact point draw a larger circle compared with

those of the particles far from the contact point.
Conclusions
Proposed in the present paper is a new method to calculate the formation of a splash

induced by a spherical object diving into water. Considering the difference of surface

condition, we calculate the splash generated with a sphere by the MPS method, where

the attractive force is applied to the particles located at the interface between the falling

object and the water, and the swelling ratio is introduced to simulate a slip condition.

The numerical results of a diving sphere made of the acrylic resin or made of the

hydrogel are in good agreement with the splash forms by the experiments. Due to the

effect of the attractive force between the wall and the water, it is seen that the water

film climbs along the surface of the acrylic resin sphere.

Using the slip ratio according to the magnitude of the swelling, which is the ratio of

the total mass to that of the agar, the formation process of the water splash is investi-

gated, finding that the hydrophilicity affects the shape of the crown during the water
Figure 10 Path lines of particles making primary splash (S = 100).



Figure 11 Representative path lines of water particles in tankxx.
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splash phenomenon and the velocity of the water near the wall is larger with the

swelling ratio, which causes the earlier exfoliation, creating the wider primary splash.

The simulation result shows that the particles of the water under and near the loca-

tion, where the sphere plunged, become the droplets of the primary splash and that

the particles of the water near a sinking sphere move around their initial positions in a

circular manner.
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