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Abstract 

Numerical fatigue process modelling is complex and still an open task. Discontinuity 
caused by fatigue cracks requires special finite element techniques based on addi-
tional parameters, the selection of which has a strong effect on the simulation results. 
Moreover, the calculation of fatigue life according to empirical material coefficients 
(e.g., Paris law) does not explain the process, and coefficients should be set from exper-
imental testing, which is not always possible. A new nonlocal continuum mechanics 
formulation without spatial derivative of coordinates, namely, peridynamics (PD), which 
was created 20 y ago, provides new opportunities for modelling discontinuities, such 
as fatigue cracks. The fatigue process can be better described by using the atomistic 
approach-based kinetic theory of fracture (KTF), which includes the process tem-
perature, maximum and minimum stresses, and loading frequency in its differential 
fatigue damage equation. Standard 316L stainless steel specimens are tested, and then 
the KTF-PD fatigue simulation is run in this study. In-house MATLAB code, calibrated 
from the material S‒N curve, is used for the KTF-PD simulation. A novel KTF equa-
tion based on the cycle stress‒strain hysteresis loop is proposed and applied to pre-
dict fatigue life. The simulation results are compared with the experimental results, 
and good agreement is observed for both symmetric and asymmetric cyclic loading.

Keywords:  Peridynamics, Kinetic theory of fracture, Fatigue modelling, Asymmetric 
cyclic loading, Hysteresis loop

Introduction
Fatigue life prediction is very important and is still one of the most challenging engi-
neering tasks. For example, the fatigue life of 316L stainless steel constructions used in 
reactors from nuclear power plants is estimated to be 60  years at certain cyclic load-
ings. Newer studies suggest that 60  years of exploitation time is too conservative; the 
same structures can last up to 80  years, and more materials, energy and manufactur-
ing time can be saved. To predict the fatigue life of such responsible structures more 
precisely, reliable fatigue damage detection methods and numerical fatigue models vali-
dated against experiments are necessary. Numerical fatigue process modelling faces sev-
eral issues. Most of them are related to the finite element (FE) formulation itself. The FE 
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governing equations of motion are cast in terms of spatial derivatives of displacement, 
which is not valid for discontinuities, e.g., fatigue cracks. Although special FE methods, 
such as the extended finite element method (XFEM) [1], virtual crack closure technique 
(VCCT) [2], cohesive zone model (CZM) [3] or even a combination of these methods 
[4], can be applied to address the discontinuity problem caused by fatigue cracking, the 
complexity of the numerical fatigue model and possible uncertainty increase, especially 
for 3D cracking. In this aforementioned problem, the fatigue crack in the FE model can-
not be simulated directly, e.g., without previously defining the crack path. The crack path 
definition has a strong effect on the simulation results; for example, if true crack paths 
are unknown, then numerical fatigue failure prediction may be inaccurate. The second 
issue of numerical fatigue modelling comes from the fatigue damage definition based 
on empirical material coefficients [5] (e.g., Paris’s law [6] for crack growth and Miner’s 
rule for fatigue damage summation). Despite the fact that the numerical model can be 
calibrated and coefficients can be chosen according to the material S‒N curve and crack 
growth rate, for other testing conditions (different stress ratios and environmental tem-
peratures), the material coefficient values are different and cannot be calculated without 
experimental testing under those conditions. Although the Goodman and Gerber rela-
tions [7] can be helpful in evaluating fatigue life at different stress ratios, for more pre-
cise fatigue life prediction, experimental validation is still needed.

The alternative theory of classical continuum mechanics (CCM), that is, peridynamics 
(PD), reformulates CCM equations in terms of spatial integrals (without spatial deriva-
tives), and this approach is very useful for the case of (fatigue) crack modelling [8]. PD 
was originally created by Silling [9] in 2000 and applied only for modelling brittle mate-
rials, but later PD models were further developed for both brittle and ductile materi-
als by Silling et al. [10], Madenci and Oterkus [11], Bobaru and Hu [12] and others, as 
described in detail in the PD review given by Javili and Morasata [13]. Currently, PD 
models, which can be grouped into bond-based PD (BBPD, the simplest ones with a 
fixed material Poisson’s ratio) [9, 14] and state-based PD (SBPD, free of BBPD limitations 
and more advanced ones that allow complex material deformations) [15, 16] models are 
used to model various mechanical (static and dynamic crack propagation, impact dam-
age, wave propagation) [17]) and physical (thermal, diffusion, etc.) [18, 19]. However, 
CCM reformulation in PD theory creates new BBPD and SBPD material stiffness and 
strength parameters [20], but their values can be derived from the deformation energy 
equilibriums of the CCM and PD theories, as opposed to the CZM, XFEM, and VCCT 
methods, where FE mesh and crack parameters have to be adjusted by the user to ensure 
model correlation to experiment, stability, etc. Silling and Askari [21], Oterkus et al. [22] 
and others [23–25] successfully applied the PD theory for the fatigue modelling of brittle 
and ductile materials using cyclic failure criteria based on the Paris law [6]. Silling and 
Askari [21] demonstrated that the single PD model can predict the initiation of fatigue 
cracks, crack growth, and final failure phases without predefined crack paths. Pashazad 
and Khrazi [15] showed that even kinematic, isotropic, and mixed hardening effects can 
be captured in the PD model. The Freimanis and Kaewunruen study of fatigue damage in 
rail squats [25], Zhang fatigue analysis of isotropic and polycrystalline materials [26] and 
other works [17] demonstrated excellent PD simulation agreement with experimental 
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testing results (correlation coefficients R2 [17] between the PD simulation and the 
experimental curves up to 0.97 ÷ 1.00). All abovementioned PD fatigue studies, includ-
ing recent PD applications for fatigue crack growth in hydrogels [27], are still based on 
empirical fatigue process coefficients, which can be found only from experiments and 
are not valid for different testing conditions.

The issue of purely empirical cyclic material empirical coefficients can be addressed 
by taking the kinetic theory of fracture (KTF) instead of the Paris law approach. KTF 
was created separately by Coleman [28] and Zhurkov [29] in the middle of the XX cen-
tury and treats fatigue damage as a thermally activated process that is dependent on the 
maximum and minimum cycle stresses, process temperature, and cyclic loading fre-
quency. Although the KTF fatigue model parameters still must be calibrated based on 
the material S‒N curve, compared with the Paris law, KTF equations better describe the 
fatigue process; thus, the same model can be easily implemented to simulate the process 
under different conditions (stress ratio, temperature, and loading frequency). KTF-based 
fatigue life predictions [29, 30] are in agreement with experimental results for various 
materials, such as composites and metals, over a wide range of temperatures and stress 
ranges.

Madenci et al. first applied KTF combined with PD [5] and further developed it for 
modelling constant amplitude aluminium [14] and constant, variable amplitude and 
stress ratio composite cyclic loading [31]. Although KTF models correlate well with 
experimental results, for asymmetric cyclic loading at low stress amplitudes, the KTF 
fatigue damage equation does not provide the correct fatigue life [32]. To ensure agree-
ment with the experimental data, Fertig and Kenik [32, 33] modified this equation for 
composite materials, including energy losses proportional to the square of the cyclic 
loading stress amplitude. To date, no works that continue to combine the research of 
Madenci et  al. [5, 14, 31] and Fertig and Kenik [32, 33] have been conducted; there-
fore, the development and establishment of KTF-PD models for symmetric loading is 
an important topic, especially for asymmetric cyclic loading. The aim of this study is 
to develop a KTF-PD model for fatigue life prediction in metallic materials based only 
on symmetric cyclic loading S‒N data and to apply this model to predict fatigue life 
under symmetric and asymmetric cyclic loading. The prepared model is validated using 
experimental data. Standard cylindrical 316L stainless steel specimens are tested, and 
then a KTF-PD fatigue simulation is carried out in this study. In-house PD MATLAB 
code, calibrated from the material S‒N curve, given in the datasheets [34], is used for 
the KTF-PD simulation. A novel KTF equation that extends energy loss based on a 
cyclic stress‒strain hysteresis loop is proposed and applied to predict fatigue life under 
asymmetric cyclic loading. The simulation results are compared with the experimental 
results, and good agreement is observed. The manuscript is organized as follows: PD 
and KTF theories and their numerical implementation details are provided in “Theoreti-
cal background”; the experimental testing and KTF-PD fatigue modelling in MATLAB 
details are presented in “Experiments and modelling”; the fatigue simulation results and 
their comparison to the experimental results are discussed in “Results and discussion”; 
and the summary and conclusions are provided in “Conclusion”.
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Theoretical background
Peridynamics theory

Peridynamics (PD) theory due to its integral equations of motion does not contain spa-
tial derivatives. Thus, the PD approach is different than the CCM equations, which are 
expressed in terms of the partial derivatives of displacement. According to PD theory, it 
is assumed that each material point x interacts with the material points x’ in the interac-
tion range Hx (Fig. 1), which is usually a sphere with radius δ ≈ 3Δx in the 3D PD model. 
The PD material domain Ω consists of a grid of equally spaced material points, where 
Δx is the PD grid spacing. The interaction between points x and x’ is defined as the PD 
bond.

Then, the equation of motion in the simplest case of PD theory (bond-based (BBPD)) 
can be written as [35]:

where x, u and x’, u’ are position and displacement vectors (Fig. 1) associated with the 
material points x and x’, respectively; b(x, t) represents the body forces; f represents the 
PD bond force, ρ is the density of the material and Vx is the volume of the material point 
x. Conventional PD is a macroscale model because the number of PD material points 
in the macroscopic body numerical model is finite. In the BBPD model (Fig. 1), the PD 
bond forces f and f ’ are equal in magnitude and parallel in direction, resulting in a Pois-
son’s ratio of only 0.25 for the 3D and 2D plane strain BBPD models and 0.33 for the 
2D plane stress model [13]. Additionally, plastic deformations in BBPD can be modelled 
only as the permanent deformation of a material undergoing a volumetric strain without 
shear [10]. To circumvent these previously mentioned BBPD limitations, more advanced 
SBPD models have been developed, namely, ordinary and non-ordinary state-based 

(1)ρü(x, t) =

∫

Hx

f
(

u′(x, t)− u(x, t), x′ − x, x
)

dVx + b(x, t),

Fig. 1  Principles of the simplest PD model (BBPD)
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PD (OSBPD and NSBPD) models [13]. However, the computational time of the SBPD 
models significantly increases compared to that of BBPD. Based on the computational 
resource limitations and acceptable accuracy, the BBPD model is used in this study. 
Moreover, the complexity of SBPD models renders their implementation in commercial 
FE software not possible for existing FE formulations [36]. In contrast, the BBPD fatigue 
model has been successfully implemented in the MATRIX 27 elements in the ANSYS 
framework by Zhang and Madenci [14]. Therefore, there is incentive to use and develop 
the BBPD fatigue model to increase the availability of the PD method.

The additional difficulty in both the BBPD and SBPD models is related to the reformu-
lation of the CCM, which results in new PD material quantities, such as PD bond strains 
(stretches). Bond, connecting points x and x’, stretch is calculated as follows:

Similarly, for the stress‒strain relation in CCM, the PD bond forces f (also see Eq. (1)) 
are related to the PD bond stretch (Fig.  2a), and for the BBPD formulation, the bond 
forces are computed as follows:

where c is the PD bond stiffness for the 3D BBPD elastic material model expressed as 
follows:

where E is the elastic modulus and δ is the PD horizon size (Fig. 1).
The PD bond force-stretch relation, defined in Eqs. (3–4) and presented in Fig. 2a, is 

not valid for the elasto-plastic material model and thus should be updated by changing 

(2)sxx′ =

(∣

∣

∣
x
′

− x + u
′

− u
∣

∣

∣
−

∣

∣

∣
x
′

− x
∣

∣

∣

)

|x
′

− x|
.

(3)f = cs
x
′

− x + u
′

− u
∣

∣x
′

− x + u
′

− u
∣

∣

,

(4)c =
12E

πδ4
,

Fig. 2  PD bond force-stretch relation (without failure of the material): (a) for purely linear elastic material 
(original Silling PD model) and (b) linear elastic PD bond force stretch relation
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the PD bond stiffness c after the material proportional limit is reached. Similar to the 
CCM tensile diagram, bilinear [37] or power law [38] approximation, the same type of 
force-stretch relation (Fig. 2b) can be used. The proportional or yield limit stretch value 
is derived by equalizing the CCM and PD strain energy densities at the proportional or 
yield limit deformation [11]:

where σij and εij are the CCM stress and strain tensor components, respectively. Special 
calculations are required to find the CCM strain and stress tensor of the material PD 
point x. The deformation gradient Fx of the PD point x, which is valid even for a discon-
tinuous displacement field, is also calculated without spatial derivatives of the displace-
ment by using the peridynamic differential operator [10, 39] and expressed as follows:

The term ω(x′

− x) in Eq. (6) is the PD bond length-dependent influence function, the 
selection of which was analysed in several papers [40, 41], and it was found that the lin-
ear function for the 3D model is sufficient. Once the strain gradient of point x is com-
puted by the PDDO, further CCM equations are applied to obtain the Lagrange strain 
tensor E of point x:

Then, the stress tensor of point x components can be found according to the 3D gener-
alized Hooke’s law relation:

where Cijkl are components of the CCM material stiffness tensor and ekl are compo-
nents of the Lagrange strain tensor from Eq.  (7). When plasticity occurs, the material 
stiffness tensor components should be updated to follow the elastoplastic behaviour of 
the material.

Static failure of the PD bond is considered when its stretch exceeds the defined critical 
value sc. The critical stretch cannot be directly related to the CCM failure strain or stress 
because the stretch of the PD bond depends on the PD interaction range (horizon) size 
δ and is thus not equal to the strain used in the CCM. The critical stretch sc value used 
in this study is calculated according to the relationship between PD sc and the material 
critical energy release rate Gc, derived by Madenci and Oterkus [35]. For the 3D BBPD 
case, it is calculated as follows:

(5)W =
1

2

3
∑

i=1

3
∑

j=1

σijεij =
1

4

∫

Hx

cs2
∣

∣

∣
x
′

− x
∣

∣

∣
d
(

x
′

− x
)

,

(6)

Fx =

[
∫

Hx

ω(x
′

− x)(
(

x
′

− x + u
′

− u
)

⊗
(

x
′

− x
)

)dV
x
′

−x

]

·

(
∫

Hx

ω(x
′

− x)(
(

x
′

− x
)

⊗
(

x
′

− x
)

)dV
x
′

−x

)−1

.

(7)E =
1

2

(

FT + F + FT · F
)

.

(8)σij =

3
∑

k=1

3
∑

l=1

Cijklekl i, j = 1 . . . 3, .
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Fatigue modelling under PD still consists of static simulations, but additional cyclic PD 
bond failure criteria are needed. Although the critical stretch sc value of the PD bond can 
be reduced with an increasing number of cycles that result in cyclic failure, such a model 
[22] cannot capture the fatigue initiation process. The PD bond “remaining life” variable q 
approach, proposed by Silling and Askari [21], is better because it allows modelling of both 
the crack initiation and growth phases. q depends on the loading of the PD bond and the 
number of cycles, when its initial value q(x, x’–x, 0) = 1, and the cyclic failure of the bond is 
considered when q(x, x’-x, N) ≤ 0. Then, both the static and cyclic PD bond failures in the 
PD fatigue model can be evaluated by multiplying the PD bond stiffness c by the history-
dependent scalar value function µ(x’–x), expressed as follows:

Finally, the PD damage at point x as a ratio of broken PD bonds N
µ(x

′

−x)=0
 to the number 

N of total PD bonds at point x horizon Hx is defined as follows:

Kinetic theory of fracture

The evolution of fatigue damage n (n varies from 0 to 1; n = 0 indicates no damage) in the 
KTF is expressed by the following differential equation:

where n is the fatigue damage, n0 is the initial constant, λ is the shape parameter ([14, 31] 
suggested value of λ = 9), and Kb is the fatigue crack formation and growth rate, which is 
dependent on the durability equation [30]:

where τ is the failure time and τ0 = 10–13 s is the characteristic period of atom oscillation 
in the solid body. Equation (12) can be easily adopted for the PD model by calculating 
the fatigue damage variables n for each PD bond. Then, the rate Kb, defined as the PD 
bond breakage rate, using Planck’s law, is expressed as [5]:

where k and h are the Boltzmann and Planck constants, respectively; T is the tempera-
ture; U and γ are the process activation energy and activation volume, respectively ( U 
and γ can be found from the material S‒N curve); and σxx′ is the PD bond stress. PD 

(9)sc =

√

5GC

6Eδ
.

(10)µ(x
′

− x) =

{

1, ifsx′x < sc&qx′x > 0

0, ifsx′x ≥ sc|qx′x ≤ 0.

(11)ϕx =

∑

N
µ(x

′
−x)=0

N
when x′ ∈ Hx,

(12)
dn

dt
= (n0 − n)�Kb,

(13)τ = τ0e
−

U−γ σ
kT ,

(14)Kbxx′ =
kT

h
e−

U−γ σxx′
kT ,
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bond, connecting points x and x’, stress is calculated as the average stress at point’s x and 
x’, namely, σxx′ = σx+σx′

2
.

By assuming that the maximum PD bond cyclic stress σmax_xx′ occurs at time t and that 
the minimum stress σmin_xx′ occurs at time t1 and relating σmin_xx′ = Rσmax_xx′ to 
t − t1 =

N
f  , where R is the stress ratio and f is the cyclic loading frequency, integrating 

Eq. (12) finally leads to KTF fatigue damage of the PD bond x’– x equation [14]:

where nIxx′ is the initial PD bond x’– x fatigue damage (if N = 1, nIxx′ = 0 ). The initial 
constant n0 is found from the definition of the process initial and end conditions [29], 
resulting in 

∫ 1

0
dn

(n0−n)�
= 1 , and for λ = 9, n0 = 1.771. Then, the PD bond “remaining life” 

parameter q(x, x’-x, N) can be related to the fatigue damage variable by the following 
equation:

KTF Eq. (15) better describes the fatigue process, including temperature, stress ratio, 
stress value, and loading frequency variables, than does the empirical coefficient-based 
Paris [6] law approach. Nevertheless, increasing the stress ratio R in Eq.  (15) reduced 
both the stress amplitude σa = 1

2
σmax(1− R) and the number of cycles to failure, while 

experimental testing [32] revealed that the number of cycles should increase. Fertig and 
Kenik [32, 33] modified Eq. (15) for a composite including energy losses proportional to 
the square of the cyclic loading stress amplitude. Energy losses affect the process tem-
perature, and then the total temperature term T in Eq. (15) is rewritten as:

where T* is the ambient temperature, Δt is the cycle time and ψ is the material pro-
portional constant. A similar approach described in subchapter  3.2.2 based on cycle 

(15)

n
xx

′

(

N , σmax,R,T , f
)

=n
0xx

′ −

{

(

n
0xx

′ − n
Ixx

′

)1−�
− (1− �)

(kT )2

h

N

γ f σ
max_xx

′ (1− R)
e
− U

kT

[

e

γ σ
max_xx

′

kT − e

γRσ
max_xx

′

kT

]}
1

1−�

; if � �= 1,

(16)qxx′ = 1− nxx′

(17)T = T ∗ + ψ
σa

2

�t
,

Fig. 3  Numerical spatial integration issues: (a) truncated PD point volumes, requiring volume correction 
Vi = vciV  and (b) not full PD horizon at the boundaries, requiring PD bonds stiffness corrections
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hysteresis loop areas is applied in this study to model asymmetric cyclic loading in 
metals.

PD‑KTF model numerical implementation aspects

The PD equation of motion (Eq. 1) is solved numerically by applying spatial and time 
integrations. Because the number of material points is discrete in the numerical PD 
model, points near the surface of the PD horizon of point x are not fully embedded in 
the horizon and have truncated volumes (Fig.  3a). Additionally, material points at the 
boundaries do not have full horizons (Fig. 3b), which results in different material prop-
erties at the body boundaries (surface effect) from those in the bulk. To address these 
problems, volume corrections and surface corrections [35] based on introduced correc-
tion coefficients are used.

The PD surface effect takes one size of the PD horizon δ from the body surface for 
BBPD and twice for SBPD, and after the correction, it cannot be completely (only up to 
90%) eliminated for complex loading. Notably, for the fatigue model, the remaining sur-
face effect can be beneficial because fatigue cracks start on the surface of the body due 
to reduced body stiffness at the boundaries in the PD model and stretch; thus, the strains 
and stresses are higher, leading to earlier cyclic failure.

Time integration can be performed by explicit and implicit solutions [42]. The imple-
mentation of explicit time integration is simpler, although the algorithm is only condi-
tionally stable, and the time step value should be calculated according to the PD model 
discretization (PD grid spacing and PD horizon) and material (density and stiffness) 
parameters [35]. For the BBPD 3D model, the stable time step is equal to the following:

where Vx = vcxV  is corrected volume of the PD point x (Fig. 2) and fs ≤ 1 is the safety 
factor. To adapt the PD equation of motion to a quasistatic solution, fictitious damping is 
introduced into the explicit integration of Eq. (1).

Fatigue numerical modelling consists of a set of static simulations. First, the PD model 
is run for static simulation to achieve the maximum positive loading σmax_xx′. . Then, 

(18)�t = fsmin

√

√

√

√

2ρx
∑

Hx

c
∣

∣

∣
x
′
−x

∣

∣

∣

Vx
,

Fig. 4  Definition of activation energy U and activation volume γ : (a) from the S‒N curve for the fatigue crack 
initiation phase and (b) updating U = kU·U and γ = kγ·γ for the fatigue crack growth phase
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using the relation σmin_xx′ = Rσmax_xx′ , the number of cycles N to failure of the maxi-
mum loaded bond is calculated from Eq. (15). After N cycles, this maximum loaded PD 
bond is broken, while the fatigue damage of the other PD bonds is calculated accord-
ing to Eq. (15). Because after N cycles there are broken PD bonds, the static simulation 
should be run again, and then the process is repeated.

The fatigue process consists of fatigue crack initiation and growth phases, which 
should be replicated in the model. The process activation energy U and activation vol-
ume γ for the fatigue crack initiation phase are selected by comparing the number of 
cycles to failure calculated according to Eq.  (15) and predicted according to the mate-
rial S‒N curve, as shown in Fig. 4. Usually, it is very difficult to find U and γ values for 
all stress levels; therefore, U and γ are selected for specific stress ranges (1, 2, …, M in 
Fig. 4) only. Although the material S‒N curve corresponds to macroscopic fatigue dam-
age, including both initiation and crack growth phases, macrocrack initiation is treated 
as material fatigue failure at stress concentrator PD point x and can then be predicted 
from the material S‒N curve [21]. Once the macrocrack is initiated, it starts to grow. The 
transition criterion between the crack initiation and growth phases is selected as the PD 
bond damage ratio φx. According to the literature [14], if φx ≥ 0.5 is achieved at point x, 
then the fatigue crack growth phase can start at point x. Because fatigue crack growth 
is faster than crack initiation, U and γ for the crack growth phase should be updated as 
U = kU·U and γ = kγ·γ. The coefficients kU and kγ are usually selected from the experi-
mental relationship of the crack length and number of cycles by trial and error to ensure 
the same fatigue crack growth in the PD model (Fig. 4b prediction P) as in the experi-
ment. Final failure is considered to be the maximum stress or reaction force in the model 
drop by a defined ratio. The testing protocol [43] suggests that fatigue experimental test-
ing should end when the maximum stress decreases by more than 25%; thus, the same 
criteria are applied to PD fatigue process simulation.

The generalized KTF-PD fatigue modelling scheme (based on previous studies) [14, 
31]) can be explained by the following steps:

1.	 Run a static PD simulation at a given maximum positive loading;
2.	 Calculate the strain tensor of each point in the PD model;
3.	 Calculate the stress tensor of each point in the PD model;
4.	 Determine an equivalent stress of each point in the PD model. For uniaxial loading, 

the absolute longitudinal stress can be taken as the equivalent stress;
5.	 Calculate each PD bond stress as σxx′ = σx+σx′

2
;

6.	 Calculate the broken PD bond ratio φx. If φx ≤ 0.5, then it is the fatigue crack ini-
tiation phase; otherwise, it is the fatigue crack growth phase. In the fatigue crack 
growth phase, update U and γ as kU·U and kγ·γ, respectively;

7.	 Calculate the number of cycles N according to Eq.  (15) to the maximum stressed 
bond failure. Calculate the fatigue damage parameter n of each PD bond by taking 
this N value. Increase the number of cycles N and remove bonds for which n ≥ 1.

8.	 Go to step 1 and repeat steps 1–7 until the maximum stress reduction is greater than 
25%.
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Experiments and modelling
Experimental setup

The experimental fatigue testing setup is shown in Fig. 5. Standard 316L stainless steel 
test samples according to ASTM E606/E606M [44] were used. The specimen gauge 
diameter was 5 mm, and the gauge length was 25 mm, as shown in the specimen draw-
ing in Fig. 5b. Cyclic tests were performed on an INSTRON E10000 electromechanical 

Fig. 5  View of the experimental equipment for fatigue testing: (a) general experimental setup where a 
special specimen centring flange is used and (b) specimen drawing
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testing machine with a maximum force of 10 kN. According to the standard ASTM 
E1012 [45], the bending strain in the specimen gauge area cannot exceed 5% of the 
axial strain (percent bending ratio). The INSTRON E10000 construction not allowed 
to achieve required percent bending, resulting more than the 10 times shorter speci-
men fatigue life than predicted from testing guidelines [43]. To solve this issue, a special 
alignment flange, shown in Fig. 5a, was used. It consists of four alignment adjustment 
screws (the front side screws are marked “2” in Fig. 5a) and is mounted on the machine 
base with 3 screws (marked “1” in Fig. 5a) before the force cell (Fig. 5a). The specimen 
centring procedure was performed in the following order: 1) screws “1” and “2” and the 
bottom grip of the machine were released. (2) The specimen was inserted into the top 
machine grip, and the top grip was clamped. (3) The bottom machine grip was clamped. 
(4) The machine was set for a very small displacement of approximately 50  µm. This 
results in the effect that the entire bottom part of the machine stud hangs on the speci-
men and gravity aligns the specimen. (5) All 4 alignment adjustment screws “2” were 
gently tightened until they touched the internal part (“3” in Fig. 5a) of the adjustment 
flange. (6) The upper machine grip was slowly returned to the initial position, and all 
the mounting screws “1” were tightened. With the help of such an adjustment flange, 
early specimen fatigue failure did not occur; thus, the required specimen alignment was 
achieved. Strains were measured using an external extensometer (Fig. 5a) mounted on 
the specimen.

The testing temperature was 20  °C (293  K), and the cyclic loading frequency was 
0.56  Hz. Strain-controlled fatigue tests were run at symmetric and asymmetric cycles 
(shown in Fig. 6) and are as further defined as follows: (1) symmetric constant ampli-
tude cycles with εmax = 0.18% strain amplitude; (2) POL—variable amplitude loading, 
which consists of blocks of one symmetric εmax = 0.6% cycle and 200 asymmetric cycles 
of strain amplitude ε = 0.18% when the mean strain ε = − 0.42%; and (3) PUL—vari-
able amplitude loading, which consists of blocks of one symmetric εmax = 0.6% cycle that 
starts with compression and then 200 asymmetric cycles of strain amplitude ε = 0.18% 
when the mean strain ε = 0.42%. A 0.18% strain results in an approximately 210 MPa 
stress (slightly higher than the material yield limit); thus, the fatigue process can be iden-
tified as an intermediate for symmetric cyclic loading and a low cycle for asymmetric 
cyclic loading.

Fig. 6  Asymmetric “POL” and “PUL” loading graphs
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PD model

The PD fatigue model is implemented in the MATLAB software framework by using the 
principles of open-source PD MATLAB code, available in [46]. The model of the stand-
ard specimen is shown in Fig. 7a. It consists of 726 material points (17 points per speci-
men diameter), and the PD horizon size is selected δ = 3.1�x . To significantly reduce 
the computational time, only the gauge area of the specimen is modelled. To prevent 
false failure at the boundaries, the PD bond failure of the material is active only in the 
middle of the model (Fig. 7a). The model is fixed at the bottom by the δ layer of nodes 
and loaded by prescribed displacement at the top, resulting in the required strain value 
(Fig. 7b; 0.0018 for symmetric cyclic loading) given in the testing conditions [43].

First, static simulations were run to test the PD model (model validation according 
to the displacement and strain fields at static loading is shown in Fig. 7b). To obtain the 
quasistatic solution from the explicit time integration of the discretized PD Eq. (1), an 
artefactual damping of 1.6·104 kg/s was introduced. Selected 150 times steps result in 
the fastest possible static solution, ensuring correct displacement and strain fields at a 
given loading. The 316L steel tensile curve segment was taken from the experimental 
first cycle hysteresis loop, as shown in Fig. 7c. The material elastoplastic behaviour was 
evaluated by using the linear and power law tensile curve approximation implemented 
in the force-stretch and stress‒strain relations (Fig. 7c, d), where the stress plastic region 
was described as σ = -0.242·ε−0.891 + 295 MPa if ε >

σy
E = 6.6 · 10−4 (Fig. 6c). The equiva-

lent material plastic stretch values sp = 6.98 · 10−4 and 316L stainless steel critical stretch 
value sc = 8.23 · 10−3 calculated from Eqs. (5) and (7) were used (Fig. 7d).

KTF symmetric cyclic loading model

A fatigue model is created based on the static PD model of the standard specimen 
by introducing the fatigue crack initiation and crack growth phases. Because the 

Fig. 8  Modelling fatigue crack initiation: (a) probabilistic material elastic modulus distribution to define the 
crack start position and (b) material activation energy U and activation volume γ calibration from the S‒N 
curve
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specimen in the model is perfect, e.g., without any defects, fatigue failure would occur 
as predicted from the material S‒N curve at a given stress in all the models without 
any initiated cracks. To prevent this issue, the elastic modulus Gaussian distribution 
(E = 193 ± 3 GPa, values selected from experimental observations) is used to start the 
fatigue crack (Fig. 8a) by creating a point in the specimen where the deformation is 
highest; thus, the lowest number of cycles is necessary for local material failure (PD 
bond failure) predicted from the S‒N curve to initiate the fatigue crack there. The 
fatigue crack imitation phase material activation energy U and activation volume γ 
are calibrated based on the ε-N NUREG/CR-6909 curve [34], as shown in Fig.  8b. 
The σ-N curve, necessary for KTF model calibration, is derived from the NUREG/
CR-6909 ε-N curve by calculating stresses from strains according to the material in-
house experimental tensile curve, as presented in Fig. 7c.

For this case, the material S‒N curve is approximated with three line segments, 
namely, σ ≤ 250 MPa, 250 MPa < σ ≤ 290 MPa, and σ > 290 MPa, by selecting material 
activation energy U and activation volume γ values that result in minimum differ-
ences between the fatigue life calculated according to Eq. (4) and that predicted from 
the material S‒N curve (Fig. 8b) at the same stress level. More line segments can be 
used for a better material S‒N curve approximation, but for the NUREG/CR-6909 
curve, the three-line segment approximation results in a 5.02· × 10–5 remaining area, 
expressed in relative units, between the NUREG/CR-6909 curve and its approxima-
tion; thus, the approximation accuracy is sufficient.

Once a fatigue crack is initiated on the virtual specimen surface, the fatigue crack 
growth phase starts. The switching from crack initiation to crack growth phase cri-
teria is based on the PD point x PD damage ratio φx. According to the [14], the value 
φx ≥ 0.5 is selected to determine the initiated fatigue crack. For the fatigue crack 
growth phase, the activation energy U and activation volume γ are updated as kU·U 
and kγ·γ, respectively. This can be carried out by ensuring the same fatigue crack 
length during the same number of cycles (the same crack growth rate as shown in 
Fig. 4 b) in the PD model and experiment. Because crack growth experiments were 
not performed, such in-house experimental data were not available. Alternatively, 
the experimental maximum stress vs. linear cycle plot, presented in Fig. 9, is used to 

Fig. 9  Determination of the coefficients kU and kγ from maximum stress vs. linear cycle plot
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determine the coefficients kU and kγ in the PD model. The increase in the maximum 
stress reduction rate shows the start of the fatigue crack growth phase, whose dura-
tion is ΔN cycles, as shown in Fig. 9. The experimental and simulation failure criteria 
(at the end of the fatigue crack growth phase) are considered to be greater than a 25% 
reduction in the maximum stress [43].

Selecting kU = 1.2 and kγ = 1 results in the same number of cycles ΔN (Fig. 9) in the 
PD model as in the experiment when a 25% maximum stress reduction is achieved.

The effect of material hardening according to the number of cycles in the PD model 
is evaluated in a manner similar to that in finite element software [47] by using the 
maximum stress versus linear cycles experimental curve approximation dependent 
on the material plastic strain. For this purpose, the polynomial logarithmic function 
σ = f (εpl ,N ) can be expressed as

is applied in the PD fatigue model. Here, N is the number of cycles, and a0 − a5 are coef-
ficients that depend on the plastic strain of the 316L stainless steel material, namely, 
εpl = ε − σ

E , as follows:

(19)
σ = a0 + a1 · ln(N )+ a2 · (ln(N ))

2 + a3 · (ln(N ))
3 + a4 · (ln(N ))

4 + a5 · (ln(N ))
5
,

(20)a0 = 5457εpl + 227.1;

(21)a1 = 5326εpl + 10.58;

(22)a2 = −3549εpl + 4.494;

Fig. 10  Schematics of the general PD fatigue model for symmetric cyclic loading
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The selection of function σ = f (εpl ,N ) is based on an in-house experimental max-
imum stress curve approximation only, and material coefficients, e.g., the Lemaitre 
and Chaboche model [48], were not taken from material datasheets.

Following the modelling order mentioned in "PD-KTF model numerical implemen-
tation aspects", the general PD fatigue simulation scheme is presented in Fig. 10.

Extended KTF model for asymmetric cyclic loading

PD models with the same static material parameters were applied to simulate fatigue 
failure under POL and PUL cyclic loading. Because the POL and PUL loading schemes 
(Fig.  6) consist of variable amplitude blocks (1 cycle of 0.6% strain and 200 cycles of 
asymmetric loading with a strain amplitude of 0.18%), once static and cyclic calculations 
were performed in the PD model for the εmax = 0.6% cycle, the next modelling step was 
a static deformation of ε = − 0.6% for POL loading (for PUL ε = 0.6%). This was neces-
sary to evaluate the hardening effect of the material. When analysing the experimen-
tal hysteresis loops, pure kinematic hardening was assumed to be accurate enough in 
the PD model. Then, the strains and stresses at ε = − 0.6% for POL and ε = 0.6% for the 
PUL loading of each PD point were saved, a new yield limit was calculated according 
to the kinematic hardening law, and the PD model was run from these saved strain‒
stress values for static and cyclic analysis for 200 cycles of asymmetric loading with a 
strain amplitude of 0.18%. The static simulation and cyclic bond failure evaluation were 
repeated not only for each PD bond failure but also after each loading block, as shown 
in the POL cycling loading model scheme presented in Fig. 11. PUL modelling principles 
are the same and thus are not given in separate schemes.

Because KTF Eq. (15) with calibrated U and γ values for the symmetric cycle results 
in a significantly shorter fatigue life in cycles for R > −  1, especially when R ≈ 0.5…1, 
it should be corrected. Similar to the composite, the missing term in Eq.  (15) can be 
treated as the energy loss during cyclic loading, which increases the process tempera-
ture [32, 33, 49]. When term kT denotes the thermal energy in Eq. (15), the cycle energy 
loss can be expressed proportionally to each cycle hysteresis loop area A, and then the 
term kT in Eq.  (15) is replaced by kT + ψA , resulting in the following KTF-modified 
low-cycle fatigue damage equation:

(23)a3 = 687.1εpl + 0.539;

(24)a4 = −54.71εpl − 0.0239;

(25)a5 = 1.559εpl + 0.0002654.

(26)

nxx′
(

N , σmax,R,T , f
)

=n
0xx

′ −

{

(

n
0xx

′ − nIxx′
)1−�

− (1− �)
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h

N

γ f σ
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e
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where ψ is a proportional constant and Aσy is the hysteresis loop area at the material 
yield limit. The fatigue process activation energy U and activation volume γ in Eq. (26) 
are calibrated by applying the same principles as in Fig.  8. The material S‒N curve 
from Fig.  8 is approximated with three line segments. Each segment is considered to 
be accurate over the stress range of 40 MPa (segments from 210 to 250, 250 to 290 and 
290 to 330 MPa, respectively), and then the hysteresis loop areas for the Eq. (26) term 
kT + ψA are calculated for each segment middle point, e.g., the line segment from 250 
to 290 MPa → A270 MPa, as shown in Fig. 12a.

Measurements of the experimental hysteresis loop areas at the first cycle showed that 
the POL asymmetric loading loop area (orange colour in Fig. 12b) is 22% smaller than 
the symmetric loading loop area (A 230 MPa) with the same maximum stress of 230 MPa. 

Fig. 11  Schematics of the general PD fatigue model for POL cyclic loading



Page 19 of 27Vaitkunas et al. Adv. Model. and Simul. in Eng. Sci.           (2024) 11:12 	

This also applies for PUL asymmetric loading, but in this case, the maximum stress is 
270 MPa, and the PUL asymmetric loading hysteresis loop area (blue in Fig. 12b) is only 
45% of the symmetric loading loop area when the maximum stress is 270 MPa. As shown 
in Fig. 12b, 0.78A 230 MPa and 0.45A 270 MPa hysteresis loop area values and stress ratios 
of R = − 1.5 and − 0.7 were used to evaluate the fatigue damage and number of cycles 
to failure according to Eq.  (26) for asymmetric POL and PUL loading, respectively. A 

Fig. 12  Modified KTF approach: (a) U and γ calibration from the S‒N curve when evaluating cycle energy 
losses and (b) evaluating the experimental hysteresis loop areas for asymmetric cycles

Fig. 13  Fatigue crack initiation and growth in the KTF-PD model
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constant ψ = 50 was found after several trials to ensure the best fit to the fatigue life pre-
dicted by the KTF-PD simulation and in-house and other laboratory experimental tests 
[43] under symmetric, POL and PUL loading. Usually, two datasets (symmetric and any 
asymmetric cyclic loading data) are sufficient to determine the ψ value.

Results and discussion
Symmetric loading

The KTF-PD model for symmetric cyclic loading with a strain amplitude of 0.18% was 
first calibrated according to the NUREG/CR-6909 [34] curve without evaluating cyclic 
energy losses (Fig. 8). PD damage (ratios of the broken PD bonds to total PD bonds of 
each point) plots showing simulated fatigue crack paths on this model are presented in 
Fig. 13. The comparison of the simulation results to those of in-house and other labora-
tories [43] experimental tests is shown in Fig. 14.

According to the results in Figs. 13 and 14, the PD model, which was calibrated from 
the NUREG/CR-6909 curve, shows good agreement with the FrFr laboratory experi-
mental results in terms of the number of cycles up to 25% of the maximum stress reduc-
tion (N25 in Figs. 13 and 14). The NUREG/CR-6909 curve predicts 171,517 cycles, while 
the PD model predicts N25 = 183,410. During the experiment, which was performed in 
an FrFr laboratory, a 25% reduction in the maximum stress was achieved after a total of 
205,500 cycles. However, in-house experimental testing showed N25 = 342,870 cycles, 

Fig. 14  Comparison of the experimental and simulation results for symmetric ε =  ± 0.18% cyclic loading
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which is far from the NUREG/CR-6909 curve. Nevertheless, experimental testing per-
formed by the Japan Nuclear Energy Safety Organization (JNES) [34] predicted an aver-
age fatigue life of 321,085 cycles at ε =  ± 0.18% cyclic loading, which correlates well 
with the in-house experimental result of 342,870 cycles. Thus, more experimental test-
ing should be performed to possibly extend the average fatigue life of 316L steel nuclear 
power plant structures and establish a safe and prolonged exploitation period.

A comparison of the maximum experimental and simulation stress versus linear cycle 
curves is presented in Fig. 15. Here, the material kinematic hardening effect, simulated 
according to Eqs. (19)–(25), can be seen. Figure 16 presents the hysteresis loops of the 
10, 1000, 100,000, 181,970 (simulation), and 341,970 (experiment) comparisons. Both 
the experimental and simulated hysteresis loops are in agreement according to their 
shape and area.

Asymmetric loading

Comparisons of the in-house and other laboratories [43] experimental and KTF-PD sim-
ulation results of both the conventional (without hysteresis loop energy loss evaluation) 

Fig. 15  Comparison of the maximum stress vs. linear cycles and the simulated kinematic hardening effect

Fig. 16  Comparison of experimental and KTF-PD simulation hysteresis loops: a N = 10, 1000, b N = 100 000, 
181,970 (simulation), and 340,970 (experiment)
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and improved (with loop energy loss evaluation) KTF-PD models for all loading types 
(symmetric, POL and PUL) are presented in Fig. 17. Each KTF-PD simulation took ~ 8 h 
of computational time when the simulations were performed on a computer with an 
Intel(R) Core(TM) 3.2 GHz processor and 16 Gb of RAM memory.

The newly proposed KTF method equation with material energy losses proportional 
to its loading hysteresis loop area validation is shown in Fig. 17a for the symmetric 
cycle. Compared with the conventional KTF approach, the modified KTF method 
results in a 3.8% longer fatigue life (190,170 versus 183,410), but both models are in 
very good agreement with those predicted from the N25 fatigue life (171,517 cycles) 
of the S‒N curve and the FrFr experiment [43] (205,500 cycles). However, for POL 
loading (Fig. 17b), the conventional KTF-PD model better estimates the N25 fatigue 
life (147,060 cycles and the modified KTF method 185,280 cycles versus the predicted 
158,719 cycles), but on the other hand, the modified KTF method result is closer to 
the VTT experiment [43] result (197,460 cycles) and still correlates well with the pre-
dicted N25 fatigue life [43] of 158,719 cycles. Moreover, the simulated N25 fatigue 
lives for POL and symmetric cyclic loading with both conventional and modified 
methods show that the POL N25 fatigue life tends to be shorter than that for sym-
metric loading, as also observed in the experimental results. The effect of the modi-
fied KTF method is mostly visible for PUL loading (Fig.  17c), where the simulated 

Fig. 17  Comparison of experimental and KTF-PD simulation (conventional and extended with hysteresis 
loop energy losses) results: a symmetric cycle, b POL loading, and c PUL loading
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N25 fatigue life of 74,675 cycles correlates well with the predicted N25 fatigue life 
[43] of 70,029 cycles and the VTT experiment result of 63,980 cycles [43], while the 
conventional KTF equation estimates an extremely shortened N25 fatigue life equal 
to only 3185 cycles. In-house experimental testing for PUL loading resulted in sig-
nificantly earlier failure after 23,614 cycles, similar to the results of the IRSN experi-
ment [43]. According to the results presented in Fig. 17, it is simple to conclude that 
the conventional KTF calibrated for symmetric cycles lacks accuracy for asymmetric 
cyclic loading when R > − 1. After the material energy losses proportional to its load-
ing hysteresis loop area evaluation, the KTF method results in acceptable agreement 
between the simulated and experimental fatigue lives for all types of loading: constant 
amplitude symmetric and variable amplitude asymmetric with R < −  1 (POL) and 
even for R > −  1 (PUL). The average differences between the KTF-simulated fatigue 
lives for all types of loading are 10.8% and 40.2% for unmodified KTF. Nevertheless, 
more experimental testing is necessary to obtain the fatigue life variation and then 
better select the numerical fatigue model parameters, especially ψ.

Fig. 18  Comparison of experimental and KTF-PD simulated hysteresis loops for POL loading
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The simulated and experimental hysteresis loops for POL loading are plotted in 
Fig. 18 and for PUL loading—in Fig. 19. Each loop presents ε = 0.6% symmetric cycle, 
and the next asymmetric cycle has a strain amplitude of 0.18%.

Figures 18 and 19 show agreement between the simulated and experimental loops 
in terms of the maximum strain–stress values for symmetric cycles, but the selected 
stress–strain approximation leads to differences in terms of the shape of the curves.

Summary and conclusions
The kinetic theory of fracture under the peridynamic material model is able to predict 
fatigue failure with very good agreement with the experimental results. Moreover, 
with the help of integral (without spatial derivatives) peridynamics theory formula-
tion, fatigue crack initiation and growth phases can be simulated without predefining 
the crack path. The cyclic material model parameters can be found only from a single 

Fig. 19  Comparison of experimental and KTF-PD simulated hysteresis loops for PUL loading
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experimental S‒N curve of the material for symmetric loading (R = −  1). However, 
the kinetic theory of fracture fatigue damage equation (Eq. 15) calibrated on the sym-
metric cycle S‒N curve results in an incorrect fatigue life for low-amplitude asym-
metric cyclic loading (R > −  1, especially R ≈ 0.5…1), and variable amplitude and 
asymmetric cyclic loading can still be simulated based on the same S‒N curve of the 
material by extending the KTF‒PD method with material energy losses during cyclic 
loading evaluation. It is assumed that energy losses are proportional to the area of the 
loading hysteresis loop. The modified KTF-PD method is accurate for different types 
of symmetric and asymmetric cyclic loading. The material kinematic hardening effect 
can also be captured in the KTF-PD simulation.
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