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Abstract

We propose a novel two-scale (meso-macro-scale) approach to computationally
capture cancellous bone remodelling allowing for efficient and effective numerical
implementation. Therein, the macro-scale is governed by the well-established
kinematics and kinetics of one-scale continuum bone remodelling. However, the
constitutive behaviour is not postulated phenomenologically at the macro-scale, but
rather follows from the meso-scale. There, for the sake of computational efficiency, the
trabecular architecture is idealised as a truss network with the cross-sectional area of
the trabeculae adapting to mechanical loading. Then, the meso- and the macro-scale
are coupled through up- and down-scaling. Computational results on benchmark
problems from bio-mechanics demonstrate that the proposed two-scale approach is
effective from a modelling perspective and efficient from a computational perspective.
In particular, it automatically captures anisotropy resulting from the irregular trabecular
architecture at the meso-scale, and, most importantly, enables the direct investigation
of different trabecular structures at the meso-scale, thereby serving as a virtual
“magnifiying glass”. As an outlook, the proposed two-scale approach to cancellous
bone remodelling provides an excellent launch pad for further extension, e.g., by
considering more complex trabecular architectures and/or through inclusion of
micro-scale bone cellular activities.
Keywords: Computational bone remodelling, Cancellous bone, Trabecular
architecture, Two-scale approach, Anisotropy

Motivation
It is widely accepted that bone is a living hierarchical material that adapts its internal
structure, among others, to mechanical stimuli as evidenced by in-vivo measurements,
see, e.g., [5,38,41]. For this remodelling process, osteoclasts and osteoblasts work in a
coupledprocess of bone resorption and subsequent bone formation to repairminor fatigue
damages in the tissue and adapt the bone, e.g., to habitual mechanical loading [1,23,33–
35]. Understanding and predicting the remodelling process in human bone is critical, for
example to determine fracture risk and/or optimising implant and scaffold integration,
see, e.g., [50], and treatment methods. This is especially important in case of degenerative
diseases such as osteoporosis, where an imbalance betweenbone formation and resorption
leads to bone loss that weakens the bone.
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Meslier and Shefelbine recently reviewed the past 50 years of developments of finite
element models for bone adaptation [27]. The majority of early bone adaptation models
have been formulated as one-scale macroscopic models based on the phenomenologi-
cal theory of adaptive elasticity [8]. In these models mechano-adaptation responses are
based on either strain [8] or energy storage density [15–17,47]. In order to overcome the
phenomenological nature of the mechano-adaptive evolution law proposed in these early
models, efforts have beenmade to formulate bone adaptation based on the theory of open
system thermodynamics [9,21,22]. The latter framework allows to derive the evolution
equation for bone mass density (and material orientation) based on thermodynamic sys-
tem constraints. Several authors applied this theory to simulations of bone remodelling
[19,24,30,31,39,45].
However, none of these one-scale approaches explicitly accounts for the highly irregular

trabecular architecture of cancellous bone at the meso-scale. In strong contrast, pixel-
or voxel-based finite element models in 2D and 3D, respectively, enable for example
analysing the purelymechanical behaviour of small cancellous bone specimens [18,29,44].
Especially when generated usingμCTorHR-pQCTmeasurements, thesemodels prove to
be particularly true to the real geometry [4,10,49]. Moreover, the μCT-generated voxel-
based finite element models even allow the detailed simulation of the remodelling of
trabecular bone samples, see, e.g., [46]. Nevertheless, approaches explicitly resolving the
meso-scale are computationally prohibitive for whole-bonemodels, and thus only suitable
for studying small bone samples. To aim for computational efficiency, some contributions
suggest theuseof simplifiedgeometries, but eitherdonot consider the remodellingprocess
[3,20], or only account for a single specific trabecular structure [13]. In other studies, the
trabecular architectures used are not variable and strongly depend on the macro-scale
finite element discretisation or even a regular pattern [26,32].
Attempts to incorporate the multi-scale nature of bone are made, e.g., by [7,11,48]

aiming at determining the trabecular structure by solving a material distribution problem
based on density-type design variables at the macro- andmeso-scale. For given trabecular
structure as characterisedbyμCT, [14] propose an approach tobone remodelling coupling
finite elements at the macro-scale with a neural network that is trained from voxel-based
finite element analysis at the meso-scale.
Given this state of affairs, the objective of this contribution is therefore to develop an

efficient yet effective, two-scale approach to computationally capturing cancellous bone
remodelling. To this end, we combine continuum concepts of bone remodelling at the
macro-scale with a model of trabecular bone at the meso-scale. Thereby, to achieve com-
putational efficiency, the sophisticated cancellous architecture is here, however without
sacrificing generality, idealised and indeed simplified as a truss network with the cross-
sectional area of the trabeculae adapting to the local mechanical stimuli. To concurrently
couple the trabecular meso- and the whole-bone macro-scale, we adopt suited up- and
down-scaling strategies. To the author’s best knowledge, a simlar two-scale approach has
not been attempted before.

Two-scale approach
Wepropose a two-scale approach (see Fig. 1), wheremechano-adaption problems are con-
currently considered at the macro- and meso-scale. The kinematics and kinetics at the
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Fig. 1 Two-scale approach: adaptation of the trabecular geometry at the meso-scale. Mechanobiological feed-
back is accounted for via the energy storage density in the trabeculae, thereby regulating the phenomenological
evolution of the trabecular cross-sections. Effective continuumquantities at themacro-scale, i.e. the stress, stiffness
and density, follow via up-scaling from the meso-scale

macro-scale are based on well-established phenomenological continuum bone remod-
elling, see, e.g., Kuhl and Steinmann [22], where bone is considered a continuum. How-
ever, as a novelty, in the current approach the constitutive behaviour is not postulated
phenomenologically at the macro-scale, but rather follows directly through up-scaling
from the meso-scale. To this end, each (quadrature) point at the macro-scale is assigned
a zoom-in volume element (ZVE) representing the trabecular meso-scale structure. The
boundary conditions imposed to each ZVE are determined via down-scaling the deforma-
tion at the macro-scale. At the meso-scale, for the sake of computational efficiency and
simplicity, the cancellous structure is idealised as a trabecular truss network. Through
up-scaling, the effective stress, the stiffness and bone density are then transferred back to
the macro-scale. The proposed two-scale approach is schematically depicted in Fig. 1 and
is discussed in detail in the following sections.

Notation: In the sequel we use symbolic tensor notation and avoid entirely any use of
matrix notation. Therein, any contraction is indicated by a dot, for example the scalar
product of two first-order tensors (vectors) a and b reads a · b, the scalar product of two
second-order tensors A and B reads A : B, and the map of a first-order tensor b into a
first-order tensor a by a second-order tensor A reads a = A · b.

Macro-scale continuummodel

At the macro-scale, we consider bone as continuous matter [22,30,31,39,40], i.e. in terms
of effective continuumquantities that donot explicitly resolve anymeso-scale features.We
here adopt a well-established geometrically nonlinear continuum formulation for the sake
of modelling rigour, nevertheless, for the range of deformations expected for hard bone
tissue exposed to habitual mechanical loading, the response will automatically approach
the geometrically linear limit. We here opt for the well-established geometrically non-
linear remodelling framework from [22] since it does not pose any additional challenges.
Thus, without loss of continuum modelling accuracy, we refrain from first unnecessar-
ily linearising it to a geometrically linear formulation. All continuum quantities at the
macro-scale are indicated by an overbar.
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Fig. 2 Kinematics at macro-scale: material configuration (left) and spatial configuration (right)

Kinematics:The kinematics at themacro-scale are characterised by the nonlinear defor-
mationmap ȳ relating the placement X̄ of a continuumpoint in thematerial configuration
B̄0 to its position x̄ in the spatial configuration B̄t ⊂ E

d (see Fig. 2)

x̄ = ȳ(X̄ , t̄) : B̄0 × R+ → B̄t . (1)

Here t̄ denotes the macro-scale time that shall coincide with the meso-scale time, thus
t̄ ≡ t.
The material gradient of the deformation map is denoted the deformation gradient F̄

F̄ = Gradȳ(X̄ , t̄) : T B̄0 → T B̄t , (2)

Thedifferential operatorGrad expresses the gradient in termsof derivativeswith respect
to the material coordinates X̄ . The deformation gradient F̄ , a two-point tensor, linearly
maps from the material tangent space T B̄0 to the spatial tangent space T B̄t at the macro-
scale.
Kinetics:The kinetics at themacro-scale are collectively dictated by the balances ofmass

and linear momentum [21]

˙̄ρ0 = R̄0 and DivP̄ = 0 , (3)

with the (effective) nominal mass density ρ̄0 per unit volume in B̄0, corresponding mass
source R̄0, andPiola stress P̄ (a two-point tensormapping fromT ∗B̄0 toT ∗B̄t , thematerial
and spatial cotangent spaces), respectively. The differential operator Div expresses the
divergence in terms of derivatives with respect to thematerial coordinates X̄ at themacro-
scale.
Body forces and inertia are here neglected due to the different levels of gravitational and

habitual mechanical loading as well as due to the different time scales of the macro-scale
problem and the bone remodelling process.

Constitutive Expression: A traditional one-scale phenomenological bone remodelling
approach [22,30,31,39,40] requires a constitutive model that expresses the mass source
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(for example as in Harrigan andHamilton [15]) and the Piola stress (for example as a Neo-
Hookean response) in terms of the nominal mass density and the deformation gradient,
i.e.

R̄0 = R̄0(ρ̄0, F̄ ) and P̄ = P̄(ρ̄0, F̄ ) . (4)

In our two-scale approach, however, the density evolution in Eq. 3.1 (and thus the
constitutive model in Eq. 4.1) as well as the constitutive model in Eq. 4.2 (together with
its consistent linearisation Ā so that d P̄ = Ā : d F̄ ) are entirely by-passed by resorting to
up-scaling from the meso-scale (see below)

ρ̄0 = 〈ρ0〉 and P̄ = 〈P〉 with Ā = 〈A〉 . (5)

Here the macro-scale quantities ρ̄0, P̄ and Ā are equated with corresponding averaged
values 〈ρ0〉, 〈P〉 and 〈A〉 at the meso-scale. The determination of 〈ρ0〉, 〈P〉 and 〈A〉 from
the meso-scale truss network model is outlined next.

Meso-scale truss network model

Each continuum point at the macro-scale is assigned a zoom-in volume element (ZVE)
detailing the trabecular structure at the meso-scale. Typical ZVEs are schematically
depicted for example in Figs. 1 and 3. We use the terminology ZVE rather than the
common terminology “representative volume element (RVE)” to appreciate the lacking
scale separation between the solution domain of a ZVE at the meso-scale and a con-
tinuum point at the macro-scale. Indeed we accept the lack of scale separation to avoid
the need to macroscopically resolve the entire cancellous part of a whole-bone specimen
in all detail, which unfortunately is prohibitive effort-wise and moreover also deemed
unnecessary. Accepting furthermore severe geometric simplifications1, we here consider
the trabecular structure at the meso-scale simply as an idealised geometrically linear tra-
becular truss network2. Despite its simplicity this assumption allows already for complex
scenarios wherein truss-like trabeculae with (uniformly) evolving cross-section are of dif-
ferent length and orientation, however, possible bending and/or buckling deformations
are neglected (which under physiological mechanical loading appears not too much of a
restriction). All, admittedly crude, approximations adopted are here assumed for the sake

1Indeed, geometrically, cancellous bone is rather characterised by shell-like structures, which, when captured exactly,
today still result, however, in a prohibitive computational burden.Resorting to a two-scale approach allowsus generically
incorporating the architecture of the trabecular structure at themeso-scale and thus requires formulating corresponding
evolution equations for its remodelling. Here, for the sake of simplicity and to highlight the methodology, we opted to
consider a truss network to characterise the trabecular architecture at the meso-scale. In this case, a phenomenological
evolution equation for the truss cross-sections, i.e. geometrical quantities, is a natural option with the cross-sectional
evolution driven by the energy storage density in the solid skeleton at the meso-scale, see below. We like to stress
though that the methodology is neither restricted to more involved trabecular architectures at the meso-scale such as,
e.g., composed by shell-like structures, nor to more mechanobiologically inspired driving forces following, e.g., from
up-scaling a bone cell populationmodel operating at the underlying micro-scale. Likewise, within individual trabeculae
remodelling need not render a uniform change in their geometry. In this regard the advocated truss-network approach
is indeed a compromise between accuracy and computational efficiency and is thus considered only a first step towards
more realistically capturing the “true” cancellous bone and its adaption to mechanical stimuli. Clearly, any of these
extensions that are certainly on our agenda for the future come at the expense of way higher computational costs.
2The restriction to a geometrically linear setting is justified by the small level of external loading (as normalised by the
bone stiffness) and in addition entirely avoids rather technical and in the current context unnecessary difficulties when
formulating geometrically nonlinear truss networks.
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of reducing complexity and increasing computational efficiency (and can/will be relaxed
in future developments). In the following the employed finite element setting for the
truss-network formulation is outlined in all detail for the sake of self-consistency.

Kinematics: At the meso-scale, for the sake of computational efficiency, the trabecular
structure is described as a truss network where the trabeculae are considered as truss
elements with uniform (but adaptable) cross-sectional area that is sufficiently smaller
than their length. For the notation and details of truss network kinematics we refer to the
appendix.

Statics: For a linear elastic truss network the total energy storage in one element reads

We = weV e = EsAeLe[εe]2/2. (6)

Note, due to the (engineering) strain εe (defined in the appendix) being constant in an
element there is no volume integral appearing over the energy storage density per volume

we = Es[εe]2/2, (7)

but we is rather simply multiplied with the total volume V e = AeLe of an element. Here,
Es, Ae and Le denote the elastic modulus of the solid material that is assumed constant
and given for the trabeculae, the uniform element cross-sectional area and the element
length, respectively.
Then, the derivative of the total energy storageWe with respect to the element vector of

displacements ue (defined in the appendix) renders the element vector of internal forces

ne = ∂We/∂ue = neLebe (8)

with be the element strain-displacement operator (defined in the appendix) and the uni-
form normal force in an element

ne = EsAeεe. (9)

The element stiffness tensor follows furthermore from linearisation as

ke = ∂ne/∂ue = ke[Le]2be ⊗ be (10)

with the uniform (longitudinal) tangent stiffness of a truss element

ke = [∂ne/∂εe]/Le = Es[Ae + εe∂Ae/∂εe]/Le. (11)

Note that the element cross-sectional area evolves due to the energy storage density
Ae = Ae(we), see below. Consequently, with we = we(εe) the cross-sectional area Ae

implicitly depends on the strain εe.
Finally, in the absence of external forces the assembly of all element contributions results

in the global residual and its linearisation

r = −
⋃

e
ne .= 0 and k .=

⋃

e
ke, (12)

so that the Newton update for the global vector of displacements u reads

u → u + k−1 · r. (13)

Cross-sectional area evolution: To consider the remodelling process at the meso-scale,
some considerations must be made in advance. Previous findings have shown that bone
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remodelling changes mainly the size of individual trabeculae, whereas the overall archi-
tecture of the trabecular bone at themeso-scale remainsmostly the same. Thus, increased
mechanical stimulation causes trabeculae to become thicker without changing the actual
number of trabeculae and their connectivity [28]. In contrast, bone resorption may com-
pletely remove individual trabeculae, resulting in a modified network with reduced con-
nectivity. Accordingly, our meso-scale approach considers the adaption of the cross-
sections of individual truss elements to mechanical stimulus. More precisely, truss ele-
ments subjected to high mechanical loading become thicker, while truss elements sub-
jected to insufficient mechanical loading become thinner until they may be completely
removed3.
Based on these considerations, we here propose a simple phenomenological evolution

equation for the cross-sectional areas inwhich the energy storagedensity in a truss element
is compared to a so-called attractor state. Similar to the theory of Frost [12] and Skerry [42]
regarding a habitual set-point strain, which initiates either bone formation or resorption,
themeso-scale attractor statewa describes the biological homeostasis to which the system
is driving. With this, we model the temporal change in cross-sectional area Ȧe as

Ȧe = Re with Re := c Ae[we − wa], (14)

with the parameter c (dimension volume per energy and time) controlling the velocity of
the remodelling process. Note that evolution equation Eq. (14) is the simplest possible
approach and can be easily extended, for example by including the activity of osteocytes
and and osteoblasts at the cellular scale [33–35].
The temporal discretisation of the cross-sectional area evolution equation over a time

step �t is performed with the implicit Euler time stepping scheme. Suppressing explicit
indication of the new time point tn+1, the time discrete evolution of Eq. (14) reads as

�Ae − �t Re(Ae, εe) .= 0. (15)

The linearisation of the updated Ae with respect to εe as needed in the expression for the
(longitudinal) tangent stiffness ke of a truss element results eventually as

∂Ae/∂εe = δA ∂Re/∂εe with δA = [1 − �t ∂Re/∂Ae]−1�t. (16)

Here, concretely, ∂Re/∂Ae = c [we − wa] and ∂Re/∂εe = c EsAeεe = c ne.
Next, we detail the down- and up-scaling between macro- and meso-scale.

Down-Scaling: To relate the macro- to the micro-scale, we impose affine displacement
boundary conditions, i.e. prescribed boundary displacements4 to the ZVE see Fig. 3.

3We emphasize that the constitutive equations employed at the meso-scale are inspired by - but not the same as those
usually used at the macro-scale. In a one-scale approach the evolution of the bone mass density, a state quantity at the
macro-scale, is considered. In the two-scale approach the evolution of truss cross-sections, geometrical quantities at
the meso-scale, is considered whereby the nominal bone mass density at the macro-scale follows as a post-processed
quantity from up-scaling. These are two rather different concepts even if the evolution equations at macro- and meso-
scale share formal similarities. The orientation of individual trabeculae (before deformation) is admittedly unaffected
by the present idealised approach. Potential re-orientations of trabeculae due to remodelling are here, however, deemed
a secondary effect, given the geometric simplifications made anyway.
4It is noted that other boundary conditions for the ZVE are indeed possible, among them the limiting cases of Voigt and
Reuss bounds, traction boundary conditions, as well as the perhaps most accurate, periodic boundary conditions. For a
more in-depth discussion we refer to [36] and references therein. Displacement boundary conditions are here merely
chosen for the sake of simplicity and demonstration, however without loss of generality. Both traction and periodic
boundary conditions require more technicalities when it comes to their implementation, see e.g. our review paper on
computational homogenisation [36] among many other accounts on the matter, but do not pose conceptual difficulties
per se. It is acknowledged that the selection of either displacement, periodic, or traction boundary conditions results
in an effective up-scaled response that is either too stiff, believed to be about right, or too soft.
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Fig. 3 Sketch of a ZVE at the meso-scale: material configuration (left) and spatial configuration (right) with retai-
ned nodes (filled orange circles) within the ZVE and prescribed nodes (filled green circles) at the boundary of the
ZVE

Thereby, the displacements ua of the truss network node points on the discrete ZVE
boundary ∂VZVE (constituting the set of boundary node points N b) are prescribed in
terms of the deformation gradient F̄ from the macro-scale

ua = F̄ · Xa − Xa ∀ a ∈ N b. (17)

With these boundary conditions given, the equilibrium problem for r .= 0 is solved for
the displacements ua of the truss network node points within the ZVE, thus completing
the down-scaling.
Remark: As an aside, the deformation gradient F̄ at the macro-scale relates to the

volume average of the deformation gradient 〈F 〉 at the meso-scale as F̄ = 〈F 〉, thus
F̄ = 1

VZVE

∑

a∈N b

ya ⊗ Aa. (18)

Here, VZVE represents the volume of the ZVE, see Fig. 3, and Aa denotes the discrete
vectorial area element (outwards pointing unit normal multiplied by the discrete area
element Aa) at boundary node point a ∈ N b. ��
Up-Scaling:To relate themeso- to themacro-scale, first averaged values for the nominal

density 〈ρ0〉 and the Piola stress 〈P〉 are computed for the ZVE

〈ρ0〉 = VT
VZVE

ρs
0 and 〈P〉 = 1

VZVE

∑

a∈N b

f a ⊗ Xa. (19)

Here VT = ∑nel
e=1 Ve, ρs

0 and f a denote the volume occupied by the trabeculae within the
ZVE, the density of the solidmaterial (assumed constant and given for the trabeculae) and
the reaction forces (resulting from the assembly of internal forces) at the boundary node
points a ∈ N b.
Note that for a two-dimensional case we consider the volume VZVE and the cross-

sectional area Ae as being extruded to the third dimension by assuming a unit thickness.
Then the linearisation of the average Piola stress 〈P〉 with respect to the deformation

gradient at the macro-scale F̄ , i.e.
d〈P〉 = 〈A〉 : dF̄ , (20)

follows in terms of the fourth-order tangent stiffness (or elasticity) tensor

〈A〉 = 1
VZVE

∑

a∈N b

∑

b∈N b

k̂ab⊗ [Xa ⊗ Xb] , (21)
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which is here denoted (by misuse of the average operator notation) as 〈A〉. Its detailed
derivation is outlined in the appendix.
Finally, the nominal density 〈ρ0〉, the Piola stress 〈P〉 and its linearisation 〈A〉 as averaged

over the ZVE are equated with their counterparts ρ̄0, P̄ and Ā at the macro scale, thus
completing the up-scaling.

Algorithmic implementation

The algorithmic implementation is based on the previous set of equations. To this end,
the finite element method is used for the spatial discretisation at the macro- and the
meso-scale. In a nutshell, the step-by-step algorithmic flow follows as

1. The external mechanical load is incremented and applied to the spatially discretised
specimen at the macro-scale.

2. The macro-scale deformation gradient F̄ at each macro-scale quadrature point is
determined from the macro-scale nodal displacements.

3. The displacements at the boundary of the discrete truss-network ZVE at the meso-
scale are prescribed from the macro-scale deformation gradient F̄ .

4. The truss network mechano-adaption problem is solved at the meso-scale.
5. The effective stress, nominal bone density, and tangent stiffness tensor are deter-

mined from averaging over the ZVE and transferred back to the macro-scale.
6. Using the global (assembled) tangent stiffness at the macro-scale, an iteratively

updated estimation of the macro-scale deformation is computed and steps 2–6 are
repeated until equilibrium at the macro-scale is obtained.

7. The outer loop starting with step 1 stops at the end of the external load history.

Benchmark problems
The performance of the proposed two-scale approach is qualitatively demonstrated using
two benchmark problems, see, e.g.,Schmidt et al. [40]. These are restricted to two space
dimensions for the sake of simplicity and demonstration. The first example considers a
uniformmacro-scale (unit square) specimen under compression to study the influence of
the underlying trabecular truss network structure at the meso-scale. The second example
analyses a (two-dimensional) macro-scale proximal femur head under habitual mechan-
ical loading, similar to, e.g., Carter and Beaupré [2], however taking into account the
evolving trabecular truss network structure at the meso-scale. Since in both examples the
focus of the study is merely on the qualitative behaviour of the two-scale model, all units
are omitted. Nevertheless, to qualitatively analyse the evolution of the effective nomi-
nal bone density at the macro-scale and the underlying trabecular truss network at the
meso-scale, the dimensionless simulation times are also provided.

Uniform compression problem

Due to its simplicity, first a uniform (unit square) compression problem is used to study
continuum bone remodelling at the elementary level of a single macro-scale point (the
quadrature point). Since this homogeneous example has already been considered fre-
quently for the one-scale approach under uniaxial loading in the literature, we consider
it a benchmark and chose to compare the results obtained for the two-scale approach for
exactly the same loading and boundary conditions.
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Fig. 4 Uniform compression problem in 2D: (a) a single macro-scale bi-linear finite element with different meso-
scale ZVEs representing a structured trabecular truss network (bottom) and an unstructured trabecular truss
network (top), (b) boundary conditions and mechanical loading in vertical direction, (c) boundary conditions and
mechanical loading in horizontal direction, (d) step-wise increasing mechanical load (forces)

To this end, a single5 finite element with bi-linear shape functions and 2 × 2 Gauss
quadrature rule is considered at the macro-scale, see Fig. 4a. Each macro-scale quadra-
ture point is assigned a ZVE at the meso-scale, wherein we analyse two different types
of trabecular truss network structures. The structured ZVE consists of 81 equidistantly
distributed node points and 208 trabeculae (truss elements) displaying fourfold symmetry
horizontally, vertically, and diagonally. The unstructured ZVE consists of 80 node points
and 205 trabeculae, wherein node points are randomly shifted. Note that the structured
ZVE could be divided into 16 equal unit cells consisting of only 9 node points and 16
trabeculae, however, to better compare it to the unstructured ZVE, we consider the entire
ZVE with 81 node points and 208 trabeculae. Moreover, while the number of node points
and trabeculae of both ZVEs is similar, the unstructured ZVE results in slightlymore node
points in vertical than in horizontal direction.
A compressive load in vertical, Fig. 4b, and horizontal direction, Fig. 4c, is applied at

the macro-scale node points that increases step-wise over time, Fig. 4d. As a reference, we
also considered the entirely phenomenological one-scale continuum bone remodelling
approach at the macro-scale as detailed for example in Schmidt et al. [40]6. The dimen-
sionless set of parameters of the here advocated two-scale approach and of the reference
one-scale continuum bone remodelling approach is given in Table 1. Note that we specify
an initial (effective) nominal density ρ̄�

0 = ρ̄0(t = 0) at time t = 0. Consequently, the
initial trabecular cross-section areaA� = Ae(t = 0) is consistently calculated by assuming
it initially the same for all trabeculae.
The resulting temporal evolution of the (effective) nominal density ρ̄0 is depicted in Fig.

5a, c. As a trend, initially a lower (effective) nominal density is observed during the first

5Since this benchmark problem renders homogeneous response in all macro-scale fields, discretisation by only a
single finite element is sufficient. Nevertheless, as a sanity check of our implementation, we confirmed that arbitrary
discretisation densities (1 × 1, 2 × 2, 3 × 3, . . . bi-linear elements) result, as expected, in exactly the same evolution
for the nominal bone mass density and nominal stress components at the macro-scale quadrature points as well as in
the same overall displacements.
6For the one-scale approach, the relation between the solid and the initial nominalmaterial properties is based on the
initial volume fraction ῡ�

0 := ρ̄�
0/ρ

s
0 of the initial nominal density ρ̄�

0 and the solid bone densityρs
0 , and a homogenisation

exponent N̄ . Then, the current nominal stored energy density follows as ψ̄0 = [ῡ0]n̄[ῡ�
0 ]N̄−n̄ψ s

0 with ψ s
0 the stored

energy in the solid bone and ῡ0 := ρ̄0/ρs
0 the current volume fraction. Moreover, the nominal mass source reads as

R̄0 = c̄ [ῡ n̄−m̄
0 [ῡ�

0 ]N̄−n̄+m̄ψ s
0 − ψ̄a

0 ]. For the here considered homogenisation exponent N̄ = n̄we obtain ψ̄0 = [ῡ0]n̄ψ s
0

and R̄0 = c̄ [ῡ n̄−m̄
0 [ῡ�

0 ]m̄ψ s
0 − ψ̄a

0 ], for a detailed derivation and justification of the material parameters selected see
Schmidt et al. [40]. The Piola stress entering the macro-scale equilibrium equation then follows as P̄ = [ῡ0]n̄∂ψ s

0/∂F̄ ,
i.e. as nonlinearily (with n̄ set to 2 indeed quadratically) scaled by the evolving current volume fraction ῡ0 . Observe that
this is different to the truss normal forces ne = EsεeAe that only scale linearly with the evolving cross-sectional area
Ae in the two-scale approach. Obviously, we can not expect a one-to-one correspondence of the one- and two-scale
models, also as the latter incorporates more meso-scale detail.
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Table 1 Uniform compression problem in 2D: dimensionless parameters for the one- and
two-scale approach (for the one-scale approach we adopt the model detailed in Schmidt et al. [40])

Solid bone Young’s modulus Es 10000

Solid bone Poisson’s ratio νs 0.33

Solid bone density ρs
0 2

Initial nominal density ρ̄�
0 0.4

One-scale approach exponent m̄ 3

One-scale approach exponent n̄ 2

One-scale approach homogenisation exponent N̄ 2

One-scale approach remodelling velocity factor c̄ 200

One-scale approach attractor stimulus ψ̄a
0 0.0014

Two-scale approach remodelling velocity factor c 133.33

Two-scale approach attractor stimulus wa 0.0056

loading phase when comparing the two-scale to the one-scale approach. This behaviour
reverts as the load level increases, such that the (effective) nominal density for the two-
scale approach is larger at the end of the load history. While the two-scale approach
using the structured ZVE responds the same to compression in vertical and horizontal
direction, thus indicating isotropic behaviour, compression in vertical direction using
the unstructured ZVE here leads to a significantly larger (effective) nominal density than
in horizontal direction, thus indicating anisotropic behaviour. Obviously, the anisotropy
results from the uneven distribution of node points and truss elements in the vertical
and horizontal directions. Indeed, 134 of 205 truss elements experience an increase in
cross-sectional area when loaded in vertical direction, whereas only 100 do when loaded
in horizontal direction. It is also interesting to observe that the truss elements at the
boundary of the unstructured ZVE that are perfectly aligned with either the vertical or
horizontal loading direction carry the major part of the load by adapting most, while
the internal trusses carry less load and thus also rather reduce their cross-section. As a
contrast, for the structured ZVE all trusses aligned with the loading direction, regardless
whether at the boundary or inside the ZVE, carry the same load and consequently adapt
the same. This may be considered a sanity check.
Considering finally also the displacements at the macro-scale node points in Fig. 5b,

d, it is observed that for the presented examples and the chosen material parameters the
terminating nodal displacements using the two-scale approach are consistently smaller
compared to the one-scale approach; due to the predicted higher (effective) nominal
density regardless of the underlying ZVE at the meso-scale.
Note that although the evolution equations for the nominal bone mass density in the

one-scale approach and the cross-sectional areas in the two-scale approach share formal
similarities, and although the (up-scaled) bone mass density on the macro-scale is similar
on average for both approaches, the stresses in the one-scale approach scale nonlinearly
(indeed quadratically) with the solid skeleton volume fraction, whereas the truss resultants
(forces) scale linearly with the cross-sectional area in the two-scale approach. As a result,
we can either tune the two approaches to predict on average similar nominal bone mass
density at the macro-scale or to predict on average similar macro-scale displacements
(or equivalently effective macro-scale stiffness). Since we are primarily interested in the
nominal bone mass density, we here opted for the former.
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Fig. 5 Uniform compression problem in 2D: step-wise increased compressive load in (a, b) vertical and (c, d)
horizontal direction comparing the one- and two-scale approach. (a, c) temporal evolution of the (effective)
nominal density. (b, d) nodal displacement and terminating trabecular structure at meso-scale for t = 8

Fig. 6 Uniform simple shear problem in 2D: the diagonal load-carrying truss elements become thicker while the
horizontal and vertical truss elements vanish immediately since they do not carry any load

Remark: For the sake of interest and as a sanity check we demonstrate in Fig. 6 the
evolution of the cross-sectional areas when employing the structured ZVE in simple shear
loading resulting in the diagonal load-carrying truss elements becoming thicker while the
horizontal and vertical truss elements vanishing immediately, obviously since they do not
carry load in this case.
Remark: As a proof of concept for the applicability of our two-scale approach to 3D

problems we consider the 3D-extension of the above uniform compression problem. For
the sake of demonstration we employ a three-dimensional (initially isotropic) bcc-type
meso-architecture of the ZVE. Here, the nine nodes of the truss network for the ZVE are
positioned at the corners of a unit cube and in its center and are connected by 20 truss
elements as showcased in Fig. 7. The macro-scale is discretised by a single tri-linear finite
elementwith the uniform surface load applied in horizontal direction by the sameprotocol
as in Fig. 4d. Fig. 7 displays the evolution of the (effective) nominal density ρ̄0 (panel a) and
the evolution of the underlyingmeso-architecture of theZVE into an anisotropic structure
(panel b). Obviously, the truss elements along the space diagonals and orthogonal to the
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Fig. 7 Uniform compression problem in 3D: (a) temporal evolution of the (effective) nominal density. (b) Temporal
evolution of the meso-architecture at t = 0, · · · , 8: the horizontal load-carrying truss elements become thicker
while the truss elements along the space diagonals and orthogonal to the load direction vanish over time since
eventually they do not carry any load

load direction vanish over time while those in load direction considerably increase their
cross-sectional area, resulting in the corresponding increase of ρ̄0 (panel a).

Proximal femur head

Here, the advocated two-scale approach is applied to a simplified bio-mechanical problem
byqualitatively analysing a two-dimensional section of a proximal femurhead.Themacro-
scale finite element mesh consists of 1988 bi-linear continuum elements with 2× 2 Gauss
quadrature rule and 2124 node points, see Fig. 8 (left). Consistent linearisation of the
averaged Piola stress resulting in Eq. (20) assures a quadratic rate of convergence for the
incremental-iterative Newton scheme with only a few iterations in each load increment.
Taken together, as a benefit of the severe geometric assumptions regarding the geometry
of the underlying trabecular structure, the computational burden of the advocated two-
scale approach remains slim.
Habitual daily loading at the femur head can be typified by three characteristic load cases

representing the mid-stance, extreme abduction, and extreme adduction phase of the gait
cycle. Here, since the accurate determination of the magnitude and spatio-temporal dis-
tribution of habitual daily loading as in Christen et al. [6] is not in the scope of this contri-
bution, the loads as detailed in Carter and Beaupré [2] are for simplicity simultaneously
applied as single forces at the corresponding node points of themacro-scale discretisation.
Obviously, a different mechanical load in terms of magnitude, direction, distribution and
location of application critically influences the resulting bone density distribution. The
following results are thus merely qualitative at this point and are thus intended to demon-
strate the overall applicability, performance and behaviour of the advocated two-scale
approach.
Again, the entirely phenomenological one-scale approach detailed in Schmidt et al. [40]

serves as reference. To this end, for the one-scale approach, the initial nominal density



Steinmann et al. AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:13 Page 14 of 21

Fig. 8 Proximal femur head: macro-scale boundary conditions and finite element mesh (left) and the initial
(effective) nominal density distribution (right). The cortical bone, i.e. the regions colored from red to yellow, is
modelled by the one-scale approach, the trabecular bone, i.e. the regions colored from green to blue, is either
modelled by the one-scale or the two-scale approach. For the latter the structured and unstructured ZVEs are
considered as displayed (middle)

Table 2 Proximal femur head: dimensionless parameters for the one- and two-scale approach (for
the one-scale approach we adopt the model detailed in Schmidt et al. [40])

Solid bone Young’s modulus Es 10000

Solid Poisson’s ratio νs 0.2

Solid bone density ρs
0 2

Initial nominal density ρ̄�
0 1.8-0.55

One-scale approach exponent m̄ 3

One-scale approach exponent n̄ 2

One-scale approach homogenisation exponent N̄ 2

One-scale approach remodelling velocity factor c̄ 1.2

One-scale approach attractor stimulus ψ̄a
0 0.0033

Two-scale approach remodelling velocity factor c 0.16

Two-scale approach attractor stimulus wa 0.0233

of macro-scale elements at the external boundary is set to ρ̄�
0 = 1.8 representing cortical

bone, and to ρ̄�
0 = 0.55 for the internal macro-scale elements representing cancellous

bone. A smooth transition zone between cortical bone, including the regions colored
from red to yellow in Fig. 8 (right), and cancellous bone, including the regions colored
from green to blue in Fig. 8 (right), is represented by a sigmoidal function. For the two-
scale approach only macro-scale quadrature points with an initial nominal density less
than ρ̄�

0 = 1, i.e. only the regions colored from green to blue in Fig. 8 (right), are assigned
a ZVE. For these, we again consider either the structured or the unstructured meso-scale
ZVE. Thus, macro-scale elements with relatively high initial nominal density representing
cortical bone are captured via the one-scale approach, whereas macro-scale elements
representing cancellous bone are described either via the one-scale or the novel two-
scale approach, thereby considering different ZVEs. The utilised set of dimensionless
parameters is given in Table 2.
The evolution of the (effective) nominal density distribution is highlighted for specific

simulation time points in Fig. 9. Note that at t = 0 the one-scale approach (top row)
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Fig. 9 Proximal femur head: (effective) nominal density at different time points using the one-scale approach (top
row), the two-scale approach with structured ZVE (second row), and the two-scale approach with unstructured
ZVE (last row)

and the two-scale approach using either the structured or the unstructured ZVE (second
and third row) have the same nominal bone density distribution. However, over time the
nominal bone density distribution starts deviating for the different one- and two-scale
approaches. Thereby, only small differences are apparent when comparing the results
of the two-scale approach with structured and unstructured ZVE in Fig. 9 (second and
third row). These minor differences are mainly evident in the highly loaded zone. Overall,
however, the (effective) nominal density distribution is pretty similar when comparing
the one- and two-scale approaches that consistently predict a slight relative increase in
(effective) nominal density in the highly loaded zone on the medial side and reduced bone
density in the femoral neck region. Likewise, the cortical bone shell at the boundary of the
femur head is predicted as similar.
Nevertheless, using the two-scale approach, we can not only analyse the evolution of the

(effective) nominal density, but also, as a virtual “magnifying glass”, the evolution of the
trabecular structures in the individual ZVEs. To this end, the evolution of the trabecular
structures at themeso-scale is exemplified at selectedquadrature points of themacro-scale
elements A and B, see Fig. 10.
As indicated by the distribution of the (effective) nominal density, macro-scale element

B is located in a less loaded region. The (effective) nominal density there decreases from
ρ̄�
0 = 0.5705 to ρ̄0(t = 100) ≈ 0.3959. Overall thus, the cross-sectional areas of the

trabeculae become smaller. Especially when using the structured ZVE, a uniform thinning
of the trabeculae over time is evident.
By contrast, when focusing on the macro-scale element A located in a highly loaded

region, the dominant load direction is clearly highlighted, as trabeculae lying in this direc-
tion become significantly thicker. However, this also entails a thinning of the trabeculae
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Fig. 10 Proximal femur head: temporal evolution of the trabecular structure. Structured ZVE at a quadrature point
of macro-scale element A highlighted in blue (top row) and of macro-scale element B highlighted in pink (second
row). Unstructured ZVE at a quadrature point of macro-scale element A highlighted in blue (third row) and at
macro-scale element B highlighted in pink (last row)

perpendicular to this principal loading direction. This effect is especially apparent in the
unstructured ZVE. Using the unstructured ZVE thus leads to an increase in (effective)
nominal density from ρ̄�

0 = 0.5503 up to ρ̄0(t = 100) ≈ 0.8030, whereas the (effective)
nominal density only results in ρ̄0(t = 100) ≈ 0.7867 when using the structured ZVE.

Summary and conclusion
Awell-established one-scale continuum bone remodelling framework is here extended to
a two-scale approach to account in a simple manner for the highly irregular structure of
cancellous bone at the meso-scale. The advocated two-scale approach relies on up- and
down-scaling without postulating scale-separation when defining the effective response
at the macro-scale as resulting from the meso-scale. Here, the rationale is to find a com-
promise between the prohibitive computational cost when globally resolving the detailed
trabecular meso-structure and the attempt to take the trabecular meso-structure into
account at least to a certain extent. As a result, we merely consider a zoom-in rather than
the common representative volume element. Moreover, within the ZVE the trabecular
structure at the meso-scale is idealised and thus severely simplified as a truss network.
The energy storage driven evolution of the trabecular cross-sectional area is a conse-
quence of lacking biological homeostasis due to mechanical over- or under-loading. The
novel two-scale approach was applied to an elementary uniform and a proximal femur
head benchmark problem. Therein, the two-scale approach proved capable to capture
the effective macro-scale changes as emerging from bone remodelling at the meso-scale
and helps understanding how the structure of the trabecular network affects the effective
macro-scale constitutive response. Noteworthy, in this approach anisotropy is a natural
outcome as depending on the regular or irregular structure of the trabecular network. Also
observe that neither the one-scale approach nor the novel two-scale approach is affected
by the widespread numerical checkerboard problem [43], and therefore no smoothing is
required in the postprocessing.
Similar to the established one-scale approach to continuumbone remodelling, the novel

two-scale approach enables analysing the evolution of the (effective) nominal bone density
as response to mechanical over- and under-loading. However, the proposed two-scale
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approach also allows analysing the evolution of the trabecular structure at the meso-
scale, which is deemed crucial to properly evaluate the quality of bone. As an example,
consider the evolution of the trabecular structure in the highly loaded macro-scale region
of the femur head benchmark. There, even though the effective nominal density is rather
high, the risk of a fracture cannot be precluded, since only the trabeculae in the dominant
directionof loadingbecome thicker,whereas the trabeculaeperpendicular to this direction
display reduced load-carrying capacity. Consequently, despite an overall high effective
bone density, the risk of a fracture is increased in case of a sudden change in load direction,
which can occur for example in the event of a side-ways fall.
Summarising, the proposed two-scale approach to bone remodelling is effective from

a modelling perspective, efficient from a computational perspective, and easily extend-
able, for example to take the bone cell responses at the cellular scale into account (we
will pursue a corresponding three-scale approach in a follow-up contribution, see also
Scheiner et al. [37], Martin et al. [25]). The present two-scale approach opens the door to
directly investigate and assess various trabecular structures at themeso-scale for the same
bone sample at the macro-scale. We thus believe that the proposed two-scale approach
provides a promising basis for further development and investigation. However, as of now
it still lacks quantitative assessment and can thus not readily translate into clinical prac-
tice. To achieve this, we will exploit in a larger collaborative effort medical data-sets for
identification and calibration of crucial parameters such as, for example, the here involved
meso-scale attractor stimulus.
Taken together, the added value of this contribution is indeed the proposed compu-

tationally highly efficient two-scale methodology coupling the discrete trabecular meso-
structure of cancellous bone with the evolution of the up-scaled nominal bone mass
density at the continuum macro-scale. In particular, even though we here considered
elementary truss networks representing the trabecular meso-structure for the sake of
computational efficiency and ease of analysis, our advocated two-scale approach is con-
ceptually entirely general and allows considering different meso-structures, including
realistic ones obtained from imaging. As an example, the reduction of μCT images to
their skeleton and subsequent discretization as a truss network is on our agenda, again
especially for its computational efficiency, and will constitute the topic of a separate con-
tribution. Likewise, extension to open- and/or closed-cell foam-like meso-structures is a
valid future possibility, however the increased geometrical complexity comes at elevated
computational costs.
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Appendix
Here, for the sake of completeness and in order to fix notation, we detail the underlying
kinematics of the truss network model employed as well as the derivation of the fourth-
order tangent stiffness tensor.

Kinematics of truss networks:Atruss network consists of a set of node pointsN (globally)
numbered by a = 1, · · · nnp connected by elements numbered by e = 1, · · · nel . The
coordinates and displacements of the node points are

Xa and ua ∀ a = 1, · · · nnp. (22)

Node points are assigned to elements via a connectivity list that reads

ce = [a, b] ∀ e = 1, · · · nel and a, b ∈ N . (23)

Then the element vectors of coordinates and displacements follow as

X e = [Xa\Xb] and ue = [ua\ub]. (24)

Here, for two first-order tensors (vectors) a ∈ R
d and b ∈ R

d the notation [a\b] ∈ R
2d

refers to a first-order tensor (vector) composed from a and b and mapping from R
2d to

R.
Next, with I the second-order unit tensor, we introduce the projection operator

J = [−I | + I ]. (25)

Here, for two second-order tensors A ∈ R
d × R

d and B ∈ R
d × R

d the notation [A|B] ∈
R
d × R

2d refers to a tensorial object composed from A and B and mapping from R
2d to

R
d .
Then the element length and director (a unit vector) follow as

Le = |J · X e| = |Xb − Xa| and de = J · X e/Le. (26)

The (engineering) strain in an element, i.e. the elongation of an element divided by its
original length, is constant and reads

εe = be · ue = de · [ub − ua]/Le. (27)

Here, the strain-displacement operator is defined as

be = de · J/Le = [−de \ + de]/Le. (28)

Note finally that [−de \ + de] · ue = de · [ub − ua].

Derivation of fourth-order tangent stiffness tensor: The ZVE tangent stiffness k together
with the linearised increments of nodal displacements du and nodal forces df are parti-
tioned according to the prescribed (boundary) nodal displacements at the ZVE boundary
and the retained (internal) nodal displacements within the ZVE, denoted as up and ur,
respectively, (see Fig. 3)

[
krr krp
kpr kpp

]
·
[
dur

dup

]
=

[
0

df p

]
. (29)
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Here, df p denotes the linearised increment of the nodal (reaction) forces at the prescribed
(boundary) nodes of the ZVE, the corresponding quantities at the retained (internal)
nodes are zero to maintain equilibrium. Then, the reduced tangent stiffness k̂ relating the
linearised increments of the prescribed nodal displacements dup and the corresponding
linearised increments of nodal forces df p at the ZVE boundary follows as

k̂ = kpp − kpr · [krr]−1 · krp so that k̂ · dup = df p (30)

With nodes a, b ∈ N b on the ZVE boundary, the reduced tangent stiffness k̂ as well as
dup and df p can be further partitioned into nodal contributions as

k̂ =

⎡

⎢⎢⎢⎢⎢⎣

k̂11 · · · k̂1b · · ·
...

. . .
...

. . .
k̂a1 · · · k̂ab · · ·
...

. . .
...

. . .

⎤

⎥⎥⎥⎥⎥⎦
, dup =

⎡

⎢⎢⎢⎢⎢⎣

du1
...

dub
...

⎤

⎥⎥⎥⎥⎥⎦
and df p =

⎡

⎢⎢⎢⎢⎢⎣

df 1
...

df a
...

⎤

⎥⎥⎥⎥⎥⎦
. (31)

Note that the nodal stiffness k̂ab ∈ R
d × R

d is a second-order tensor relating the
first-order tensors (vectors) dub ∈ R

d and df a ∈ R
d , thus

∑

b∈N b

k̂ab · dub = df a ∀ a ∈ N b. (32)

With this preliminary at hand, the linearised increment of the averaged Piola stress d〈P〉
follows as

d〈P〉 = 1
VZVE

∑

a∈N b

df a ⊗ Xa = 1
VZVE

∑

a∈N b

∑

b∈N b

[̂kab · dub
] ⊗ Xa. (33)

Substituting eventually dub = dF̄ · Xb renders the final expression

d〈P〉 =
⎡

⎣ 1
VZVE

∑

a∈N b

∑

b∈N b

k̂ab⊗ [Xa ⊗ Xb]

⎤

⎦ : dF̄ . (34)

Here, the expression in square brackets denotes the required fourth-order tangent stiffness
tensor 〈A〉.
Note the usage of the special dyadic product ⊗ of two second-order tensors defined as[a ⊗ B]

iJkL := aik BJL.
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