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Abstract 

This research paper presents a comprehensive methodology for analyzing wet 
clutches, focusing on their intricate thermomechanical behavior. The study com-
bines advanced encoding techniques, such as Principal Component Analysis (PCA), 
with metamodeling, to efficiently predict pressure and temperature distributions 
on friction surfaces. By parametrically varying input parameters and utilizing Finite 
Element Method (FEM) simulations, we generate a dataset comprising 200 simula-
tions, divided into training and testing sets. Our findings indicate that PCA encoding 
effectively reduces data dimensionality while preserving essential information. Notably, 
the study reveals that only a few PCA components are required for accurate encoding: 
two components for temperature distribution and pressure, and three components 
for heat flux density. We compare various metamodeling techniques, including Linear 
Regression, Decision Trees, Random Forest, Support Vector Regression, Gaussian Pro-
cesses, and Neural Networks. The results underscore the varying performance of these 
techniques, with Random Forest excelling in mechanical metamodeling and Neural 
Networks demonstrating superiority in thermal metamodeling.

Introduction
Motivation

Wet clutches are frequently employed in the automotive and industrial sectors to trans-
mit torque between rotating shafts. However, the thermomechanical behavior of wet 
clutches is intricate and influenced by various factors such as friction, wear, temperature, 
pressure, and fluid flow. Finite element simulation is a potent tool for modeling the per-
formance of wet clutches, yet it demands significant computational effort and time.

An alternative approach is metamodeling, which employs statistical models to approx-
imate the behavior of complex systems based on a set of input–output data pairs. Meta-
modeling is successfully applied to various engineering problems, including structural 
optimization, fluid dynamics, and heat transfer. The objective of this study is to explore 
the potential of metamodels in predicting the thermomechanical behavior of wet 
clutches and optimizing their design.
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The findings of this research can have practical implications for the design and analysis 
of wet clutches, as well as for the development of more efficient and sustainable energy 
systems. The utilization of metamodels to forecast the behavior of wet clutches saves 
time and resources, thereby contributing to the enhanced efficiency of clutches and, 
consequently, propulsion systems.

Related work

Thermo‑mechanical behavior and damage mechanisms

Since wet clutches often play a safety–critical role, a profound understanding of their 
damage mechanisms is of paramount importance. Damage to clutch components can be 
caused by mechanical loads, thermal overload, corrosion, erosion, and wear. Essentially, 
damage mechanisms can be categorized into two groups: long-term damage and sponta-
neous damage [1].

Long-term damage in wet clutches can result from continuous usage and the associ-
ated wear and tear of friction materials [2]. The number of shifting operations before 
damage or failure can sometimes reach several tens of thousands of shifts [3].

On the other hand, spontaneous damage in wet clutches can be caused by sudden load 
peaks or extreme operating conditions [1]. Since this phenomenon does not accumu-
late over time and occurs unexpectedly, it is particularly critical and safety-relevant, as 
a single engagement can jeopardize the safety of the entire system [4]. Typically, when 
using sintered friction linings, the damage mechanism of sinter transfer occurs. Sinter 
transfer represents a form of fretting and is caused by thermal overloading [5]. This leads 
to material transfer between the friction partners, resulting in an increase in the coef-
ficient of friction. Depending on the extent of this increase, different classes of damage 
can be distinguished [2]. In the case of organic friction linings, on the other hand, the 
phenomenon of hot spots occurs [4, 5]. The formation of hot spots is also attributed to 
an elevated temperature at the friction surface [5].

The formation of hot spots can be explained through the theory of thermoelastic insta-
bility (TEI). The frictional heat generated at the contact surfaces leads to a temperature 
increase in the friction plates, ultimately resulting in their thermal deformation. This 
thermal expansion of the material causes a change in the pressure distribution. Since the 
heat flow resulting from friction depends on the pressure distribution, thermal deforma-
tion also leads to a change in heat flow. Consequently, interrelationships and depend-
encies emerge between frictional heat and thermal deformation, forming a complex 
thermoelastic system. Beyond a certain sliding speed, the thermoelastic system behaves 
in an unstable manner, leading to very high local pressures and temperatures [6–9].

Finite Element Simulations of clutches

Finite Element Simulation models are crucial for clutch analysis and design. Historically, 
researchers like Kennedy and Ling [10] and Zagrodzki [11, 12] have employed these 
models to understand temperature distribution and thermal stresses in clutches. Further 
studies by Tirovic and Day [13], Zhao et al. [14], Hwang and Wu [15], and Abdullah et al. 
[16] expand on this, investigating factors like pressure distribution, friction materials, 
and heat flow.
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Belhocine and Abdullah [17] integrate Computational Fluid Dynamics (CFD) with 
Finite Element models, calculating heat transfer coefficients and iteratively analyz-
ing temperature and thermal stresses. Moghanlou and Googarchin [18] examine brake 
fatigue using a transient coupled thermomechanical Finite Element analysis. Wang and 
Zhang [19] explore wet clutches using a three-dimensional Finite Element model, incor-
porating the theory of thermoelastic instability.

Schneider et  al. [20] develop and validate through experiments a parametric two-
dimensional Finite Element model to study wet clutches during transient operations. 
Their model accounts for temperature and pressure distribution.

Surrogate modeling of FEM‑simulations

In the field of structural mechanics, Hoffer et al. [21] conduct a study comparing vari-
ous metamodeling methods, including both classical machine learning and deep learn-
ing, in three application cases involving plate deformation, beam bending, and block 
compression with specific input variables. Vurtur Badarinath et al. [22] explore the use 
of machine learning algorithms for directly estimating stress distribution in structures 
from real-time measurements, with artificial Neural Networks providing more accurate 
results. Nie et  al. [23] utilize Convolutional Neural Networks (CNN) to predict stress 
fields in two-dimensional linear elastic cantilever structures under external static loads, 
achieving lower prediction errors. Haghighat et al. [24] introduced a novel approach by 
incorporating momentum the balance and constitutive relations into Physics Informed 
Neural Networks (PINN) [25], enhancing its accuracy in modeling linear elasticity and 
extending its capabilities to nonlinear problems such as von Mises elastoplasticity. How-
ever, challenges arise in training PINN due to its multi-objective optimization nature 
and difficulties in handling problems with discontinuous solutions, as highlighted by the 
authors. Jeong et  al. [26]proposed a novel approach termed piecewise PINN, demon-
strating superior accuracy compared to conventional PINN for non-smooth benchmark 
problems. Their study also highlights the advantages of piecewise PINN in terms of 
computational efficiency and performance in both interpolation and extrapolation tasks 
when compared to deep neural network-based surrogate models trained on labeled data 
from finite element simulations. These findings suggest that deep learning models offer 
promise in structural design and topology optimization.

In the context of metal forming, D’Addona and Antonelli [27] examine hot forg-
ing optimization, considering uncertain factors. They use a Neural Network model as 
a replacement for finite element simulation, with promising results. Chan et  al. [28] 
develop an integrated methodology based on Finite Element Method (FEM) and Arti-
ficial Neural Networks (ANN) to approximate design parameter functions and evalu-
ate design performance, identifying optimal designs. Lorente et al. [29] combine FEM 
and ANN to optimize product designs in metal forming, achieving good estimates and 
potential real-time applications. Martínez-Martínez et  al. [30] develop a data-driven 
method to simulate breast tissue deformation in real-time for medical interventions, 
such as biopsies and radiation therapy planning.

For manufacturing process simulations, Mozaffar et  al. [31] develop a recurrent 
Neural Network structure for accurately predicting thermal histories in Directed 
Energy Deposition (DED) processes. Zobeiry and Humfeld [32] use physics-informed 
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Neural Networks to solve heat transfer problems in manufacturing and engineering 
applications, reducing computational time compared to trial-and-error finite element 
simulations. Kumar et  al. [33] introduce a data-driven approach to reduce compu-
tation time in predicting temperature fields in Powder Bed Fusion (PBF) processes. 
Abio et al. [34] explore metamodels in the process simulation of press-hardening steel 
sheets, significantly reducing computation time without compromising prediction 
accuracy. These studies showcase the potential of metamodeling in various engineer-
ing applications, offering faster and more efficient simulations.

In a related study, Schneider et  al. [35] delved into the critical analysis of multi-
plate clutches, emphasizing their pivotal role in safety–critical applications. The study 
addressed the challenges posed by spontaneous damage, particularly under high loads 
and temperatures, which can compromise the entire system’s functionality. To address 
the computational complexity of Finite Element Analysis (FEA) in predicting temper-
atures, the study explored the application of machine learning (ML) methods, includ-
ing polynomial regression, decision tree, support vector regressor, Gaussian process, 
and neural networks, as surrogate models. The evaluation focused on predicting max-
imum clutch temperature during a slip cycle under varying axial force, speed, and 
lining thickness. Results demonstrated the efficacy of ML approaches, with Gaussian 
process and backpropagation neural network emerging as the most promising meth-
ods, meeting the requirement for real-time predictions during operation.

Research objectives

This research paper is driven by several key objectives, aiming to advance our under-
standing of the thermomechanical behavior of wet clutches and to develop efficient 
predictive tools. The primary research objectives are as follows:

•	 To develop and assess effective data encoding techniques, specifically Principal 
Component Analysis (PCA), to transform high-dimensional simulation data into 
more compact, informative representations.

•	 To determine the optimal number of PCA components required for accurate 
encoding of temperature distribution, pressure, and heat flux density, which are 
crucial factors in clutch behavior analysis.

•	 To investigate and compare the performance of various metamodeling algorithms, 
including Linear Regression, Decision Trees, Random Forest, Support Vector 
Regression, Gaussian Processes, and Neural Networks, in modeling the mechani-
cal and thermal aspects of wet clutches.

•	 To develop robust metamodels capable of efficiently predicting pressure and tem-
perature distributions on friction surfaces, facilitating faster and more accurate 
thermomechanical simulations.

•	 To provide a valuable tool for engineers and researchers to analyze wet clutches, 
supporting the design and optimization of these components.

By addressing these research objectives, this study endeavors to enhance our ability 
to predict and analyze the thermomechanical behavior of wet multi-plate clutches, 
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offering valuable insights and practical applications in engineering and design. The 
overall procedure is illustrated in Fig. 1.

Background
Thermomechanical simulation of multi‑plate clutches

The thermal behavior of wet clutches has been discussed in previous work by Sch-
neider et al. [20]. The heat flow introduced into the clutch system originates from the 
transformation of the kinematic energy into thermal energy at the friction interfaces. 
The heat flow varies as a function of space and depends on both the radial distance 
from the axis of rotation and the local pressure. The resulting local heat flux q̇ for a 
given radial distance r from the axis of rotation is given by:

where µ is the friction value, ωrel is the relative rotational speed of the two friction inter-
faces, and p is the local contact pressure.

The applied heat flux dissipates both into the steel plate and the friction lining. 
Under the assumption that the heat flux absorbed by the lubricating film is negligible, 

(1)q̇(r) = µ · ωrel · r · p(r)

Fig. 1  Graphical representation of the general procedure
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the following thermal boundary condition can be used to describe the contact at the 
friction surfaces:

where �s and �f  are the thermal conductivities of the steel plate and the friction lining, 
and ∂Ts

∂z  and ∂Tf

∂z  are the temperature gradient in radial direction of the steel plate and the 
friction lining. Furthermore, the temperature of the two components must be the same 
at the contact interface, so the following must apply:

The thermal boundary condition for the contacts between the friction lining and 
the carrier plate is given by:

Within the individual components of the clutch, the thermal behavior can be 
described in cylindrical coordinates by the following heat conduction equation:

where ρi , ci and �i are the density, the specific heat capacity, and the heat conductivity of 
each single component. Furthermore, the components dissipate heat in the axial direc-
tion via the inner and outer carriers. For more detailed information, please refer to Sch-
neider et al. [20].

In order to compute the generated heat flux in Eq. 1, it is necessary to consider the 
mechanical behavior of the clutch in order to compute the pressure distribution in 
the friction surfaces. The total strain can be divided into a mechanical part εE and a 
thermal part εT , which results from the thermal expansion of the material:

with

where �L is the change of length, L0 is the initial length, �T  is the temperature dif-
ference, and α is the coefficient of thermal expansion.

Based on the computed strains, the stresses σ can be computed with the following 
equation:

(2)q̇ = �s ·
∂Ts

∂z
− �f ·

∂Tf

∂z

(3)Ts = Tf

(4)0 = �c ·
∂Tc

∂z
− �f ·

∂Tf

∂z

(5)Tc = Tf

(6)
ρi · ci

�i
·
∂Ti

∂t
=

∂2Ti

∂r2
+

1

r
·
∂Ti

∂r
+

∂2Ti

∂z2

(7)ε = εE + εT

(8)εE =
�L

L0

(9)εT = α ·�T
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Principal component analysis

Principal Component Analysis (PCA) is a widely used technique in data analysis and 
machine learning, particularly in the context of dimensionality reduction [36]. It 
addresses the challenge of dealing with high-dimensional datasets by transforming 
the data into a new coordinate system, where the dimensions (or features) are linearly 
uncorrelated, called principal components.

The fundamental idea behind PCA is to identify the directions in which the data varies 
the most and represent the data using these directions, or principal components, while 
discarding the least important directions. These principal components are ordered by 
the amount of variance they capture, with the first principal component capturing the 
maximum variance in the data, the second principal component capturing the second 
maximum variance, and so on [37].

By selecting a subset of the principal components that capture most of the variance 
in the data, PCA allows for dimensionality reduction while preserving as much infor-
mation as possible [38]. This reduction in dimensionality not only simplifies the dataset 
but also aids in visualization, interpretation, and computational efficiency in subsequent 
analysis tasks.

PCA achieves dimensionality reduction by performing a linear transformation of the 
original dataset onto a lower-dimensional subspace spanned by the principal compo-
nents. This transformation is accomplished through the computation of the eigenvectors 
and eigenvalues of the covariance matrix of the original dataset. The eigenvectors repre-
sent the directions of maximum variance, while the corresponding eigenvalues quantify 
the amount of variance along each eigenvector [37].

In summary, PCA offers a powerful tool for dimensionality reduction by identifying 
the most important patterns in high-dimensional data and representing them in a lower-
dimensional space. It finds applications in various fields, including image and signal pro-
cessing, pattern recognition, and data compression, where the ability to extract essential 
features from complex datasets is crucial for further analysis and decision-making. For 
further details, please refer to [36, 37].

Methodology
Data generation and preprocessing

As a basis for developing the surrogate model, the Finite Element Method (FEM) simula-
tion model developed by Schneider et al. [20] is employed. The model represents a two-
dimensional axisymmetric model of a wet clutch with 10 friction interfaces. The overall 
clutch system consists of 6 steel plates, 5 carrier plates, 10 friction pads, 1 pressure plate, 
and 1 reaction plate. The geometry of the described components is depicted in Fig. 2.

The model is parametrically developed in ANSYS APDL, allowing for variations in 
individual geometry, material properties, and loading parameters. The structure of the 
simulation model comprises two distinct parts. The first part encompasses the mechani-
cal aspects of the simulation, accounting for pressures and strains due to internal loads 
within the components. Factors such as axial force and temperature distribution are 

(10)σ = D · (εE + εT )
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considered. The second part addresses the thermal aspects of the simulation. Heat flows 
generated at the friction interfaces are determined based on the pressure distribution 
calculated in the first part. These heat flows subsequently serve as loads for the ther-
mal simulation. A transient thermal simulation is conducted to obtain the temperature 
distribution across the clutch. Upon completion of both simulation phases, an update 
of the clutch’s operating conditions is performed, including updates to the pressure and 
temperature distributions. This sequence represents a single time step and is iterated for 
the specified number of time steps, using the updated operating conditions as the initial 
state. A comprehensive depiction of the entire process flow is presented in Fig. 3.

The data generation process is facilitated using the Latin Hypercube Sampling method 
[39]. This sampling technique enables efficient and uniform distribution of data points 
across the entire parameter space. The limits of axial force and rotational speed are 
defined according to the specifications in Table 1. Multiple combinations are generated 
by combining different axial force and rotational speed values to cover a wide range of 
operating conditions. Each data point thus represents a unique combination of axial 
force and rotational speed. Figure 4 illustrates the applied load history.

For dataset creation, 200 simulations are conducted. This dataset is then divided into 
training and testing sets. The testing set encompasses data from 25 simulations, while 
the remaining data points are allocated to the training set. The aim of this partitioning is 
to evaluate the predictive quality of trained models for unseen cases.

Encoding

In order to utilize the simulation data for further analysis, the output values must be 
encoded in a suitable format that can be effectively processed by machine learning 
algorithms. As described in the preceding section, the simulation output consists of 
a value per node or per element, which, in the case of the current model, amounts to 
a minimum of 12,000 nodes and over 100 elements per load step. Due to the fact that 
values that are spatially close often exhibit correlations, the dataset contains a signifi-
cant amount of redundant information. Working with such high-dimensional data is 

0.39 

0.8 0.8 

5 

Ø
 6

3.
5 Ø

 6
8 

Ø
 7

0 
Ø

 1
04

 

Ø
 1

05
 

Ø
 1

08
.8

 

FA

Fig. 2  Geometric dimensions and mechanical boundary conditions [20]
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computationally intensive and can lead to poor model performance due to the curse 
of dimensionality [40].

To address these challenges, encoding techniques are employed to transform 
the raw simulation data into a more compact and informative representation. This 

Fig. 3  Flowchart for the simulation process [20]

Table 1  Boundaries of the varied input parameters

Parameter Lower bound Upper bound

Axial force in kN 9.292 37.168

Rotational speed in rpm 80 140
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process typically involves mapping the output values onto a lower-dimensional fea-
ture space, where key patterns and variations in the data can be more easily identified 
and captured.

In the present study, encoding temperature and pressure distributions is crucial 
for developing an accurate and efficient surrogate model for the thermomechani-
cal behavior of wet clutches. The encoded features are used as input for the machine 
learning algorithms employed in creating the surrogate model, allowing the model to 
capture the intricate relationships between the input features and the target output 
variables. Without appropriate encoding, the high-dimensional and intricate nature 
of the simulation data would hinder precise modeling and prediction of the system’s 
behavior.

Through this dimensionality reduction and encoding process, a concise representa-
tion of the temperature distribution within the clutch system is achieved. This reduces 
memory requirements and enables faster processing. These condensed representations 
of temperature distributions then serve as input for further analyses and metamodeling 
approaches, aimed at investigating intricate connections between temperature distribu-
tions and other properties of the clutch system.

The process of dimensional reduction and encoding is employed to transform the tem-
perature distribution data from the entire clutch system, originally consisting of 11,963 
FEM nodes, into a 256 × 256 matrix. This transformation allows us to represent the 
complex data with a significantly reduced number of values while preserving essential 
information. This process commences by extracting the temperature distribution within 
the individual components of the clutch system (steel plates, carrier plates, pads, etc.). 
To ensure uniform representation, the temperature distributions for all components are 
scaled to a predetermined format (256 × 256 matrix). This step is exemplified in Fig. 5.

Subsequently, each temperature distribution is transformed into a one-dimensional 
vector, followed by the application of Principal Component Analysis (PCA).

Principal Component Analysis (PCA) is a widely employed technique in dimensional-
ity reduction, commonly applied in various research domains [41]. The number of PCA 
components is a hyperparameter that requires further investigation. The objective is 
to effectively represent the temperature distribution within a component using a small 
number of values (e.g., fewer than 5). This process is illustrated in Fig. 6.

Fig. 4  Exemplary load pattern [20]
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If an encoding with n values is performed for each component, then the complete tem-
perature distribution of the clutch system can be represented using 23 * n components. 
When using a small number of PCA components (e.g., 3 components), the number of 
values required to represent the entire temperature distribution can be reduced by two 
orders of magnitude, from tens of thousands to fewer than a hundred values.

Considering that each clutch system consists of 23 components, the tempera-
ture distribution of each clutch yields 23 temperature distributions for the individual 

Fig. 5  Extraction of the temperature distribution of the individual components and transformation into a 
256 × 256 matrix

Fig. 6  Flattening of the temperature distribution of a single component, represented as a 256 × 256 matrix, 
into a 3 × 1 vector using principal component analysis (PCA)
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components. From the 175 FEM simulations used, each comprising 28 time steps, a total 
of 112,700 data points are available.

Prior to performing Principal Component Analysis, various preprocessing steps are 
applied. Initially, a further train-validation split is executed, dividing the training dataset 
described in "Data Generation and Preprocessing" section into a training dataset (70%) 
and a separate validation dataset (30%). The training dataset is used to perform PCA, 
while the validation dataset is independently utilized to evaluate the performance of 
PCA. Moreover, standardization is implemented by scaling the data to achieve an aver-
age of 0 and a standard deviation of 1. This step is crucial to ensure that all features are 
on the same scale and that no individual features dominate.

To validate the quality of the encoding, a reconstruction assessment is conducted, 
utilizing the reconstruction error, where the encoded data is transformed back into 
the original space, as a measure of the accuracy of the encoding. In this evaluation, the 
original temperature distribution is reconstructed using the reduced dimensionality 
and compared to the actual temperature distribution. This is achieved by applying the 
inverse transformation of the dimensionality reduction technique, followed by reversing 
the normalization process. The mean absolute error (MAE) and when possible the mean 
absolute percentage error (MAPE) is employed point-wise as a measure of the recon-
struction error.

In this research paper, we have opted to set a cumulative explained variance thresh-
old of 99.9% in our principal component analysis (PCA), despite the first component 
already explaining over 98% of the variance in the dataset. The substantial dominance of 
the first component (shown in "Encoding" section), explaining over 98% of the variance, 
suggests the presence of a dominant underlying structure or pattern in the data, poten-
tially indicating inherent correlations or trends. However, by setting a higher cumula-
tive explained variance threshold, such as 99.9%, we aim to capture even finer variations 
and nuances present in the dataset, beyond what is accounted for by the dominant first 
component alone. This decision reflects our commitment to maximizing the fidelity of 
the reduced-dimensional representation while accounting for potential minor variations 
that might be obscured by the dominance of the first component. Moreover, achieving 
a 99.9% cumulative explained variance is anticipated to yield a substantially reduced 
reconstruction error, indicating a more accurate representation of the original data and 
facilitating robust analyses and insights into its underlying structure.

A high accuracy in reconstructing the temperature pattern indicates that PCA encod-
ing is an effective representation method, enabling the compression of temperature data 
while preserving essential information. This lays the foundation for deploying the meta-
model to predict the thermal properties of the clutch system.

Surrogate modeling

The mechanical metamodel is built upon a methodology similar to that of the mechani-
cal component of the FEM simulation. The input variables consist of the temperature 
distribution from the previous time step and the currently applied axial force, while 
the contact pressure at the friction interfaces is generated as the metamodel’s output. 
However, unlike in the FEM analysis, the encoded variables (temperature distribution 
and contact pressure) are utilized as inputs and outputs of the metamodel to facilitate 
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efficient and rapid prediction of the contact pressure at the friction interfaces. The fun-
damental concept of the mechanical metamodel is illustrated in Fig. 7.

The thermal metamodel, following a parallel approach to the mechanical meta-
model, is based on a methodology similar to the thermal segment of the FEM simula-
tion. It employs the encoded heat flux density as an input, instead of the axial force, 
and produces the encoded temperature distribution for the subsequent load step as 
its output. Analogous to the mechanical metamodel, the encoded variables (heat flux 
density and temperature distribution) are employed as inputs and outputs of the ther-
mal metamodel, enabling efficient and swift forecasting of the updated temperature 
distribution. The central concept of the thermal metamodel is depicted in Fig. 8.

This study explores five distinct machine learning methodologies to formulate a 
surrogate model, each elucidated below with reference to Murphy [42] unless speci-
fied otherwise.

Polynomial Regression (PR): PR, a subset of linear regression, employs polyno-
mial functions for basis function expansion. The model utilizes higher-order polyno-
mials to capture non-linear relationships.

Decision Tree (DT): Decision trees divide the input space into distinct regions 
using the CART algorithm, forming a tree-like structure.

Support Vector Regression (SVR): SVR, a parametric model employing kernels, 
predicts outputs based on a subset of the training data. The model’s construction 
involves solving a constrained optimization problem to strike a balance between 
model flatness and tolerance for deviations larger than ϵ.

Gaussian Process (GP): GP, a non-parametric method, infers distributions over 
functions, especially advantageous when data is noise-free.

Backpropagation Neural Network (BPNN): Neural Networks, inspired by bio-
logical neurons, consist of interconnected units. The output h of a neuron is a linear 

Fig. 7  Inputs and outputs of the mechanical metamodel
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combination of inputs, subjected to a nonlinear activation function. The network, 
with architecture defined by W (weight matrix), b (bias vector), and φ (activation 
function), is trained using backpropagation to address specific problems.

The implementation of the metamodels is carried out using suitable program 
libraries and software tools that support machine learning and regression-based 
techniques. For the implementation of Linear Regression, Decision Trees, Random 
Forest, Support Vector Regression, and Gaussian Process, the Python library Scikit-
Learn [43] is utilized. The development of neural networks is facilitated using the 
Python library Tensorflow [44], developed by Google. For each model, the hyperpa-
rameters specified in Table 2 are examined and optimized.

For the validation of the metamodels, the existing data points of the training set, 
consisting of a total of 175 data points, are divided into a separate training and vali-
dation set (70%/30%). This step enables an objective evaluation of the metamodel 
performance and also serves for hyperparameter optimization. The validation set is 
used to determine the optimal hyperparameters.

Fig. 8  Inputs and outputs of the thermal metamodel
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Thermomechanical simulation

The thermomechanical simulation is an integrated process that combines the mechani-
cal metamodel and the thermal metamodel. This process is iterated for each time step, 
analogous to the FEM model outlined in "Data Generation and Preprocessing" section, 
with the updated results serving as input for the subsequent time step. This approach 
establishes a consistent coupling between temperature and mechanical load to model 
the thermomechanical effects within the clutch system. The entire simulation process is 
depicted in Fig. 9.

Initially, the initial temperature distribution is encoded using PCA to obtain an 
encoded temperature distribution. This encoded temperature distribution, along with 
the axial force of the current load step, is passed to the mechanical metamodel. The 
mechanical metamodel then produces the contact pressure at individual friction inter-
faces as encoded values. Subsequently, the encoded contact pressure is reconstructed 
using the stored PCA model, yielding the pressure for individual elements on the fric-
tion surface. With the reconstructed pressure, current rotational speed, and mean radius 
of the elements, the generated heat flux density can be calculated (see Eq. 1). This heat 
flux density is then encoded using PCA analysis.

The thermal metamodel employs the computed encoded heat flux density and the 
encoded temperature distribution to generate the updated encoded temperature distri-
bution. This updated encoded temperature distribution serves as the starting point for 
the mechanical simulation in the subsequent time step.

Results
The results section is structured to provide a comprehensive analysis of the encoding 
and metamodeling processes, as well as the subsequent thermomechanical simulations 
employing the developed metamodels. In "Encoding" section, we delve into the encoding 
phase, subdivided into "Temperature" and "Pressure" sections, focusing on the encod-
ing of temperature and pressure, respectively. Subsequently, "Metamodeling" section, 
addresses the metamodeling phase, which comprises the development and evaluation 

Table 2  Parameterraum der Hyperparameter

Model Hyperparameter Values

Linear Regression Polynom order 1,2,3

� 0, 0.1, 1, 10

Random Forest Number of trees 10, 50, 100, 250

Max depth 2, 4, 8, 16, none

SVR Kernel linear, poly, RBF

C 0.1, 1, 10

ε 0.01, 0.1, 1

Gaussian Process Kernel DotProduct, RationalQuadratic, RBF

α 1e−5, 1e−4, 1e−3, 1e−2

Neural Network Number of layers 2,4,6,8,10

Learning rate 1e−5, 1e−4, 1e−3, 1e−2, 1e−1

Activation function ReLu, Sigmoid, tanh
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of mechanical and thermal metamodels. Following the metamodeling phase, "Ther-
momechanical simulation using metamodels" section integrates these metamodels 
into thermomechanical simulations, examining their performance and shedding light 
on the intricacies of predicting temperature and pressure distributions in a simulated 
environment.

Encoding

Temperature

The findings regarding the encoding of temperature distribution are depicted in Fig. 10, 
which showcases both the Mean Absolute Percentage Error (MAPE) and the cumula-
tive explained variance concerning the number of Principal Component Analysis (PCA) 
components. This dual analysis offers complementary insights into the effectiveness 
of dimensionality reduction. As shown in Fig.  10, the cumulative explained variance 
increases with the number of PCA components, indicating the proportion of variance 
in the original data captured by the reduced-dimensional representation. Concurrently, 

Fig. 9  Flowchart for the simulation process with metamodels
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MAPE values demonstrate that an increase in the number of PCA components leads 
to an enhancement in reconstruction accuracy, both during the training and validation 
phases. The minimal MAPE values are attained with 5 components, although the most 
pronounced reduction in reconstruction error is observed at 2 PCA components.

Furthermore, the MAPE for the maximum temperature within the temperature dis-
tribution is examined as a function of the number of PCA components. The selection of 
maximum temperature stems from its pivotal role in thermomechanical simulation. The 
dependence on component count is depicted in Fig. 11.

Based on the overall MAPE (Fig. 10), the optimal component count would be two, as 
the relative error is already below 1%. MAPE values, while providing insight into recon-
struction accuracy, may not fully capture the trade-off between dimensionality reduc-
tion and accuracy. Therefore, the cumulative explained variance serves as a valuable 

Fig. 10  Relationship between the number of PCA components and the reconstruction error (MAPE) for 
temperature and the dependence of the cumulative explained variance on the number of components

Fig. 11  Relationship between the number of PCA components and the reconstruction error (MAPE) for 
maximum temperature
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complementary metric, offering a broader perspective on the overall efficacy of the PCA 
encoding technique. Considering the cumulative explained variance, the threshold of 
99.9% is attained with 3 components. This implies that 3 components capture a substan-
tial proportion of the variance in the temperature distribution, aligning with the objec-
tive of dimensionality reduction, while still preserving small variations in the data.

The fact that the first principal component already explains over 97% of the variance in 
the temperature distribution underscores the presence of a dominant underlying struc-
ture or pattern within the data. This dominance suggests that a substantial portion of the 
variability in temperature across different components of the wet clutch system can be 
captured by a single component. While this may initially imply that additional compo-
nents offer diminishing returns in terms of capturing variance, it’s essential to consider 
the broader context. Despite the dominance of the first component, utilizing additional 
components enables the model to capture finer variations and nuances that may not be 
fully captured by the dominant component alone. Therefore, while the first component 
explains a significant portion of the variance, the inclusion of additional components 
allows for a more nuanced and comprehensive representation of the temperature distri-
bution, ultimately enhancing the model’s predictive capabilities.

As a result, three PCA components are determined to be the optimal number for this 
analysis. To elucidate the outcomes, the original temperature distributions of the com-
ponents are juxtaposed with the PCA-reconstructed temperature distributions. Three 
illustrative examples are chosen for this purpose, as showcased in Fig. 12. Minimal dis-
crepancies are discernible in all three instances. This implies that the reconstructed tem-
perature distributions, utilizing merely 3 components, provide a accurate approximation 
of the original distributions. The results thus affirm the efficacy of PCA encoding in 
diminishing the dimensionality of temperature data, without compromising significant 
information.

Pressure

The examination of the results concerning the encoding of pressure is conducted 
through analysis of the Mean Absolute Percentage Error (MAPE) of reconstruction and 
the cumulative explained variance. Figure 13 illustrates the MAPE and the cumulative 
explained variance as a function of the number of Principal Component Analysis (PCA) 
components.

Remarkably, the cumulative explained variance associated with each PCA component 
reveals that even with just one component, over 98.7% of the variance in the pressure 
data is captured. This dominance of the first component underscores the presence of 
a strong underlying pattern within the pressure distribution. However, the inclusion of 
a second component further enhances the model’s ability to capture finer variations, 
resulting in a significant reduction in reconstruction error to under 1%. Additionally, it’s 
noteworthy that the achieved relative error is consistently below 1% with two compo-
nents and remains below 0.5% with three components. The reduction from three to four 
and from four to five components shows only marginal improvement.

Moreover, the stability of the MAPE when transitioning from two to three components 
suggests that the additional explanatory power gained by including a third component 
may be limited. This observation aligns with the cumulative explained variance, which 
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Fig. 12  Original and reconstructed temperature distributions using three PCA components

Fig. 13  Dependence of the reconstruction error (MAPE) for pressing and the cumulative explained variance 
on the number of PCA components
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indicates that over 99.9% of the variance is explained by just three components. There-
fore, employing only two PCA components appears to be sufficient to achieve accurate 
compression reconstruction while effectively reducing dimensionality.

Heat flux

The outcomes of the heat flux density analysis are depicted in Fig. 14. The reconstruc-
tion error (MAE) and the cumulative explained variance are presented as a function of 
the number of components. Considering the use of MAE instead of MAPE, this decision 
arises from the nature of the data, where true values include zeros, rendering the MAPE 
metric not well-defined.

Examining the cumulative explained variance associated with each PCA component 
reveals that, with only one component, over 99.79% of the variance in the heat flux den-
sity data is captured. This underscores the dominant influence of the first component in 
representing the underlying patterns in the data. However, the addition of a second and 
third component further contributes to capturing finer variations in the heat flux density 
distribution, leading to notable improvements in reconstruction accuracy.

Examining the cumulative explained variance associated with each PCA component 
reveals that, with only one component, over 99.79% of the variance in the heat flux den-
sity data is captured. This underscores the dominant influence of the first component 
in representing the underlying patterns in the data. However, the addition of a second 
and third component further contributes to capturing finer variations in the heat flux 
density distribution, leading to notable improvements in reconstruction accuracy. Ini-
tially, with only one or two components, the error remains relatively high, indicative of 
incomplete reconstruction of heat flux density. However, a substantial improvement is 
observed upon employing three components, where the error is halved compared to 
previous configurations, suggesting that the addition of a third component enhances the 
reconstruction accuracy significantly. Notably, the error is halved again with the inclu-
sion of a fourth component, indicating diminishing returns as the number of compo-
nents increases. This suggests that while increasing the number of components enhances 
accuracy, the benefit diminishes.

Fig. 14  Dependence of the reconstruction error (MAE) for the heat flux density on the number of PCA 
components
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The preceding sections have demonstrated that encoding temperature distribution 
using Principal Component Analysis (PCA) is an effective method to transform com-
plex and extensive data into more compact representations. Reconstruction accuracy 
improves with an increasing number of PCA components, with the reconstruction error 
achieved with five components.

For both temperature distribution and heat flux density encoding, it is observed that 
the use of three PCA components suffices to achieve good reconstruction and capture 
at least 99.9% of the variance in the data. Further increasing the component count yields 
only minor improvements in reconstruction accuracy. A relative error below 1% for 
the temperature is already achieved with three components, which can be considered 
acceptable given the magnitude of compression. Regarding the encoding of the pressure, 
the use of two components leads to satisfactory results, with MAPE values of under 1%. 
Further increasing the number of components results in diminishing returns.

Metamodeling

Mechanical metamodel

The results of the mechanical metamodel are compared based on the Mean Absolute 
Error (MAE) of the encoded pressure on the friction surfaces, as shown in Table 3.

Linear Regression achieves an MAE of 0.3399 for training and 0.3138 for validation. 
However, these values indicate that the model’s performance may not meet the desired 
level of accuracy. The small difference between training and validation values does not 
necessarily suggest generalization ability, as the model’s overall predictive capability 
appears to be limited. Further investigation and refinement may be necessary to improve 
the performance of the Linear Regression model. The Random Forest model achieves a 
very low MAE of 0.0194 for training but shows a slightly higher inaccuracy of 0.0515 for 
validation, indicating a possible overfitting.

The Support Vector Regression (SVR) model achieves an MAE of 0.2821 for train-
ing and 0.2183 for validation, demonstrating good performance and a smaller deviation 
between training and validation values. The Gaussian Process model achieves an MAE 
of 0.1794 for training and 0.2004 for validation, indicating a good fit to the data with low 
deviation between training and validation values. The Neural Network achieves an MAE 
of 0.4031 for training and 0.3784 for validation. Despite the high validation results, the 
small difference between training and validation values suggests some robustness.

Overall, the results indicate that the Random Forest, despite overfitting, and the 
Gaussian Process perform the best, while the Neural Network yields the poorest results. 
The results show that the Random Forest algorithm performs the best among the tested 

Table 3  MAE for training and test set for the individual mechanical metamodels

Model MAE—Training MAE—Validation

Lineare Regression 0.3399 0.3138

Random Forest 0.0194 0.0515

SVR 0.2821 0.2183

Gaussian Process 0.1794 0.2004

Neural Network 0.4031 0.3784
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models, possibly due to its ability to capture complex nonlinear relationships while han-
dling the available data effectively. By combining multiple decision trees, the Random 
Forest can explain high variance and avoid overfitting, leading to accurate predictions. 
The Gaussian Process model and Support Vector Regression (SVR) also deliver good 
results. However, both models have the drawback of long training times. In comparison, 
Linear Regression yields high error values compared to other models. This is because 
Linear Regression assumes a simple linear relationship between input parameters and 
clutch temperature, potentially not capturing the complex nonlinear relationships and 
dependencies in the data adequately. The Neural Network shows the poorest perfor-
mance among the tested models, possibly because it is either too complex for the avail-
able data or not adequately trained. Further optimization of the network architecture 
and hyperparameters could lead to improved results.

Thermal metamodel

The thermal metamodel is trained and validated using the same algorithms as the 
mechanical metamodel. The results of these models are presented in Table 4. Examin-
ing the results, it becomes evident that the Neural Network exhibits the lowest Mean 
Absolute Error (MAE) in both training and validation, making it the best-performing 
model among those considered. The Random Forest algorithm also demonstrates good 
predictive performance with a low MAE in training, although it is slightly higher in vali-
dation. The other models, such as Linear Regression, Support Vector Regression (SVR), 
and Gaussian Process, also yield acceptable results, albeit with somewhat higher MAE 
values. Overall, the thermal metamodel can predict temperature distribution with a rea-
sonable level of accuracy, making it a valuable method for the analysis and optimization 
of thermomechanical systems.

The results of the different algorithms exhibit varying performances in predicting the 
thermomechanical behavior of wet clutch systems. The Neural Network achieves the 
best results with the lowest MAE values in both training and validation, suggesting that 
it is effective in modeling complex nonlinear relationships between input parameters 
and clutch temperature. The diverse performances of the algorithms can be attributed 
to their ability to model complex relationships and handle nonlinearities. Models such as 
the Neural Network, Gaussian Process, and SVR are known for their capacity to model 
nonlinear relationships and make precise predictions. In contrast, Linear Regression and 
the Random Forest may be less accurate due to their limited ability to model nonlinear 
relationships.

Table 4  MAE for training and test set for the individual thermal metamodels

Model MAE—Training MAE—Validation

Lineare Regression 0.8003 0.8531

Random Forest 0.3661 0.9651

SVR 0.7439 0.7322

Gaussian Process 0.4491 0.4224

Neural Network 0.3011 0.3908
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Thermomechanical simulation using metamodels

Figure 15 displays the overall Mean Absolute Error (MAE) for each time step of the sim-
ulation. The general MAE error indicates how much the predicted temperature deviates 
from the temperature simulated using the Finite Element Method (FEM) at each point. 
Additionally, the deviation of the maximum temperature in the clutch system is exam-
ined in detail.

Overall, it is evident that the general MAE error remains below 10 K for all time steps. 
However, the error’s pattern in relation to time steps is not constant; slight fluctuations 
are observable. Peaks in the MAE error occur at time steps 5, 14, and 23. For all other 
time steps, the average overall error is less than 5 K. When examining the deviation of 
the maximum temperature, significantly stronger deviations are apparent. The curve’s 
pattern, like the overall error, contains fluctuations but with much more pronounced 
peaks, all exceeding 15 K and reaching up to 27 K at certain time steps.

Observing the MAE per load step and comparing its pattern with the applied load pro-
file, it becomes apparent that the MAE error peaks occur at specific time steps and coin-
cide with load spikes in the load profile. This suggests that the predictive accuracy of the 
models depends on the specific load situations. When the clutch is subjected to particu-
lar loads, for example, during the time steps with peaks in the error, the models seem to 
have difficulty accurately predicting the actual temperatures.

This observation can be attributed to various factors. Firstly, the models may not 
precisely capture the nonlinear and complex relationships between the loads and tem-
perature distributions during such load spikes. In these situations, phenomena that go 
beyond the model may occur, leading to larger discrepancies. Furthermore, the input 
data used can also play a role. Results may improve if additional data points from high-
load situations are added to the training set.

Figure  16 compares the simulated and predicted temperature distributions for four 
load steps with two different load profiles. The figure presents both the results of the 
Finite Element Method (FEM) simulation and the results of the metamodeling. It 
becomes evident that for all four steps, there is a notable similarity between the FEM 
results and the metamodeling results, with hardly any visual differences.

Fig. 15  Mean Absolute Error (MAE) across all simulations, depicting the disparity between predicted and 
simulated temperatures at each time step of the simulation
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Discussion/conclusion
In this work, a method for encoding and metamodeling a thermomechanical system 
to analyze the thermomechanical behavior of wet clutches is developed. By combining 
mechanical and thermal metamodels, efficient and rapid prediction of pressure and 
temperature distribution on the friction surfaces is enabled. Encoding temperature 
distribution, pressure, and heat flux density using PCA results in effective dimension-
ality reduction and precise data reconstruction. Various metamodeling techniques 
such as Linear Regression, Decision Trees, Random Forest, SVR, Gaussian Processes, 
and Neural Networks are examined and compared.

The results show that PCA encoding is an effective method for reducing data dimen-
sionality. Particularly in encoding temperature distribution, good reconstruction can 

Fig. 16  Comparison between the FEM solution and the prediction using metamodels (Axial force 13,400 kN 
/ Rotational speed 126 rpm)
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be achieved with just a few PCA components. It is found that using two PCA compo-
nents is sufficient for encoding temperature distribution or pressure effectively, while 
three PCA components are determined to be optimal for heat flux density.

Metamodeling with different algorithms demonstrates varying performance, with the 
best results achieved using Random Forest for the mechanical and Neural Networks for the 
thermal metamodel. Validation of the metamodels yields high accuracy, showcasing their 
ability to model both mechanical and thermal relationships.

Overall, the developed metamodels represent a promising tool to support the design and 
analysis of wet clutches. A promising avenue for future research in this field includes inves-
tigating the influence of data volume on metamodel performance. It would be interesting 
to see how the prediction accuracy of the models improves with a larger amount of train-
ing data and whether there is a point at which adding more data no longer has a significant 
impact.

Another aspect that could be explored is the integration of additional input parameters 
into the metamodels. Factors such as plate thickness or thermal conductivity could play a 
role and impact the thermomechanical behavior of clutches. Considering these parameters 
could further enhance prediction accuracy. Additionally, testing alternative methods such 
as Physics Informed Neural Networks may be interesting. These approaches allow for the 
integration of physical laws and principles into Neural Network structures. By combining 
machine learning with physical knowledge, modeling accuracy could be further enhanced.
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