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Abstract

The simulation of magnetic bearings involves highly non-linear physics, with high
dependency on the input variation. Moreover, such a simulation is time consuming and
can’t run, within realistic computation time for control purposes, when using classical
computation methods. On the other hand, classical model reduction techniques fail to
achieve the required precision within the allowed computation window. To address
this complexity, this work proposes a combination of physics-based computing
methods, model reduction techniques and machine learning algorithms, to tackle the
requirements. The physical model used to represent the magnetic bearing is the
classical Cauer Ladder Network method, while the model reduction technique is
applied on the error of the physical model’s solution. Later on, in the latent space a
machine learning algorithm is used to predict the evolution of the correction in the
latent space. The results show an improvement of the solution without scarifying the
computation time. The solution is computed in almost real-time (few milliseconds), and
compared to the finite element reference solution.

Keywords: Spectral method, Reduced basis, Machine learning, Magnetic bearing,
Magnetic levitation, Long-short term memory

Introduction
Recent development and democratization of the available toolbox in machine learning
techniquesmade their use increasingly popular.Thus, they become increasingly popular in
engineering applications [1–4]. However, in multiple engineering systems and processes,
data is expensive and hard to generate. Therefore, the ability to solely rely on data-driven
techniques to generate representative models is hindered. Thus, many recent efforts aim
to combine the basic principles and physical knowledge with data-driven methods [5–9].
Some of these works aim to use thermodynamics principles [10–13], while others tend to
improve or correct a simulation by infusing additional information coming fromdata [14–
16]. The result is the so called hybrid twin, or physics-aware digital twin, a combination
of scientific knowledge, enhanced with machine learning techniques [17–20]. Gaussian
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processes are also used to model data and include experimental variability into physical
models [21,22].
In this work, we propose a novel digital twin building technique, based on the com-

bination of a spectral approximation, similar to the one used in the Proper Orthogonal
Decomposition method, and a time-dependent integrator based on machine learning
algorithms. Similar methods already tried to combine the use of spectral decomposi-
tion with machine learning. For example, in [23], the authors built a machine learning
method in the spectral domain, by aiming to change the eigenvalues and eigenvectors of
the transfer operator in the direct space. This approach manipulates a matrix operator, in
its eigenvalues/eigenvectors space; to adapt the solution and fit it to the measurements.
In [24], the author uses a spectral decomposition of the input image before running a
convolution neural network, to achieve a reduction in the memory requirements. The
authors in [25,26] propose a deep learning algorithm to map or transform the reduced
basis, allowing them to adapt their reduced basis to novel use cases. POD-Galerkin PINN
ROM was proposed in [27] to tackle the Navier–Stokes problem. The method proposed
here is different from the aforementioned ones available in the literature. The proposed
method uses a weight prediction based on the basis decomposition [28]. This work how-
ever operates on the error of the quantities of interest and not the full fields. The spectral
neural network takes as input the errors of the physical quantities of interest, as well as
the inputs of the model, to built a correction, based on the re-weighing of the correction’s
reduced basis, built a priori. The correction basis is build using the PODmethod [29]. The
aim of this work is to propose a hybrid modeling enhancing the available state of the art
industrial simulation while conserving the same computation time.
The selected showcased industrial application in this work corresponds to the case of

magnetic bearings.Magnetic bearings are used since several years to levitate heavy rotating
shafts in critical machines. These bearings have the ability to perform quasi indefinitely
since no contamination, no lubrication, no contact, and no friction are exhibited [30].
Moreover, losses by friction are totally suppressed,while rolling resistance is tremendously
reduced, leading to potentially very high rotation speed [31]. Despite all these advantages,
activemagnetic bearings are only used on heavy equipment as they require external energy
source to generate the levitation through magnetic fields. Moreover, the control of active
magnetic bearings requires a feedback every few microseconds to achieve effective shaft
positioning and active suppression of vibrations. The possibility of enhancing this control
through simulation-based control is currently being investigated. However, such a control
would require a simulation running within few microseconds. Multiple previous efforts
aim to model the magnetic bearings using either analytical methods, numerical methods
or data driven techniques [32–34]. Thus, this work proposes a novel technique coupling
model reduction, physics based methods and advanced machine learning algorithms to
tackle the simulation time requirement.
When it comes to the simulation of magnetic fields, especially in the context of rotors

and stators, model reduction was used on several cases to create fast simulations [35].
However, to the best knowledge of the authors, there has been no hybrid modeling,
combining scientific knowledge to data-driven techniques, in the context of creating a
digital twin for active magnetic bearings simulation in real-time.
The work starts in Sect. ’Review of the used physical modeling’ by reviewing the used

physicalmodelingof theprocess basedon theCauerLadderNetworkmethod [36–38].The
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Fig. 1 A schematic drawing of the magnetic levitation bearing in use

CauerLadderNetworkmethod replaces a full physical-spacefinite element problemwith a
sequenceof resistors and self inductance, transforming the simulation into a reducedorder
model problem, based on an equivalent electric circuit model to solve. Section ’Hybrid
twin construction’ introduces the data-drivenmethod and the coupling between this data-
driven technique and the physical model. Section ’Application to the magnetic bearings
modelling’s quantities of interest’ shows the selected application, the results, and discusses
the strong andweak points of themethod. Thework uses the finite element solution as the
ground truth because of missing experimental measurements, the same algorithm can be
used to built hybrid modeling with experimental results as ground truth when available.
The work ends with some conclusions in Sect. ’Discussion and conclusions’.

Review of the used physical modeling
In this section we review the physical modeling of a magnetic bearing. The studied prob-
lem represents a single coil toy-model used to showcase the numerical technique. The
schematic drawing of the coil is shown in Fig. 1.We can see in this figure the coil, which is
used to create a magnetic field, leading to the levitation of the steel shaft on top of the coil.
A small air gap is to be modeled with high precision to achieve a high fidelity solution.

Maxwell’s equations

The problem to solve is the nonlinearmagneto-quasistatic problem, a realistic assumption
in the framework of magnetic bearings for industrial application, which simplifies much
the full order model computation. In these settings, we consider the Maxwell’s equations
while neglecting the displacement current, i.e.:

∇ × H = Jind + iN (1)

∇ × E = −∂B
∂t

(2)

∇ · B = 0 (3)

∇ · J = 0 (4)

whereB is themagnetic flux density,H themagnetic field, Jind the eddy current density,N
a unit current density vector and i is the current flowing through the coil. The constitutive
laws give us that:
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Jind = σE (5)

B = μ(H)H (6)

Note that the electric conductivity σ �= 0 only in the steel shaft, because we assume that
the stator is laminated.
To solve this problem, we use a A∗-formulation, then a magnetic vector potential A is

introduced such that:

B = ∇ × A and E = −∂A
∂t

. (7)

In order to impose a voltage in the electrical coil winding, we consider the circuit
equation:

dφ

dt
+ Ri = U with φ =

∫
�coil

A · N dx, (8)

where R is the resistance of the coil and φ the magnetic flux. The complete problem is
then written as:⎧⎪⎨

⎪⎩
∇ ×

(
1
μ
∇ × A

)
+ σ

∂A
∂t

− iN = 0

dφ

dt
+ Ri = U

(9)

U being the imposed electric tension of themagnetic bearing’s coil. Aswe are addressing
a 2D in-plane problem for the sake of simplicity, the potential A is reduced to a scalar
representing only the out of plane component of A. At the boundary of the domain, we
impose a homogeneous Dirichlet boundary condition.
The electromagnetic force is computed using the Maxwell’s tensor Eq. [39], i.e.:

Force =
∫

�Force

1
2μ0

‖B‖2n + 1
μ0

(B · n)B dx, (10)

where the line domain�Force (included in the air) encloses themoving part,n is the normal
to this line. Finally, μ0 is the magnetic permeability of the empty space.

Constructing a reference solution using finite element

In the first part of this work, we use the finite element method (FE) to solve the Eq. (9),
which will lead us to a reference solution. The reference solution is used later on as our
target solution. We can see in Fig. 2 the adaptive mesh used for the FE discretization,
which is refined near the airgap and in the conductive part to take into account the eddy
currents.
The FE solution is computed in the 2D domain in a square of dimensions 700 × 700

mm, with an air box of 250mm around the simulated magnetic bearing.
The transient finite element solution is computed for 14 different time variations of

the input electric potential U , using 14 different control use cases. We know that PWM
exacerbates the eddy current, then to have some example with many eddy currents we
implement a simple p-controller with saturation to control the voltage and get as a set
point the magnetic flux.
The available use-cases are illustrated in table 1. One of the finite elements solutions is

shown in Fig. 3, for illustrative purposes. In 3(a) we illustrate the out of plane component
of the magnetic vector potential Az , which, for sake of simplicity, will be referred as A for
the rest of this work. Moreover, in 3(b) we illustrate the magnitude of the magnetic flux
density ‖B‖.
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Fig. 2 The adopted mesh considered for the high fidelity finite element simulation of the magnetic levitation
bearing

Table 1 A review of the available use cases in this work

Use case Tension Amplitude Shape form Frequency Train/Test

1 40V Ramp None Train

2 40V Sin 1Hz Train

3 40V Sin 5Hz Train

4 40V Step None Train

5 70V Vdc 3Hz Train

6 100V Double step None Train

7 100V Vdc 6Hz Train

8 100V Vdc+step None Train

9 300V Double step None Train

10 300V Vdc 3Hz Train

11 100V Vdc+slope 3Hz Test

12 300V Vdc 5Hz Test

13 300V Vdc+slope 6Hz Test

14 300V Vdc+step None Test

Fig. 3 A finite element solution for a selected use case solved in a time domain t ∈ [0; 5]s, and illustrated at
t = 5s in this figure

A fast physics-based modeled solution

Recent developments in the simulation of magnetic fields generated by coils have lead to
the creation of a novel simulation technique based on the use of spectral, mode shape
based, representation. This method is currently known by the name of Cauer Ladder
Network Method [36–38]. The method consists in assuming that A can be written in a
separated form using:
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A =
nq∑
q=1

cqaq(x, y) (11)

where nq is the number of selected layers in the ladder Network representation, cq is
a constant to compute, equal to the current in the equivalent circuit, and aq are the
orthogonal basis representation vectors. In this work, the presented results are shown for
nq = 8, as beyond nq = 8 it is observed that the results do not improve anymore in the
selected use case. To compute aq and cq we use the matrix formulationmethod presented
in [38]. The method produces an electric circuit of several (R, L) branches, where R is a
resistance and L denotes an inductance. The current intensity in each branch of the ladder
Network is noted cj and will be used later as input for the correction of the results. An
example of the equivalent Cauer ladder network is shown in Fig. 4.
We note:

K =
∫

ν(AREF)∇ × wi · ∇ × wj dx

S =
∫

σwiwj dx (12)

where AREF corresponds to the solution of a magnetostatic problem with i = 15 (that
corresponds to the first equation of (9) with σ = 0). In fact, this term is used to construct
the Cauer Ladder Network, that is linear, near a saturation operating point, in order to
obtain a linear model as close as possible to the exact nonlinear model. Algorithm 1
describes how he Cauer network is built.

Algorithm 1: Algorithm for determining the coefficients of the Cauer network
Result: ai, Li, Ri for 1 ≤ i ≤ nq
R1 = 1
a1 = K−1N
L1 = at1Ka1
e1 = 0
for i = 2 : nq do

ei+1 = ei − ai
Li

Ri+1 = 1
eti+1Sei+1

ai+1 = K−1 (Ri+1Sei+1 + Kai)
Li+1 = ati+1Kai+1

end
R1 = resistor of the coil

The Cauer Ladder Network solution of the selected use case is shown in Fig. 5 when
using eight ladder circuits (i.e. nq = 8). Is it noted that further increase of the number
of Cauer Ladder circuits nq would no longer improve the solution considerably. We can
clearly note a similar trend as for the finite element solution shown in Fig. 3, especially for
the A field, but the B field seems to show large differences, especially when it comes to the
in-depth penetration of the magnetic field.
The Cauer Ladder NetworkMethod is an excellent method to simulate linear problems

and linear dependencies. However, in highly nonlinear problems exhibiting large eddy
currents and magnetic saturation, like the one showcased in this work, its prediction
power degrades dramatically with respect to the reference solution.



Ghnatios et al. AdvancedModeling and Simulation in Engineering Sciences           (2024) 11:3 Page 7 of 15

Fig. 4 A equivalent Cauer ladder network with nq = 3

Fig. 5 A Cauer Ladder Network Method solution for the same selected use case shown in Fig. 3, computed for
t ∈ [0; 5]s and illustrated at t = 5s

Hybrid twin construction
This section aims at building-up a hybrid twin capable of improving the fast physics-based
model presented in Sect. ’A fast physics-basedmodeled solution’. Themain driving reason
to consider an improvement of the Cauer Ladder NetworkMethod is its ability to capture
a large part of the solution within a fraction of a second per time step, using a standard
PC.
To start the hybridmodeling of themagnetic levitation, we first compute a reduced basis

of the error, using only 10 out of the 14 available simulations in the database. To compute
the reduced basis, we use the traditional Proper Orthogonal Decomposition technique.
Thus, the solution errors in the physical space (x, y), are placed, at every time-step, as a
vectors in a large matrix of error snapshots X. For instance:

Cj = AFEM
j − ACauer

j , j = 1, · · · , 6

X =

⎡
⎢⎢⎢⎣

...
...

...
C1 C2 · · · C6
...

...
...

⎤
⎥⎥⎥⎦ .

(13)

withAFEM
j the finite elementmethod’s solution at time step j andACauer

j the Cauer Ladder
Network’s one. Later on, a singular value decomposition (SVD) is used to select the most
relevant singular vectors of the solution. For instance, we can note:

[V,�,T] = SVD(X) (14)

V is thematrix of space singular vectors, the diagonal of thematrix� contains the sorted
decreasing singular values λk , whileT contains the time vector basis. The selected reduced
basis vectors Vk of space variation of the solution are selected using all k satisfying:
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λk
λ1

> ε, (15)

where ε is a tolerance value. In this use case, the tolerance is set to ε = 10−4. This tolerance
has lead to the use of approximately 120 vectors Vi in the correction’s reduced space. The
correction term C is now supposed to have the form:

C =
n∑

k=1
αk (t)Vk, (16)

with n = 120 the number of vectors in the reduced basis, and αi are the reduced coordi-
nates, or the weights of the reduced basis vectors Vk .
To efficiently compute αi within a very limited time, and possibly in a non-incremental

manner, αi are supposed to be the output of a surrogate model H built using neural
networks. To take into consideration the memory effect of the solution, depending on
previous inputs/outputs of the system, the surrogate model H uses a memory layer. For
instance, the time dependency of the solution on previous inputs/outputs combination is
accounted for using aLong-shortTermMemory layer (LSTMlayer) [40]. Theuse of LSTM
requires the input to have several time-steps, and not only the current one. The inputs
of the surrogate model are in fact the imposed electrical tension U , the computed Cauer
Ladder Network currents in the eight branches cj for j = 1, · · · , 8, the Cauer computed
force F , the magnetic flux φ, and the time t. The force F and the magnetic flux φ are
our global quantities of interest computed from a post-processing of the Cauer Ladder
Network’s solution ACauer . All these inputs are given in the form of the last κ time-steps,
such as at every time step i we can write:

αi = H

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

Ui
Ui−1
...

Ui−κ+1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

Fi
Fi−1
...

Fi−κ+1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

φi
φi−1
...

φi−κ+1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

ti
ti−1
...

ti−κ+1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

c1i
c1i−1
...

c1i−κ+1

⎞
⎟⎟⎟⎟⎠ , · · · ,

⎛
⎜⎜⎜⎜⎝

c8i
c8i−1
...

c8i−κ+1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

(17)

Using this notation, we accept that the first κ time steps will not be corrected, and the
correction will only start after κ time steps are computed. In the selected surrogate model
H, a single dense fully connected layer follows the LSTM layer and outputs the n required
values in the α vector, at every time step. One should note that the inputs of the surrogate
model depend only on the Cauer Ladder Network solution and not on the correction
itself. Thus, all αi for all time steps can be computed simultaneously.
The surrogate modelH is named a spectral network. In fact, as previously explained, it

uses the spectral decomposition of the field, through a singular value decomposition, and
reconstructs the solution in a form of a reduced order model. The weights are predicted
as a function of the current and previous time inputs, while fixing the reduced basis of the
approximation V.

Remark 1 The corrected solution is finally computed such as:

Acorrected = ACauer +
n∑

k=1
αk (t)Vk, (18)
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Fig. 6 Corrected hybrid model solution for the same selected use case shown in Fig. 3, illustrated at t = 5s

however, since αk (t) is nonlinear as a function of global quantities computed usingACauer ,
the correction is nonlinear as a function of the Cauer Ladder Network’s solution.

To train the network, the weights and biases of the two selected layers can be computed
using a gradient descent algorithm and the following loss function L:

L =
6∑

j=1

( n∑
k=1

α
j
k (t)Vk − Cj

)2

+ β

m∑
w=1

W 2
w, (19)

where W are the weights to be optimized in the neural network and β a regularization
coefficient. The optimization is performed using ADAM optimization algorithm with a
customadaptive learning rate.Thegradients are computedusing automatic differentiation
inKeras−Tensorflow toolbox, using tensorflow’sGradientTape functionality.The training
is only performed on the selected 10 data sets, out of the 14 available simulations.
The solution of the corrected fields Acorrected for κ = 5 is shown in Fig. 6 for the same

use case illustrated in Fig. 3. The solution shows a good improvement with respect to
the Cauer Ladder Network solution. One should note that the solution shown in Fig. 6
belongs to a training set. Another solution belonging to the testing set is illustrated in Fig.
7, which shows simultaneously the finite element solution in 7a, the Cauer Ladder Net-
work solution in Fig. 7b, and the corrected solution in Fig. 7c. The testing solution shows
the amplitude of the magnetic field ‖B‖, and also showcases a large improvement of the
solution after correction. This improvement ismore tangible when exploring global quan-
tities of interest, as illustrated in sect. ’Application to the magnetic bearings modeling’s
quantities of interest’.
One should note that the computation of the solution’s weights and correction, for all

time steps, was performed within 1 to 1.1 s, for any of the 14 available use cases.
The relative error maps on the testing set are shown in Fig. 8. The error for the Cauer

Ladder Network reaches more than 50% on the A fields. The error of the corrected Cauer
by the proposed Spectral Net does not exceed 11%. Moreover, the error is localized away
from the region of interest, which is mainly around the coil and shaft separation region.

Application to themagnetic bearings modeling’s quantities of interest
In this section we illustrate the global quantities for all the training and testing sets, as a
function of time. The global quantities of interest are the force F applied on the steel shaft
and the magnetic flux φ.
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Fig. 7 A solution from the testing set at the same time step. We remind the reader to mind the axis

Fig. 8 Relative errors of a solution from the testing set at the same time step

Figures 9 and 10 illustrate the global quantities for the training sets, for the forces and
the magnetic flux respectively. Figs. 9 and 10 also compare the finite element solution, the
Cauer Ladder Network’s solution, and the corrected hybrid twin solution. in all the figures
Em stands for the mean relative error in percentage point-wise, as defined in Eq. (20), and
Emax is the maximum relative error in percentage, as defined in Eq. (21):

Em = 100
K

K∑
i=1

‖Ẑi − Zi‖2
‖Zi‖2 (20)

Emax = 100 × max
{

‖Ẑi − Zi‖2
‖Zi‖2

}

i=1,···,K
(21)

Z being the quantity of interest andK the number of time steps available in the sequence.
The testing set solutions, post processed to compute the global quantities of interest, are
illustrated in Figs. 11 and 12 for the force and the flux respectively. The testing set shows
an excellent agreement of the hybrid twin solution with the finite element one, and a
tremendous improvement when compared to the Cauer Ladder Network results.
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Fig. 9 Post processing of the force F in the training set

An effort tomodel the global quantities was taken by the authors using fully data-driven
techniques, using many advanced machine learning techniques. When not infusing phys-
ical information in the model, the solution remains unstable and couldn’t be generalized
to different scenarios or use cases. The authors tested an LSTM method, a Resnet with
embedded LSTM to compute the derivatives, as well as a NeuralODE, based on fully data-
driven approximation of the derivatives. However, none of the tested techniques was able
to produce stable results for thousands of time steps, within a fraction of a second. The
presented results prove the robustness of the proposed approach. Many of the testing
sets were performed at a different maximum tension U , different scenario schemes, and
different frequencies, some never seen in the training zone. The algorithm can perform in
extrapolation with very reasonable outputs, while computing the results of about 14,000
time steps within about 1 s on a usual PC.
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Fig. 10 Post processing of the magnetic flux φ in the training set

The results show excellent accuracy while the simulation performs in almost real-time.
When it comes to control, the inference of a single time step is currently about 200 ms
using Python libraries, limited by the Cauer ladder Network computation requirements.
Nevertheless, the simulation of few thousand time steps takes about 1 to 1.1 s, leveraging
the vector and tensor computation possibilities. The only calculation performed online is
the prediction of the basis weights αi using the neural network at every time step i.
The required computation time in the electronic control is less a feedback frequency of

2000 Hz, that is around 0.5ms per feedback. The resultant algorithm is not implemented
on the electronic material yet. A speedup of 100 times between python computing and
PCB computing is realistic and achieved in multiple previous applications. The algorithm
achieves the required computation time on PC. The code optimization and the use of
dedicated PCB material achieves the required computation time for control purposes.
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Fig. 11 Post processing of the force F in the testing set

Fig. 12 Post processing of the magnetic flux φ in the testing set

Discussion and conclusions
This work proposes a hybrid modeling, enhancing the available state of the art simulation
of magnetic field propagation, without impacting computation time. The results show a
relevant enhancement of the solution throughout all the simulated time domain. More-
over, the solution is stable and reliable, as depicted in the different testing cases. TheCauer
+ Specktral Net solution enhanced the Cauer Ladder Network solution, while preserving
stability and computation time.
In this work, we illustrated a novel machine learning hybrid twin architecture, which

relies first on the use of spectral decomposition of a solution, in a form of a reduced order
basis. Later on, themethod finds the solution weights using amachine learning algorithm.
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The proposed spectral network improves a physics-based simulation by computing a
correction, using a reduced basis of the error with respect to a ground truth, high fidelity,
finite element solution. This work uses the finite element solution as the ground truth
values, since experimental measurements are missing. The same algorithm can be used to
build hybridmodeling corrections fitting the experimental measurements when available.
Moreover, the algorithmuses explainable physics, and its limitations can be understood,

and controlled to a certain extent, using the basic principles of electromagnetic.
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