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October 22, 2024

Abstract Light beams possess two intrinsic quantized degrees of freedom, related to spin angular momentum (SAM) and orbital
angular momentum (OAM), whose manipulation enables extensive control over the topological properties of electromagnetic fields.
In this context, structured fields constructed from a non-separable combination of SAM and OAM have recently gained sustained
interest. Such states are eigenstates of the so-called generalized angular momentum (GAM), a mixed angular momentum operator
encompassing both SAM and OAM components, which can result in astonishing fractional eigenvalues. The demonstration of
GAM conservation under harmonic generation has suggested a potential relevance of this new form of angular momentum as
a meaningful quantum number. In the present work, we expand the scope of evaluation by investigating its conservation law
with second-harmonic generation in an underdense isotropic inhomogeneous plasma that relies on dipole-forbidden interaction
implying spin-orbit coupling. Our study reveals that the symmetry and topological properties of the field are disrupted during the
nonlinear process, the GAM charge being only conserved on average. This symmetry breaking can be exploited to provide an
easily detectable signature of the driving field topology or to create a robust topological attractor.

Explicit symmetry breaking of generalized angular
momentum by second-harmonic generation in underdense
plasmas
Alexis Voisine†, Pierre Béjot†, Franck Billard†, Hugo Marroux‡, Olivier Faucher† and Edouard
Hertz†,∗

1. Introduction

Angular momentum (AM) has unveiled unexpected phenom-
ena in the field of optics whose the prominent facet was
conventionally associated with the Spin Angular Momentum
(SAM) related to the vectorial nature of the electromagnetic
field. [1] However, since the seminal works of Allen, [2] it
became apparent that electromagnetic waves with a twisted
wavefront can also carry an orbital angular momentum
(OAM). Shortly after this discovery, it was shown [3] that the
SAM associated with circularly polarized light can add to, or
subtract from, the OAM to give a total angular momentum
(TAM). As a result, the TAM of light 𝐽photon can write in
its canonical form 𝐽photon = 𝑆photon + 𝐿photon, in which the
TAM is split into a spin and an orbital part. This description
into two distinct quantities has nevertheless immediately
raised deep questions on how to correctly define both SAM
and OAM in a gauge-invariant manner. [4, 5] In particular, for
the general case of three-dimensional field, only the TAM
𝐽𝑧 = 𝑆𝑧 +𝐿𝑧 constitutes a genuine angular momentum unlike
𝑆𝑧 or 𝐿𝑧 taken individually that fails to preserve the transver-
sality of the electromagnetic field. The decomposition into
spin and orbital angular momenta is in fact solely valid under
the paraxial approximation [6] for which individual photons
may carry discrete units of OAM and/or SAM. Furthermore,
the AM is intimately linked to dynamic rotation property.
Since the works of Emmy Noether, [7] it is well known that
symmetry, invariance, and conservation principles are intrin-
sically linked, any differential symmetry being associated
to a conservation law. The AM of an electromagnetic field

is thus expected to be conserved during the propagation
through a medium exhibiting a cylindrical symmetry. This
fundamental property applies however for the TAM but
not for SAM nor for the OAM separately. As a result, both
kinds of momenta can couple in appropriate conditions. This
phenomenon called spin-orbit coupling (SOC) of light [8, 9]

has triggered an intense research activity called spinoptics
inspired by the spintronics of electronic systems. The poten-
tialities opened by OAM and TAM have garnered significant
attention in various fields [10, 11] such as microscopy, [12]

chirality, [13, 14] quantum information processing, [15–19] op-
tical tweezer, [3, 20] and optical communications [21–24] while
spin-orbit interactions have been examined for instance
through second harmonic generation (SHG) produced in
nonlinear crystals [25, 26] or metasurfaces. [27] From a mathe-
matical point of view, the AM operators are the infinitesimal
generators of rotations that can act on an electromagnetic
field. While the SAM operator, involving the third Pauli
matrix 𝑆𝑧 = 𝜎3, rotates the light polarization direction, the
OAM operator, taking the form 𝐿𝑧 = −𝑖𝜕𝜃 in cylindrical
coordinates, leads to beam transverse profile rotation. The
eigenstates of the SAM operator are the left |𝜎+⟩ and right
|𝜎−⟩ circularly polarized beams, with eigenvalues 𝑠 = 1 and
𝑠 = −1 (in units of ℎ̄) respectively. Those of 𝐿𝑧 correspond to
beams whose spatial amplitude varies as e𝑖ℓ 𝜃 , with eigenval-
ues ℓ (ℓ ∈ Z). Such beams then embed an helical wavefront,
rotating ℓ times during the propagation over one wavelength.
As far as the TAM 𝐽𝑧 = 𝐿𝑧 + 𝑆𝑧 operator is concerned, the
functional expression of its eigenstates takes the general
form |𝜓ℓ⟩ = 𝑒𝑖ℓ 𝜃

[
𝑎+ (𝑟) |𝜎+⟩ + 𝑎− (𝑟)𝑒2𝑖 𝜃 |𝜎−⟩

]
, with corre-
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sponding eigenvalues 𝑗ℓ = ℓ +1 that takes integer values in
line with the fact that photons are classified as bosons. Note
that this expression only relates to the transverse part of
the field, the longitudinal component being given by the
Maxwell-Gauss equation.

Few years ago, paraxial lights embedding a new form
of angular momentum have been identified. [28] These light
beams, built from a coherent non-separable superposition
of SAM and OAM, feature non-trivial topologies. They
are invariant under a transformation called coordinated
rotations, a differential symmetry operation that rotates
the spatial dependence of the electromagnetic field by an
angle 𝜃 followed by a rotation of its polarization by an
amount 𝛾𝜃. Such coordinated rotations are generated by the
operator 𝐽𝑧,𝛾 = 𝐿𝑧 +𝛾𝑆𝑧 , called generalized angular momen-
tum (GAM). For monochromatic waves, the coordination
parameter 𝛾 takes either integer or half-integer values asso-
ciated to the topology of twisted ribbons and Möbius strips,
respectively. [29] When 𝛾 is half-integer, the GAM charge 𝑗𝛾
(eigenvalue of 𝐽𝑧,𝛾) is also half-integer with an unexpected
fermionic-like spectrum. This astonishing quantization of
AM is in fact related to the constrained symmetry associated
with the paraxial nature of light beams and turns out to be a
general characteristic of quantum systems with a reduced
degree of freedom observed for instance with electrons or-
biting in two-dimensions. [30] For polychromatic fields, the
situation can be even more exotic with the possibility of
any arbitrary rational 𝑗𝛾 values and nontrivial torus-knot
topologies. [31]

The identification of this new form of fractional angular
momentum has raised the issue of its physical significance
and of its conservation through light-matter interaction.
While it has been established that the TAM of light is
conserved through up-conversion processes in isotropic cir-
cularly symmetric media, [32, 33] one can wonder if the same
holds for light beams owing a fractional angular momentum.
In this context, the conservation law and potential transfer
of topological properties from driving fields to up-converted
photons have been examined in the realm of high harmonic
generation (HHG) in atomic gas systems. Harmonics driven
by fields invariant under coordinated rotation have theoreti-
cally revealed [34, 35] a linear scaling of the harmonic GAM
charge 𝑗

(𝑞)
𝛾 with the harmonic order 𝑞 (namely 𝑗

(𝑞)
𝛾 = 𝑞 𝑗𝛾).

This prediction was subsequently confirmed by analyzing
the HHG induced by polarization Möbius strips [36] through
a specific experimental scheme. The conservation of GAM
in nonlinear optics suggests that, in addition to TAM, GAM
may constitute a relevant quantum number. In these studies,
the optical OAM and SAM were conserved independently.
More particularly, the nonlinear process was generated in
an isotropic and homogeneous medium under paraxial il-
lumination through dipolar transitions, a physical configu-
ration in which no spin-orbit coupling is expected. Indeed,
light–matter interactions can engage the OAM content solely
when multipolar transitions are at play. [13] This can be eas-
ily understood by remembering that the OAM feature of a
beam is contained in the transverse variation of its spatial
phase, while dipolar transitions are intrinsically purely local

(i.e., the dipolar transition probability between two states
depends solely on the value of the electric field at the exact
position of the center of mass of the system). The first term
in the multipolar expansion having the ability to engage
the OAM content is the electric quadrupole interactions,
which depends on the transverse gradients of the electric
field. Quadrupolar interactions can thus mediate an OAM
exchange between helical light and matter (in addition to
SAM), allowing transitions otherwise forbidden as a result
of SOC. This has been recently confirmed, for instance, by
observing modifications of selection rules induced by the
OAM of light in 40Ca+ ions [37], nonlinear helical dichroism
in liquid phase [14], or by measuring orbital photogalvanic
effect in a Weil semimetal. [38] It is important to note that
multipolar transitions can arise from two distinct physical ori-
gins, one taking into account the finite size of molecules (or
atoms), the other one originating from the non-homogeneous
distribution of the molecules in space. In the context of light
invariant by coordinated rotation, changes in selection rules
due to SOC are expected to modify the conservation law of
GAM charge opening rich scenarios of study with potential
explicit symmetry breaking. It therefore offers an expanded
scope of evaluation and provides further insights into the rele-
vance of the GAM as an appropriate quantum number. In this
paper, we examine the conservation law of GAM when up-
converted photons are produced through a dipole-forbidden,
quadrupole-allowed interaction. The corresponding nonlin-
ear process involves second-harmonic generation (SHG)
produced in an isotropic but radially inhomogenous plasma,
a configuration known to produce even harmonics despite
the centro-symmetric nature of the medium. The two current
source terms of SHG can be identified as magnetic dipole
and electric quadrupole contributions, [39] while no electric
dipole polarization exists. In this case, the plasma does no
retain any angular momentum from the beam, akin to HHG,
but simply acts as a catalyst where the TAM is conserved
but with potential SOC. [33] This well-understood nonlinear
excitation process thus constitutes an attractive platform for
testing the conservation law of angular momentum and ob-
serving a potential symmetry breaking of GAM. As shown
below, while dipole-allowed HHG process only allows two
quantum channels (for a given harmonic order) when driven
by a coordinated rotation invariant light, quadrupole-allowed
SHG gives rise to four distinct quantum channels. Analysis
of these various pathways requires a phase-matching free
interaction, which is obtained in this study by using an
ultra-thin flat leaf of liquid water as nonlinear medium. [40]

Based on this configuration, the symmetry and topological
properties of the GAM state is shown to be broken during
the nonlinear process, the GAM charge being nevertheless
conserved on average. This effect can be explained by the
quantum interferences between different excitation paths
which plays a crucial role in the SOC mode of the generated
harmonic field. [41] We demonstrate that the symmetry break-
ing enables a straightforward identification of the driving
field topology whose signature is encoded into the spatial
amplitude of the SHG field. Finally, it is anticipated that, if
isolated, specific quantum pathways behave as a topological
attractor for the harmonic field.
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2. Generalized Angular Momentum

We consider in the following an electric field whose trans-
verse part writes in cylindrical coordinates as:

|𝜓⟩ = 𝑎+𝑒
𝑖ℓ+ 𝜃 |𝜎+⟩ + 𝑎−𝑒𝑖ℓ− 𝜃 |𝜎−⟩, (1)

where |𝑎+ |2+|𝑎− |2 = 1 and |𝜎±⟩ = (1,±𝑖). Introducing
𝛾 =

ℓ−−ℓ+
2 the coordination parameter, it can be easily seen

that |𝜓⟩ is eigenstate of the GAM operator 𝐽𝑧,𝛾 = 𝐿𝑧 +𝛾𝑆𝑧
with the eigenvalue 𝑗𝛾 =

ℓ−+ℓ+
2 . Note that |𝜓⟩ is not eigenstate

of either 𝐿𝑧 or 𝑆𝑧 . For 𝛾=1, we recover the usual eigenstates
of the TAM operator 𝐽𝑧 = 𝐿𝑧 + 𝑆𝑧 (note that 𝐽𝑧,1 is written
𝐽𝑧 in the following to simplify the notation). The operator
𝐽𝑧,𝛾 is an infinitesimal generator of coordinated rotation of
field amplitude and polarization whose eigenstates feature
non-trivial topologies. More particularly, the corresponding
fields are invariant, up to a phase factor 𝑒𝑖 𝑗𝛾 𝜃 , to the coordi-
nated rotations (CR) which consists in rotating the spatial
field by an angle 𝜃 followed by a rotation of its polarization
by 𝛾𝜃. Such beams of spatially varying polarization distri-
bution are commonly referred to as CR-invariant beams. [35]

As an example, Fig. 1(a) depicts an eigenstate of 𝐽𝑧,1/2
with the corresponding eigenvalue 𝑗1/2 = 1/2 that takes the
functional form |𝜓⟩𝛾=1/2

𝑗1/2=1/2 =
|𝜎+ ⟩+𝑒𝑖𝜃 |𝜎− ⟩√

2
. The correspond-
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Figure 1 Schematic representation of eigenstates of 𝐽𝑧,1/2. The
corresponding eigenvalue is 𝑗1/2 = 1/2 for (a) and 𝑗1/2 = 3/2
for (b). The upper part depicts the decomposition along the two
polarization components with the spatial phase in colormap.

ing coordination factor 𝛾 = 1/2 is half-integer leading to
a so-called polarization Möbius strips. As exemplified in
Fig. 1(b), any other eigenstate of the same operator 𝐽𝑧,1/2
but with a different eigenvalue shares the same topology
although with distinct azimuthal phase. This can be readily
understood by recasting the field state of Eq. 1 with the
relation

ℓ± = 𝑗𝛾 ∓𝛾, (2)
giving:

|𝜓⟩𝛾
𝑗𝛾
= 𝑒𝑖 𝑗𝛾 𝜃

(
𝑎+𝑒

−𝑖𝛾𝜃 |𝜎+⟩ + 𝑎−𝑒𝑖𝛾𝜃 |𝜎−⟩
)
. (3)

As a result, the electric field at any point in the transverse
coordinate (𝑟,𝜃) will exhibit a polarization state which de-
pends on the term in parentheses and therefore on 𝛾 and 𝑎±

but not on 𝑗𝛾 which induces an azimuthal phase. Finally,
while 𝑎± in Eq. 3 can be complex, we point out that any
phase term 𝑒𝑖𝜙 applied to the |𝜎±⟩ component results in
a global rotation of the polarization pattern (Fig. 1) by an
angle 𝜃0 = ± 𝜙

2 .

3. SHG from plasma currents and angular
momentum conservation

In an inhomogeneous plasma, the second-harmonic gener-
ation process comes from the fact that both velocity and
charge distribution (although the net charge distribution of
the plasma with no field is null) oscillate in time at the field
frequency. As a result, since the current is the product of
both quantities, the latter will embed a (small) component
oscillating at twice the field frequency. More particularly,
let us consider an isotropic non-magnetic medium of linear
susceptibility 𝜒 (1) (supposed constant with the frequency
and homogeneous in space to simplify). In this case, the
Maxwell’s equations in presence of a low-density plasma
read:

∇× ®𝐸 = −𝜕𝑡 ®𝐵 ∇ · ®𝐷 = 𝜌

∇× ®𝐵 = 𝜇0

(
®𝐽𝑐 + 𝜕𝑡 ®𝐷

)
∇ · ®𝐵 = 0,

(4)

where 𝜇0 is the vacuum permeability, ®𝐸 and ®𝐵 are the real
electric and magnetic fields respectively, and 𝜌 is the total
charge density distribution. The constitutive equation linking
the electric field to the displacement field ®𝐷 reads

®𝐷 = 𝜖0𝑛
2 ®𝐸, (5)

where 𝑛 =
√︁

1+ 𝜒 (1) is the refractive index and 𝜖0 the vacuum
permittivity, while the charge conservation equation reads:

∇ · ®𝐽𝑐 + 𝜕𝑡 𝜌 = 0, (6)

where ®𝐽𝑐 = 𝜌𝑒®𝑣𝑒 is the current induced by the free electron
(ions are supposed to remain at rest), 𝜌𝑒 is the electron charge
distribution, and ®𝑣𝑒 is the electron velocity. In presence of an
electromagnetic field, the latter is driven by the momentum
equation:

𝑚𝑒 [𝜕𝑡 ®𝑣𝑒 + (®𝑣𝑒 · ∇) ®𝑣𝑒] = 𝑞𝑒

(
®𝐸 + ®𝑣𝑒 ∧ ®𝐵

)
, (7)

where 𝑞𝑒 and 𝑚𝑒 are the electron charge and mass, respec-
tively. The plasma is supposed to be initially neutral and
the electrons initially at rest so that: 𝜌(®𝑟, 𝑡 = 0) = 𝜌ions (®𝑟, 𝑡 =
0) + 𝜌𝑒 (®𝑟, 𝑡 = 0) = 0. Since the ions remains at rest, it implies
for the charge density:

𝜌(®𝑟, 𝑡) = 𝜌𝑒 (®𝑟, 𝑡) − 𝜌𝑒 (®𝑟, 𝑡 = 0). (8)

Using the equations above and decomposing the current
®𝐽𝑐, the charge distribution 𝜌 and the electron velocity ®𝑣𝑒 as
Fourier series in frequency, one finds the expression of the
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current contribution oscillating at twice the field frequency
𝜔0:

®𝐽2𝜔0
𝑐 =

𝑖𝑞3
𝑒

𝑚2
𝑒𝜔

3
0


𝑛
(0)
𝑒

4
∇
(
®𝐸 · ®𝐸

)
+

(
𝑛2∇𝑛(0)𝑒 · ®𝐸

)
𝑛2 − 𝑛

(0)
𝑒

𝑛𝑐

®𝐸
 , (9)

where 𝑛
(0)
𝑒 is the electron density and 𝑛𝑐 =

𝜖0𝑚𝑒𝜔
2
0

𝑞2
𝑒

is the
critical electron density. In the paraxial regime, the first term
in Eq. 9 will be mainly longitudinal (i.e., along 𝑧), so that
it cannot radiate in the propagation direction. As a result,
the second-harmonic generation in the bulk of a nonuniform
plasma is only possible through the second term in Eq. 9. In
the case of a circularly symmetric inhomogeneous plasma
[𝑛𝑒 = 𝑛𝑒 (𝑟)], the second-harmonic current will then be of
the following functional form:

®𝐽2𝜔0
𝑐 ∝

(
®𝐸 · ®𝑒𝑟

)
®𝐸, (10)

revealing that the SHG field owns the same polarization
as the pump field. The expression of plasma-induced SHG
for any fundamental driving field can be deduced from
Eq. 10. In particular, using the fact that circular polarizations
|𝜎±⟩ = (1,±𝑖) writes as |𝜎±⟩ = 𝑒±𝑖 𝜃 ( ®𝑒𝑟 ± 𝑖 ®𝑒𝜃 ) in cylindrical
coordinates, one finds [see Section 3, Supporting informa-
tion] that the CR-invariant field of Eq. 3, eigenstate of the
GAM operator 𝐽𝑧,𝛾 , generates a SHG field writing as:

®𝐸2𝜔0 ∝ 𝑒𝑖 (2 𝑗𝛾−𝛾+1) 𝜃
(
𝑎2
+𝑒

−𝑖𝛾𝜃 |𝜎+⟩ + 𝑎+𝑎−𝑒𝑖𝛾𝜃 |𝜎−⟩
)

+𝑒𝑖 (2 𝑗𝛾+𝛾−1) 𝜃
(
𝑎−𝑎+𝑒

−𝑖𝛾𝜃 |𝜎+⟩ + 𝑎2
−𝑒

𝑖𝛾𝜃 |𝜎−⟩
) (11)

where one can easily recognize the superposition of two
eigenstates of the GAM operator 𝐽𝑧,𝛾 with different eigen-
values 𝑗

2𝜔0
𝛾 = 2 𝑗𝛾 −𝛾 +1 and 𝑗

′2𝜔0
𝛾 = 2 𝑗𝛾 +𝛾−1:

®𝐸2𝜔0 ∝ |𝜓⟩𝛾
𝑗

2𝜔0
𝛾

+ |𝜓⟩𝛾
𝑗
′2𝜔0
𝛾

. (12)

We emphasize that the two GAM states of this coherent
superposition are both eigenstates of the GAM operator 𝐽𝑧,𝛾
(like the fundamental field) indicating that the topology of
the driving field has been transferred to each of them during
the nonlinear process.
The previous analysis enables the anticipation of all the
various scenarios addressed in this study, from the simplest
to the most comprehensive. For instance, the SHG driven by
a pure helically phased field |𝜓⟩ = 𝑒𝑖ℓ+ 𝜃 |𝜎+⟩ can be deduced
from Eq. 11 by setting 𝑎+ = 1 and 𝑎− = 0. The SHG field
then writes as:

®𝐸2𝜔0 ∝ 𝑒𝑖 (2( 𝑗𝛾−𝛾)+1) 𝜃 |𝜎+⟩ = 𝑒𝑖 (2ℓ++1) 𝜃 |𝜎+⟩ (13)

where the relation ℓ+ = 𝑗𝛾 − 𝛾 (Eq. 2) has been used to
derive the last formulation. As previously mentioned, the
SHG field owns the same polarization as the pump field,
thereby imposing a spin selection rule. Furthermore, while
the input field |𝜓⟩ is eigenvector of 𝐽𝑧 with the eigenvalue

𝑗𝜔0 = ℓ++1, the SHG field of Eq. 13 is also eigenvector of
𝐽𝑧 with an eigenvalue 𝑗2𝜔0 = 2 𝑗𝜔0 , confirming therefore
the conservation of the TAM during the plasma-induced
SHG process. This effect, already observed in previous
studies, [33, 42] is a general rule for a current source with no
dissipation is in fact a consequence of the Noether theorem
since the plasma gradient is invariant under rotation around
the propagation axis. This finding allows to derive general
selection rules for a given SHG quantum channel which can
be summarized as:

Δ 𝑗 = 𝑗2𝜔0 −
2∑︁
𝑖=1

𝑗
𝜔0
𝑖

= 0

|𝜎2𝜔0⟩ = |𝜎𝜔0⟩.

(14)

In the simple case of circularly polarized helically phased
fields, the conservation laws rewrite Δ𝑠 = ∓1 and Δℓ = ±1
where neither the SAM nor the OAM are conserved during
the process, which is a manifestation of spin-orbit coupling.
The case of SHG driven by CR-invariant beams described
by Eqs. 11-12 can be retrieved from theses rules considering
the different pairs of photons in the input GAM state (Eq. 3)
that can initiate the nonlinear process. SHG field in Eq. 11
involves a superposition of 4 quantum channels. The first
channel (term of amplitude 𝑎2

+) is driven by two photons of
left helicity, the last one (of amplitude 𝑎2

−) by two photons
of right helicity, and the other two channels (of amplitude
𝑎+𝑎−) corresponds to crossed channels produced by one
photon from each polarization state. It can easily be shown
[see Section 2, Supporting information] that the topological
charge of each photon can be predicted through the upper
conservation law. Consequently, while dipole-allowed HHG
driven by monochromatic CR-invariant beams only allows
two quantum channels resulting in a CR harmonic field with
𝑗
𝑞𝜔0
𝛾 = 𝑞 𝑗

𝜔0
𝛾 (where 𝑞 is the harmonic order), SHG induced

from plasma currents yields four distinct quantum channels
resulting in the superposition of two CR harmonic fields of
different eigenvalues (see Eq. 12).

Finally, another conservation rules has to be consid-
ered. Indeed, the translation invariance of the medium along
the propagation implies conservation of the linear momen-
tum during the nonlinear process. Experimentally speak-
ing, all OAM fields under investigation can be described
by Laguerre-Gauss modes LGℓ

𝑝, that exhibit a ℓ and 𝑝-
dependent Gouy phase. For simplicity, considering only the
case 𝑝=0, the latter varies as (|ℓ | +1) arctan(𝑧/𝑧𝑟 ), where 𝑧𝑟
is the Rayleigh length. As a result, the production of second-
harmonic from plasma is not necessarily phase-matched.
The SHG process induced by pure OAM beam of topological
charge ℓ (see for instance Eq. 13) is phase-matched only
for ℓ𝑠 ≥ 0. Likewise, the efficiency of the different SHG
channels when driven by CR-invariant beams (Eq. 11) will
not be uniform as it is influenced by phase-matching con-
siderations. Consequently, the overall signal resulting from
their superposition may undergo a modification of its spatial
structure, hampering direct comparison to theory. So as to
study potential symmetry breaking at the microscopic level,
analysis of nonlinear interactions with GAM states therefore
requires a nonlinear medium of small thickness (overcoming
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phase-matching issues). For this purpose, the SHG was
generated within an ultra-thin flat leaf of liquid water. [40]

It is noteworthy that this experimental configuration differs
from earlier investigations [33, 42] where the SHG field was
generated in a static gas sample. These last indeed focused
on SHG driven by pure OAM fields, where phase-matching
predominantly influences the amplitude of the generated
signal rather than its spatial structure, thus having minimal
impact on qualitative analysis.

4. Experimental set-up

The experimental set-up is depicted in Fig. 2. The experi-
ment is conducted with a Ti:Sa femtosecond laser delivering
pulses centered at 802 nm at 1 kHz repetition rate and of
duration 35 fs. The use of femtosecond laser pulses, due
to their high peak intensity, is well-suited for the targeted
analysis as they can generate significant plasma through
non-resonant ionization. However, the conclusions of our
study are not necessarily limited to interactions involving
ultrashort laser pulses. The energy of the driving beam
(called “Pump” in Fig. 2) is first controlled by a combination
of half-waveplate (HWP) and polarizer (P). Its spatial struc-
turing, so as to imprint OAM or GAM states, is achieved by
a beam shaper built from the combination of waveplate(s)
and 𝑞-plates that are used for generating OAM beams via
SAM-OAM exchange occurring in both anisotropic and
inhomogeneous media. [44] Depending on the shaping to
produce, different combinations have been implemented
[see Section 1, Supporting information]. After the beam
shaper, the driving beam propagates through a band-pass
filter centered at 800 nm so as to remove any possible contri-
bution of second-harmonic field produced within the optics.
The spatially shaped fundamental beam is then focused by
a lens (𝐿1) of 25 cm focal length in the nonlinear medium
for producing the SHG field through induced plasma. SHG
signal is observable in air gas but as explained in the previous
section, a thin water flat leaf is used as nonlinear medium
so as to get rid of phase-matching limitations. This last is
created via the collision of two laminar flow cylindrical
jets. [40] To ensure stability and ease of alignment, the two
cylindrical jets are engraved into a single microfluidic chip.
The holder and tubing are made of PEEK for chemical
stability and high-pressure handling. Typical flow speeds
of 2.5 mL/min are used resulting in leaf thickness of a few
microns. After the interaction, the SHG radiation is isolated
from the fundamental field by a 400 nm band-pass filter,
analyzed in polarization, via a Berek compensator (BC) and
a polarizer, before being imaged on a CCD camera. The
spatial phase of the beam is obtained by measuring the in-
terference pattern with a frequency-doubled reference beam
crossing at small angle (0.5◦) and by performing a spatial
Fourier filtering. [18]. The reference beam is spatially filtered
by a focusing through a pinhole aperture of 30 𝜇m diameter.
Reference and driving fields are temporally synchronized
using a translation stage. Measurements have been realized
with a typical pump energy of few tens of 𝜇𝐽.

5. Experimental results

We first investigate the SHG produced from a pure circularly
polarized field |𝜎+⟩ (ℓ = 0). The selection rules in Eqs. 13-14
predicts in this case the production of harmonic photons
polarized along |𝜎+⟩ and carrying the topological charge
ℓ2𝜔0 = 1. The SHG field, measured with our setup, is de-
picted in Fig. 3(a,b), where panels (a) and (b) correspond
to the analysis along the left- and right-handed polarization
components, respectively. A comparison of signal ampli-
tudes reveals that the harmonic field displays the anticipated
dominant |𝜎+⟩ circular polarization. Furthermore, the beam
profile exhibits an annular intensity pattern which strongly
suggests the presence of a phase singularity on the beam axis
and the generation of an OAM beam through the nonlinear
process. The reconstruction of the spatial phase [lower panel
of Fig. 3(a)] confirms this prediction. The counter-clockwise
winding from 0 to 2𝜋 of the phase distribution agrees with
the expected helical phase structure 𝑒𝑖 𝜃 . Similarly, the SHG
field produced from a field of right circular polarization,
depicted in Fig. 3(c,d), is found to be of the form 𝑒−𝑖 𝜃 |𝜎−⟩.
All these results are in excellent agreement with the findings
previously reported in the literature. [33, 42] The case of mixed
state is first examined considering the simple case of a radi-
ally polarized field, eigenstate of 𝐽𝑧 (i.e. 𝛾 = 1) and 𝑗𝛾 = 0,
writing as |𝜓⟩1

0 =
𝑒−𝑖𝜃 |𝜎+ ⟩+𝑒𝑖𝜃 |𝜎− ⟩√

2
. The expected SHG field

can be inferred from Eq. 11 which forecasts the production
of a radially polarized field. The outcome, illustrated in
Fig. 3(e,f), reveals a SHG field with two components of
opposite helicities. The two components exhibit a nearly
annular intensity distribution of equal amplitude and the
retrieved phase shows opposite winding distribution with
a single spiral arm, indicating a SHG field built from a
superposition of 𝑒−𝑖 𝜃 |𝜎+⟩ and 𝑒𝑖 𝜃 |𝜎−⟩. The topology of
the fundamental field is thus perfectly transferred to the
harmonic field. Once again such a result is not surprising
considering the conservation of the TAM predicted by the
Noether’s theorem.

We turn next to the central purpose of this paper, namely
the SHG driven by CR-invariant fundamental field (of co-
ordination parameters 𝛾 ≠ 1). The first investigated case
deals with the polarization Möbius strip of Fig. 1(a), namely
|𝜓⟩1/2

1/2 =
|𝜎+ ⟩+𝑒𝑖𝜃 |𝜎− ⟩√

2
(eigenstate of 𝐽𝑧,1/2 with the GAM

charge 𝑗1/2 = 1/2). The SHG produced by such a field of
spatially varying polarization can be anticipated through
Eqs. 11-12. It can be shown that the resulting output SHG
field can be recast with the following functional form:

®𝐸2𝜔0 ∝ 𝑒𝑖 𝑗𝛾 𝜃cos [(𝛾−1) 𝜃] ®𝐸 (15)

revealing that the output SHG field will exhibit a modulation
of its amplitude. Any input field that is eigenstate of 𝐽𝑧,𝛾
with 𝛾 ≠ 1) will therefore experience a symmetry breaking
through SHG process. For the present case (𝛾 = 1/2), the
anticipated modulation is of the form cos[𝜃/2]. This can be
qualitatively understood from the shape of the input field.
According to Eq. 10, the signal will reach its maximum
(minimum) for all spatial positions where the electric field
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Figure 2 Experimental set-up. BS: beam splitter, HWP: half waveplate, P: polarizer, L: plano-convex lens, BC: Berek compensator,
F800/F400: 800/400 nm bandpass filter, ND: neutral density, BBO: type 1 doubling.

points along the radial (orthoradial) direction. The field
vector distribution shown in Fig. 1 therefore allows to foresee
a maximum (resp. minimum) intensity for 𝜃 = 0 (resp. 𝜃 = 𝜋).
This prediction is in line with the crescent-shaped intensity
profile measured in Fig. 4. More specifically, this figure
displays the SHG signal for varying longitudinal positions
𝑧 of the liquid jet. As it can be seen, the harmonic beam
profile consistently exhibits a crescent-shaped that rotates as
the liquid leaf is moved away from the beam waist position.
This effect arises because the two components of opposite
helicities building the input state |𝜓⟩ carry topological
charges of different absolute values |ℓ+ | ≠ |ℓ− |. These two
components will therefore acquire a differential Gouy phase
shift during their propagation leading to the rotation of the
polarization pattern (Fig. 1), inducing therefore a rotation of
the generated harmonic signal. This observation emphasizes
the relevance of using a thin nonlinear medium for limiting
phase-matching issues that could otherwise alter the spatial
structure of signals and make its analysis more challenging.
Let’s proceed now with a more in-depth examination of
the generated signal and its relation to the conservation
of angular momentum. The amplitude and phase of the
harmonic field along the two polarizations components
are depicted in Fig. 5. Both components feature the same
crescent-shaped intensity profile, consistent with Eq. 15. The
spatial phase relies, for its part, on a complex modulation that
integrates the azimuthal phase carried by 𝑒𝑖 𝑗𝛾 𝜃 ®𝐸 with the
phase jump of the cosine amplitude modulation as outlined
in Eq. 15. Although the final spatial phase can be challenging
to assess, the experimental measurements [Figs. 5(a,b) and
(e,f)] closely align with the simulation [Figs. 5(c,d) and (g,h)],
supporting the validity of our modeling approach. The minor
discrepancies with the experiment can be attributed to the
production of vortex beams that are not pure Laguerre-Gauss

modes (ℓ, 𝑝=0), resulting in variations in the divergence of
the different components upon diffraction. [43] Nevertheless,
the prominent result is that the output SHG is modulated
in amplitude while the fundamental field is not, indicating
a clear occurrence of GAM symmetry breaking. The SHG
field in this case can be deduced from Eqs. 11-12 with the
parameters 𝛾 = 1/2 and 𝑗1/2 = 1/2. From Eq. 12, one can
see that the output SHG field writes as the superposition
of two polarization Möbius strip fields both associated to
the same coordination parameter 𝛾 = 1/2 but with different
GAM charges 𝑗

2𝜔0
1/2 = 3/2 and 𝑗

′2𝜔0
1/2 = 1/2:

®𝐸2𝜔0 ∝ |𝜓⟩1/2
3/2 + |𝜓⟩

1/2
1/2 . (16)

The two GAM states of this coherent superposition are both
eigenstates of the GAM operator 𝐽𝑧,1/2 (like the fundamental
field) and therefore preserve the symmetry of the driving
field, unlike their superposition. The reason is that these
two GAMs are eigenstates of 𝐽𝑧,1/2 each with a different
eigenvalue so that their superposition does not form an
eigenstate of 𝐽𝑧,1/2. Physically, both field exhibit the same
topology and spatially varying polarization distribution, as
depicted in Fig. 1, but with a different azimuthal phase
factor encoded by the nonlinear process. Consequently, their
interferences will vary with the azimuthal angle, resulting
in destructive interferences for 𝜃 = 𝜋 which gives rise to
the final crescent-shaped profile. It should be noted that the
input field could also undergo spin-orbit coupling during
its linear propagation through the inhomogeneous plasma.
This effect arises from the spatial dependence of the plasma
density distribution, leading to a non-zero divergence of the
electric field. Similar to plasma-induced SHG, only fields
that are eigenvectors of the total angular momentum (TAM)
operator remain invariant during propagation in a circularly
symmetric medium [45] (here, through the plasma) while in-
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Figure 3 Circular decomposition of the SHG field driven by
a fundamental field : |𝜎+⟩ (ℓ = 0) in (a-b), |𝜎−⟩ (ℓ = 0) in (c-d),
and a radially polarized field 𝑒−𝑖𝜃 |𝜎+ ⟩+𝑒𝑖𝜃 |𝜎− ⟩√

2
in (e-f). The left

(resp. right) column corresponds to the left (resp. right) circular
component of the SHG field.

put fields with different polarization symmetry distributions
(eigenvectors of the GAM with 𝛾 ≠ 1) may undergo changes
during propagation. However, this effect is of second-order
and can be safely neglected due to the small thickness of
the medium. The explicit symmetry breaking, highlighted in
Fig. 5, is not limited to SHG driven by polarization Möbius
strip, i.e. carrying half-integer GAM charge. Figure 6 dis-
plays the case of a twisted ribbon |𝜓⟩−1

0 =
𝑒𝑖𝜃 |𝜎+ ⟩+𝑒−𝑖𝜃 |𝜎− ⟩√

2
associated to the coordination parameter 𝛾 = −1 (eigenstate
of 𝐽𝑧,−1 with the eigenvalue 𝑗𝛾 = 0). In this case as well, the
output SHG field is modulated in amplitude, with 4 peaks
observable in the inner part of the signal (associated with
a modulation in cos[2𝜃]). The corresponding symmetry
breaking is also explained by a SHG field built from the
superposition of two GAM eigenstates of 𝐽𝑧,−1 which do
not share the same eigenvalue ®𝐸2𝜔0 ∝ |𝜓⟩−1

2 + |𝜓⟩−1
−2 .

Figure 4 Intensity distribution of the SHG field generated by
the GAM state |𝜎+ ⟩+𝑒𝑖𝜃 |𝜎− ⟩√

2
as a function of the position of the

water jet with respect to the beam waist. Because of the ℓ de-
pendent Gouy-phase, the produced SHG field rotates around
the propagation axis.

In a general point of view, if one calculates the expecta-
tion value of the operator 𝐽𝑧,𝛾 for the produced SHG field,
it gives:

⟨ ®𝐸2𝜔0 |𝐽𝑧,𝛾 | ®𝐸2𝜔0⟩ = 2 𝑗𝛾 , (17)
revealing that, despite the lack of strict conservation, the
GAM charge is nevertheless preserved on average through
the plasma-induced SHG process. As far as the standard
deviation is concerned, it reads

𝜎𝐽𝑧,𝛾 = |𝛾−1|. (18)

This result highlights that the SHG field is a pure state only
if the fundamental field is an eigenstate of the TAM (i.e.,
for 𝛾 = 1). For any other circumstances, the final state is a
mixed state representing a coherent superposition of 2 GAM
eigenstates that share the same coordination parameter 𝛾 as
the pump, but with different eigenvalues breaking the GAM
symmetry.
Although the GAM charge and the topology of the field
are not preserved, the breaking of symmetry through the
nonlinear process offers certain advantages. Firstly, the
spatial beam profile of the SHG contains a signature of
the topological properties of the driving field. As shown
in Eq. 15, the SHG exhibits an amplitude modulation of
the form cos[(𝛾 − 1)𝜃] resulting in a beam profile with
an even (resp. odd) number of peaks for 𝛾 integer (resp.
half-integer). This property allows for easy differentiation
between twisted ribbons and Möbius strips as driving fields.
This result is linked to a recent demonstration [38] of direct
characterization of light’s OAM ℓ by measuring nonlocal
photocurrent induced by nonlinear interaction. In the present
work, the SHG from plasma currents provides information
about the coordination parameter 𝛾. Secondly, as previously
discussed, the output SHG field involves a superposition of
4 quantum channels related to the pair of photons driving
the nonlinear process (Eq. 11). It is possible to select the
SHG produced from the crossed channels exclusively, i.e.
the two photons of amplitude 𝑎+𝑎− . This can be achieved,
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Figure 5 SHG field driven by a polarization Möbius strip
|𝜎+ ⟩+𝑒𝑖𝜃 |𝜎− ⟩√

2
. Left (resp. right) column corresponds to the spatial

amplitude (resp. phase). The two first lines correspond to the
SHG along the 𝜎+ component with the measurement in (a,b)
and the corresponding simulation in (c,d). Similarly, panels (e,f)
and (g,h) represent the experiment and the simulation for the 𝜎−
component.

for instance, by implementing a noncollinear configuration
with a small angle between the 𝜎+/𝜎− beams and isolating
the SHG generated along the bisector, as demonstrated in
Ref. [36] Alternatively, the desired selection can also be
obtained through a bi-color configuration with different
frequencies 𝜔+/𝜔− for the 𝜎+/𝜎− components combined
with a spectral selection (around the frequency 𝜔+ +𝜔−) of
the generated SHG field. From Eq. 11, the selection of these
two specific quantum channels leads to a SHG field of the

Figure 6 Intensity distribution of the SHG field driven by a polar-
ization twisted ribbon 𝑒𝑖𝜃 |𝜎+ ⟩+𝑒−𝑖𝜃 |𝜎− ⟩√

2
.

form:

®𝐸2𝜔0 ∝ 𝑎+𝑎−𝑒
𝑖2 𝑗𝛾 𝜃

(
𝑒𝑖 𝜃 |𝜎−⟩ + 𝑒−𝑖 𝜃 |𝜎+⟩

)
. (19)

By identifying this expression with the one of Eq. 3, one find
a CR-invariant field |𝜓⟩𝛾=1

2 𝑗𝛾 eigenstate of 𝐽𝑧 of eigenvalue
2 𝑗𝛾 . As a result, regardless of the symmetry of the input
field (e.g., twisted ribbons, Möbius strip, or even torus-knot
topology), the harmonic field will always be produced along
the coordination factor 𝛾 = 1, indicating that the nonlinear
process acts as a topological attractor for the produced field.
Moreover, it is noteworthy that the two components with
opposite helicities in Eq. 19 will always be produced with
equal amplitudes and phases, conferring a radial polarization
pattern to the resulting SHG, irrespective of the driving field.
Finally, one can notice that this robust topological attractor
is produced along with a strict conservation of the GAM
charge since one has 𝑗

2𝜔0
𝛾=1 = 2 𝑗𝛾 . This universal trend in the

generation of the SHG field can facilitate the characterization
of the input GAM charge.

6. Conclusion

We have investigated the conservative nature of the GAM
charge and the topology of light when up-converted pho-
tons are produced through a dipole-forbidden, quadrupole-
allowed interaction. The nonlinear process in this study
relies on the SHG produced by polarization Möbius strip
and twisted ribbons in an isotropic inhomogeneous plasma.
The non-linear medium is made of a thin jet of liquid water to
avoid phase-matching limitations that could alter the spatial
structure of harmonic signals. Following the anticipated
conservation law, four quantum channels are allowed for
the production of SHG. The resulting field can then be
expressed as the superposition of two GAM states, each
individually preserving the topology of the driving field but
with different GAM charges. As a result, the GAM charge
is shown to be conserved only on average and the total
field exhibits an explicit symmetry breaking which aligns
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well with our modeling approach. This symmetry break-
ing can be advantageously harnessed. The spatial profile
of the generated harmonic field exhibits a dependence on
the topology of the driving field so that one can readily
differentiate driving fields having the topology of a twisted
ribbon and Möbius strip. By selecting two specific quantum
channels, it is also possible to produce a robust topological
attractor for the SHG field that would be consistently gen-
erated with the coordination factor 𝛾 = 1 and conserving
the GAM charge, regardless of the input field’s topology.
The present study highlights an array of other interesting
prospects. The use of plasma for generating fields with
non-trivial topology can be valuable as it avoids damage
effects. In this context, a pump-probe configuration with
a pump pulse for producing the plasma and a subsequent
probe pulse inducing the SHG could offer greater flexibility.
The generation of SHG depends on the plasma gradient
and therefore on its spatial characteristics.Through a spatial
shaping of the pump field, one could for instance manipulate
the spatial distribution of the plasma enabling a fine control
over the topological properties of the harmonic field with
innovative functionalities. [38] The extension of the present
investigation to polychromatic fields with the possibility of
arbitrary fractional GAM charges could also lead to richer
scenarios for exploration. Furthermore, investigating the
sum- or difference-frequency generation in an homogeneous
distribution of atoms or molecules by exploiting resonant
quadrupole transitions [46] could constitute an interesting
alternative platform for testing the impact of spin-orbit
coupling with fields of non-trivial topologies. Finally, we
emphasize the importance of understanding light-matter
interactions with multiplexed light that combines both SAM
and OAM. This plays a crucial role in the interplay between
the chirality of light and matter, especially in scenarios
involving nonlinear and multipolar interactions that align
with the focus of the present study. Such a configuration has
recently revealed the emergence of new forms of chiroptical
spectroscopy and enantio-selectivity. [14]

Key words: orbital angular momentum, ultrashort optical vortex

References
[1] R. A. Beth, Phys. Rev. 1936, 50, 115.
[2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Wo-

erdman, Phys. Rev. A 1992, 45, 8185.
[3] N. B. Simpson, K. Dholakia, L. Allen, and M.J. Padgett, Opt.

Lett. 1997, 22, 52.
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