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Abstract

Kernel-based testing has revolutionized the field of non-parametric tests through
the embedding of distributions in an RKHS. This strategy has proven to be powerful
and flexible, yet its applicability has been limited to the standard two-sample case,
while practical situations often involve more complex experimental designs. To
extend kernel testing to any design, we propose a linear model in the RKHS that
allows for the decomposition of mean embeddings into additive functional effects.
We then introduce a truncated kernel Hotelling-Lawley statistic to test the effects
of the model, demonstrating that its asymptotic distribution is chi-square, which
remains valid with its Nystrom approximation. We discuss a homoscedasticity
assumption that, although absent in the standard two-sample case, is necessary
for general designs. Finally, we illustrate our framework using a single-cell RNA
sequencing dataset and provide kernel-based generalizations of classical diagnostic
and exploration tools to broaden the scope of kernel testing in any experimental
design.

1 Introduction

Statistical hypothesis testing has witnessed significant advancements in recent years, largely due
to the integration of kernel methods with non-parametric testing. Indeed, it has now become
common practice to develop testing procedures that involve embedding probabilistic distributions into
Reproducing Kernel Hilbert Spaces (RKHS) to assess the equality of distributions [8], dependencies
[9], causality [25], and essentially any probabilistic feature that may distinguish two populations.
Kernel testing has also facilitated the development of tests for complex data types, such as graphs and
sequences, which surpass traditional non-parametric procedures like the Wilcoxon or Kolmogorov
tests [17, 23]. Typically, kernel testing involves embedding data into a feature space using a kernel,
with the statistical test based on the distribution of the embedded data, such as means and variances. A
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significant milestone in the field was the Maximum Mean Discrepancy (MMD) test, which measures
the distance between mean embeddings of two conditions [7]. The MMD statistic asymptotically
follows a mixture of chi-square distributions, that can be approximated using permutations.

Parallel to the work of Gretton et. al [8], a studentized version of the MMD was proposed to account
for the variance of the embeddings directly in the test statistic [11], which constitutes a kernelized
version of the Hotelling-Lawley trace test [19]. This strategy results in a metric that can be interpreted
as the distance between mean embeddings projected onto the kernel-Fisher discriminant axis. In
other terms, the normalized version of the MMD reduces to the norm of a Kernel Fisher Discriminant
Analysis classifier used for non-linear hypothesis testing. The original version is based on ridge-based
regularization of the residual covariance operator [11]. This approach has recently been proven
optimal with respect to the test’s ability to best separate two distributions within a class of alternatives
[10]. These recent theoretical developments underscore the theoretical benefits of properly account
for a noise model within the RKHS to gain power in the testing procedure through studentization.
However, in practice, the ridge-based regularization test lacks interpretability and the asymptotic
distribution is complex to compute. This motivated the development of the truncation-based test that
is based on the eigen-decomposition of the residual covariance operator into T principal components
[12]. This results in a statistic that asymptotically follows a χ2(T ) distribution, which greatly
increases its applicability since it does not require permutation-based strategies, at the cost of a
O(n3) complexity. This complexity can be mitigated through Nystrom-type approximations. Despite
methodological and theoretical developments in line with the MMD framework, the application of
kernel testing in practice has been limited to the simple scenario of two-sample testing, whereas
practical situations almost always involve more complex experimental designs. If kernel testing is to
become a standard in various application areas, we need to offer extensions that are both statistically
sound and efficiently implemented.

In this work, we propose a unified framework that enables kernel testing for any experimental
design. We introduce a linear model in the RKHS that decomposes the mean embedding of observed
distributions into linear functional effects. Testing is then performed using the kernelized Hotelling-
Lawley statistic to test linear combinations of effects. Indeed, the truncated studentized-MMD can be
easily interpreted as a truncated Hotelling-Lawley test based on data embeddings. Moreover, this
connection between kernel testing and the standard multivariate framework allows us to reinterpret the
standard MMD procedure as a linear model within the RKHS, linking the mean embeddings to any
experimental design. Interestingly, according to our results, the comparison of linear combinations of
any effect (contrast testing) cannot be conducted without specific conditions on the residual covariance
operator—conditions that do not arise in the simpler two-sample test. These conditions relate to the
standard homoscedasticity hypothesis required in linear models, which states that the variance of the
noise must be independent of the expectation provided by the model. We reinterpret this hypothesis
for covariance operators in the RKHS and propose a restricted heteroscedasticity hypothesis that states
that the covariance operator of the noise is homogeneous up to its first T eigen-components. Under
this hypothesis, we provide the asymptotic distribution of the test for linear combinations of effects
(contrast tests), demonstrating that it follows a χ2 distribution that is straightforward to compute. We
also verify that this distribution remains valid when using a Nyström approximation, which enhances
the practical applicability of kernel testing. To advance the full operability of kernel testing, we
offer a comprehensive framework that benefits from powerful representations and diagnostic plots,
enabling the complete application of kernel testing in any experimental situation. Moreover, all these
quantities are implemented in our package ktest 4.

To illustrate our framework we fully analyze a dataset from single-cell transcriptomic data. Thanks to
the combination of single-cell isolation techniques and massive parallel sequencing, it is now possible
to create high-dimensional molecular portraits of cell populations [16, 26]. These advances have
resulted in the production of complex, high-dimensional data, revolutionizing our understanding of
the complexity of living tissues. The field of single-cell data science presents new methodological
challenges, key among them being the statistical comparison of single-cell RNA sequencing (scRNA-
Seq) datasets between conditions or tissues. This step is crucial for distinguishing biological from
technical variabilities and for asserting meaningful expression differences. Comparative analysis of
single-cell datasets, regardless of their type, is an essential component of single-cell data science,
providing biological insights and opening therapeutic perspectives through the identification of
biomarkers and therapeutic targets. The effectiveness of kernel testing in this context has recently

4The ktest package is available at https://github.com/LMJL-Alea/ktest.
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been demonstrated [20]; however, the practical application of kernel testing in the field hinges on the
ability to conduct a comprehensive analysis tailored to any experimental design.

2 Testing linear combinations of functional effects in the feature space

2.1 A linear model in the feature space

We consider Y = (Y1, . . . , Yn), a set of n observations from a measurable space Y , jointly recorded
with some explanatory variables encoded in the design matrix X = (x1, . . . , xn)

′ ∈ Mn,p(R), where
for i ∈ {1, . . . , n}, xi = (1, x1

i , . . . , x
p−1
i )′ ∈ Rp is the experimental design that is supposed to be

fixed. To generalize kernel testing to any experimental design we start by considering a featurization
of the response variable. For this purpose we introduce k(·, ·) : Y ×Y → R, a positive definite kernel
associated to a separable Reproducing Kernel Hilbert Space (RKHS) (H, ∥∥H) called the feature
space, and the feature map ϕ(·) : Y ∈ Y 7→ k(Y, ·) ∈ H. Then we propose a linear model in the
feature space, such that for i ∈ {1, . . . , n}, we have:

ϕ(Yi) = θ0 + x1
i θ1 + · · ·+ xp−1

i θp−1 + ei,

where E(ei) = 0H and V(ei) = Σi, the residual covariance operator. This model corresponds to
the decomposition of the mean embedding of the distribution of the response variable into linear
combination of mean embeddings Θ = (θ0, θ1, . . . , θp−1)

′ ∈ Hp that correspond to different factors.
A matrix formulation of this model can also be considered, with Φ(Y) = (ϕ(Y1), . . . , ϕ(Yn))

′ ∈ Hn,
E = (e1, . . . , en)

′ ∈ Hn, which provides the linear model in the feature space that resumes to:

Φ(Y) = XΘ+E, (1)

where we use a natural extension of the matrix product between X ∈ Mn,p(R) and Θ ∈ Hp.
Functional parameters can then be easily inferred using a least squares estimator such that

Θ̂ = (X′X)−X′Φ(Y) ∈ Hp, (2)

where (X′X)− is a generalized inverse of X′X, see Appendix B.1 for a proof. Then the predicted em-
beddings according to the model are defined as Φ̂(Y) = PXΦ(Y), where the orthogonal projection
PX = X(X′X)−X′ ∈ Mn(R) on Im(X) ⊂ Rn is also seen as an operator on Hn. The residuals
of the model are defined by Ê = (ê1, . . . , ên) = P⊥

XΦ(Y) = P⊥
XE ∈ Hn where P⊥

X = In −PX is
the orthogonal projection on Im(X)⊥.

One-way and two-way designs. We provide two examples of linear models in the feature space
that are most commonly encountered in practice. The one-way design model with I ≥ 2 levels
of sizes n1, . . . , nI with n =

∑I
i=1 ni. For i ∈ {1, . . . , I} and j ∈ {1, . . . , ni}, Yi,j stands

for the jth observation of level i. The model is such that : E(ϕ(Yi,j)) = µ + αi, where Θ =
(µ, α1, . . . , αI) are the model functional parameters. The standard two-sample test corresponds to
the model with I = 2 levels, which can easily be generalized to multiple comparisons. A natural
extension would be to consider a two-way design to introduce blocking factors for instance. In this
setting, the first effect takes I distinct values and the second one takes J distinct values, and for
i, j ∈ {1, . . . , I} × {1, . . . , J}, we observe ℓ = 1, . . . , ni,j observations associated to effects (i, j).
We propose to model these effects with the following additive linear model in the feature space:
E(ϕ(Yi,j,ℓ)) = µ+ αi + βj . We then can design contrast matrices to test if there is an influence of
the first effect and the second effect respectively, as see an application in Section 5.

Conditional Mean Embedding. For simplicity, our model is proposed for a deterministic design,
but it can also be adapted for a random design. In this latter setting, Model (1) can be easily
reinterpreted in terms of conditional mean embedding [24]. Specifically, our model assumes that
the conditional mean embedding UY |X is the linear operator mapping x ∈ Rp to x′Θ ∈ H, by
considering the identity embedding for x ∈ Rp.

2.2 Hypothesis testing with the truncated kernel Hotelling-Lawley statistic

We propose to perform hypothesis testing on the model functional parameters with a standard contrast
testing approach. Let L ∈ Rd×p a surjective matrix. As for X, L can be seen both as a linear operator
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from Rp to Rd, or as a linear operator from Hp to Hd. We use the contrast matrix L to test if a
combination of Θ is null or not and we formulate the null and alternative hypotheses as :

H0 : LΘ = 0 vs. H1 : LΘ ̸= 0.

In the setting of the multivariate linear model, several popular statistical tests exist for this type
of hypothesis. We propose to extend the Hotelling-Lawley test to the linear model in the feature
space (1), which requires considering general operators defined on Hilbert spaces. In this section we
introduce the statistic without providing all the justifications, a rigorous definition of the kernelized
Hotelling-Lawley statistic is proposed in Appendices A and B, and more specifically in Section B.2.

We first introduce the so-called test operator (Hilbert-Schmidt) associated with L:

ĤL = (LΘ̂)⋆(L(X′X)−L′)−1(LΘ̂), (3)

which generalizes the "between sum of squares" from ANOVA and the "cross products matrix" from
MANOVA models to more complex designs in the RKHS setting of this paper. Next, we define the
residual covariance operator as Σ̂ = n−1

∑n
i=1 êi ⊗ êi. The spectral theorem applies to this operator:

Σ̂ =
∑r

t=1 λ̂t

(
f̂t ⊗ f̂t

)
, where (f̂t)t≥0 is an orthonormal basis of H, where λ̂t > 0 and r is the

rank of Σ̂. We then introduce a generalized inverse for Σ̂ as Σ̂− =
∑r

t=1 λ̂
−1
t

(
f̂t ⊗ f̂t

)
. We finally

introduce the truncated kernelized Hotelling-Lawley (TKHL) statistic as

F̂T = n−1 tr
(
Σ̂−1

T ĤL

)
,

where Σ̂−1
T :=

∑T∧r
t=1 λ̂−1

t

(
f̂t ⊗ f̂t

)
is defined from Σ̂− by a spectral truncation of depth T . An

alternative ridge-based regularization has been proposed for Σ̂−, in the spirit of kernel FDA [11]. The
spectral truncation we propose has the advantages of i) providing a tractable chi-square asymptotic
distribution under the null, as we show in Theorem 1, and ii) providing a natural framework for data
and model exploration (Section 5). Computing this statistic is based on a kernel trick detailed in the
Appendix (Section F).

One-way and two-way designs. In the one-way design case, the following "one-versus-all" contrast
matrix allows us to test H0 : α1 = α2 = · · · = αI versus H1 : ∃i, i′, αi ̸= αi′ :

Lα =


0 1− n1

n −n2

n · · · −nI

n
0 −n1

n 1− n2

n · · · −nI

n
...

...
. . . . . .

...
0 −n1

n · · · 1− nI−1

n −nI

n

 (4)

When I = 2 we exactly retrieve the two-sample test, since the model writes E(ϕ(Yi,j)) = µi and
testing the null H0 : α1 = α2 resumes to testing H0 : µ1 = µ2. In this setting, the truncated
Hotelling-Lawley statistic is exactly the truncated KFDA statistic [11, 12]. Our framework provides a
straighforward generalization to the comparison of I levels thanks to the truncated Hotteling-Lawley
test. When two additive factors are present (two-way design), we can design contrast matrices to test
if one factor influences the featurized response variable independently of the other. For instance, this
allows for testing whether the blocking factor has a significant effect and thus should be considered
when evaluating the treatment factor. Our framework enables the application of reasoning similar to
that used in standard linear model procedures, thereby greatly extending the scope of kernel testing.
We provide an example in Section 5.

3 Asymptotic distribution of the TKHL statistic

We derive the asymptotic distribution of the TKHL statistic, demonstrating that it follows a chi-square
distribution under the null, thereby generalizing the known results for the HL trace statistic to the
RKHS framework. Additionally, we introduce a homoscedasticity hypothesis for the error terms, as
is typical in vectorial models, and provide a functional generalization within the RKHS by assuming
restricted homoscedasticity to the first T eigen-directions of the residual covariance operator.
Assumption 1. The covariances Σi of the errors are all identical on their T first directions: there
exists a symmetric positive operator ΣT =

∑T
t=1 λtf

⊗2
t such that Σi = ΣT + Σi,T c for all

i ∈ {1, . . . , n}, where Σi,T c =
∑

t>T λi,tf
⊗2
i,t is a symmetric positive operator.
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Assumption 2. The eigenvalues of λt of ΣT are all simple, and there exists µT+1 > 0 such that
λi,T+1 ≤ µT+1 < λT for any i ∈ {1, . . . , n}.

Under Assumptions 1 and 2 and for all i ∈ {1, . . . , n}, the eigenvalues of Σi satisfy λ1 > · · · >
λT > λT+1 ≥ λi,T+1. Next assumption require the kernel function to be bounded:

Assumption 3. The kernel is bounded : ∥k(·, ·)∥∞ = Mk < +∞.

Finally, we make the three assumptions on the design X = X(n) ∈ Mn,p(R). In the following we
will omit the dependency on n since it is clear that it depends on n.

Assumption 4. There exist Mx ∈ R such that for all n ≥ 1, the design matrix X is such that
∥X∥∞ := supi,j |xi,j | ≤ Mx.

Assumption 5. The maximal coefficient on the diagonal of PX satisfies maxi=1...n |(PX)i,i| → 0
as n tends to infinity.

Assumption 6. The sampling gives a convergent design : 1
nX

′X → W−1 ∈ Rp×p as n tends to
infinity.

Assumptions are discussed after the following Theorem which demonstrates that the asymptotic
distribution of the TKHL statistic is not only distribution-free but also tractable.

Theorem 1. Under the linear model (1) in the feature space H, assume that Assumptions 1 to 6 are
satisfied. If H0 is true then nF̂T

D−→
n→∞

χ2
dT .

Our result generalizes the asymptotic convergence of the HL trace statistic, commonly used in
multivariate linear models (see, for instance, Theorem 12.8 from [19]), to cases where data lies in a
RKHS. In this functional framework, establishing the asymptotic properties is more intricate since
the T directions used to define the TKHL are stochastic.

The proof of the Theorem is given in Appendix C, see in particular Section C.1 for a summary of the
proof. The proof relies on the convergence in probability of Σ̂ towards Σ, which we establish thanks
to a an approach inspired from [22] and [28]. This approach combines a perturbation bound with
a bounded difference theorem. In our framework we must control the residual covariance operator,
rather than a standard covariance operator as is typically done in kernel PCA.

Regarding the assumptions of the theorem, Assumption 1 relates to the classical homoscedasticity
hypothesis required in linear models, generalized here to covariance operators with a restriction on
the first T directions. This hypothesis is typically verified visually using diagnostic plots, which we
generalize for the feature space (Section 5). In scenarios where testing involves the equality of I
distributions with a characteristic kernel, the null hypothesis entails the equality of the I covariance
operators. In such cases, the homoscedasticity assumption may be omitted as specified in Theorem 1.
However, when extending this approach to general designs, maintaining the homoscedasticity as-
sumption is crucial and cannot simply be substituted with a full homoscedasticity assumption, which
demands equality of all covariances across all directions in H. Given that the covariance operator
happens to be itself a mean embedding that may characterize the distribution in certain contexts (see
for instance Proposition 1 in [1] and also [3]), a full homoscedasticity assumption would impose a
stronger condition than the null hypothesis itself.

Assumptions 2 and 3 are strong but standard hypotheses for deriving statistical results on kernel
methods. Assumption 4 is used in addition to Assumption 3 to obtain a bound on the errors and to
show that their fourth moment is finite (see Lemma 4). Note that the fourth moment of the errors are
also assumed to be finite in the standard HL test (see Theorem 12.8 from [19]).

Finally, Assumptions 5 and 6 are also needed to obtain the asymptotic distribution of the standard HL
statistic (see for instance Theorem 12.8 from [19]).

4 The Nyström TKHL statistic

The computational complexity of kernel testing based on the TKHL statistic depends on the diago-
nalization of the residual covariance operator Σ̂T , or its kernel-trick equivalent, the gram matrix Ke

of general term ⟨êi, êi′⟩H, which requires O(n3) operations. To reduce the computational burden,
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the Nyström approximation consists in finding a low-rank approximation such that Ke ≃ AA⊤

with A ∈ Mn,m(R), m ≪ n, which reduces the cost to O(m3). To choose a matrix A that ensures
the same asymptotic distribution as the original TKHL statistic, we uniformly sample q landmarks
from the n observations and define the m ≥ T first unit eigenfunctions (â1, . . . , âm) of their asso-
ciated residual covariance operator as Nyström anchors. Finally we build matrix A, as the n×m
matrix whose rows are the projections of residuals êi onto the eigenfunctions âj , with general term
Ai,j = ⟨êi, âj⟩H, i = 1, . . . , n, j = 1, . . . ,m. We then define the Nyström residual covariance
operator Σ̂a as :

Σ̂a =
1

n

n∑
i=1

êai ⊗ êai ,

where for i ∈ {1, . . . , n}, êai is the orthogonal projection of êi onto Span(â1, . . . , âm). We denote
by f̂a

1 , . . . , f̂
a
m the orthonormal eigenfunctions of Σ̂a associated to the non-increasing eigenvalues

λ̂a
1, . . . , λ̂

a
m, so that Σ̂a

T =
∑T

t=1 λ̂
a
t f̂

a
t ⊗ f̂a

t is the spectral truncation of Σ̂a. We can then introduce
as before a generalized inverse for Σ̂a

T as

Σ̂a
T
−1 =

∑
t≤T, λ̂a

t>0,

λ̂a
t

−1
f̂a
t ⊗ f̂a

t .

We finally define a Nyström version of the kernel Hotelling-Lawley Statistic as

F̂NY
T =

1

n
tr
(
Σ̂a

T
−1ĤL

)
. (5)

Note that according to this version of Nyström we don’t use the landmarks to approximate ĤL, as the
computation cost of this last is not the worst part in the TKHL statistic.

We now study the asymptotic distribution of the Nyström TKHL statistic defined in the linear model
(1). We consider the Nyström TKHL statistic defined with q landmarks, m anchors and a truncate
parameter T ≤ m. In the following the parameters T and m are fixed, contrary to n and q, and we
assume that q ≤ n. We need to rewrite Assumptions 1 and 2 according to the numbers of anchors:
Assumption 1′. The covariances Σi of the errors are all identical on their m first directions: there
exists a symmetric positive operator Σm =

∑m
t=1 λtf

⊗2
t such that for i ∈ {1, . . . , n}

Σi = Σm +Σi,T c ,

where Σi,T c =
∑

t>T λi,tf
⊗2
i,t is a symmetric positive operator.

Assumption 2′. The eigenvalues of Σm are all simple, and there exists a positive constant µm+1

such that for any i ∈ {1, . . . , n}, λi,m+1 ≤ µm+1 < λm.
Theorem 2. Under Assumptions 1′, 2′, 3, 4, 5 and 6, if H0 is true then:

nF̂NY
T

D−→
q,n→∞

χ2
dT ,

where in the convergence both q and n tends to infinity and q ≤ n.

The proof of the Theorem is given in Section D.

In the theorem, landmarks are selected uniformly from the observations. However, in practice,
choosing landmarks uniformly across observations may not always be appropriate. For instance,
when comparing unbalanced populations, under-represented groups could be over-sampled to ensure
that their within-covariance matrices are accurately estimated. This approach also improves the
accuracy of reconstructing the within covariance operator using the anchors.

5 Leveraging kernel testing in single-cell transcriptomics

Experimental design and model. We consider the analysis of a gene expression dataset5 that
consists of the expression measurements of 83 genes on 685 cells [27] . In this context single-cell

5Data are available under licence CC0, under the SRA repository number SRP076011
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transcriptomics has been performed to investigate the cell differentiation process of chicken primary
erythroid progenitor cells (T2EC). The experimental design is the following: to investigate the
impact of the medium on cell differentiation, undifferentiated cells were initially put in a self-renewal
medium (0H level of the medium effect), then put in a differentiation-inducing medium for 24h (24H).
The population was then split into a first population maintained in the same medium for an additional
24h to achieve differentiation (48HDIFF), the second population was put back in the self-renewal
medium to investigate potential reversion (48HREV). Before testing the medium effect, we must
account for the fact that data were acquired on different dates, which induces a 8-level batch effect.
We consider the linear model in the feature space:

ϕ(Yi,j,ℓ) = µ+ αi + βj + ei,j,ℓ, (6)

where Yi,j,ℓ is the vector of log-normalized expression (size 83) for cell ℓ = 1, . . . , ni,j in batch
i = 1, . . . , I , (I = 8) and medium j = 0H, 24H, 48HDIFF, 48HREV and ϕ(Yi,j,ℓ) its featurization.
Then µ is the intercept, α1, . . . , α8 are the model parameters associated to the batch effect and
β0H, β24H, β48HDIFF, β48HREV are the model parameters associated to the medium effect. Analyses were
performed with the Gaussian kernel with bandwidth calibrated by the median heuristic [6].

Diagnostic plots. In practice, any analysis based on a linear model begins with diagnostic plots that
enable the visual inspection of linearity and homoskedasticity hypotheses, as well as to perform model
checking [13, 19]. To provide such an operational framework in the feature space, we consider the
projection of the mean effects Φ̂(Y) = PXΦ(Y) and the residuals of the model Φ(Y)− Φ̂(Y) onto
the eigen-elements of the residual covariance operator Σ̂T obtained from Eq. (6). Visual inspection
on the first direction (f̂1) confirm that the assumptions of linearity and homoscedasticity in the feature
space are met (Fig. 1), also confirmed on other directions (not shown).

Testing with the TKHL statistic. We initiated our analysis by examining technical variability
in the experiment, starting with a test for batch effects before assessing the main "medium" effect,
which is of biological interest. We tested the null hypothesis of no batch effect, H0 : α1 = . . . = α8,
using the TKHL method based on the residual covariance operator associated to the one-way model
with µ and α1, . . . , α8 only and the corresponding Lα written in (4). This test revealed a significant
difference between batches (p-value = 5.06× 10−48 for T = 3). This initial finding indicates that
testing for the medium effect must be conducted after correcting for the batch effect, which, in our
setting, is achieved by testing for the medium effect, H0 : β0H = β24H = β48HDIFF = β48HREV, using
the TKHL method based on the residual covariance operator associated to (6) and a matrix Lβ|α
corresponding to (4) supplemented with columns of zeros on corresponding to α1, . . . , α8. This test
showed highly significant differences (p-value = 4.17 × 10−237 for T = 3), indicating that gene
expression varies significantly across at least one medium compared to others. To deepen the analysis,
we complemented this global test with pairwise comparisons to identify which mediums differ from
each other. For this, we considered the pairwise hypotheses Hj,j′

0 : βj = βj′ , using for instance
L0H,24H = (0, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). It revealed that the two closest mediums are 0H and
48HREV (p-value = 6.9× 10−26 for T = 3, after Bonferroni adjustment for multiple comparison) and
that the most distinct mediums are 0H and 48HDIFF (p-value = 9.95× 10−198 for T = 3, Bonferroni
adjusted).

Representation of the linear decomposition. To enhance the visual exploration of our model in
the feature space, we propose a representation of the observations based on the linear decomposition
suggested by our model. We extend the approach commonly employed in Kernel Fisher Discriminant
Analysis (KFDA), which involves inspecting the empirical density of observations projected onto
the discriminant axis [20]. Specifically, for the linear model in the feature space, we consider the
eigen-directions of the operator Σ̂−1

T ĤL, used to test the "batch" effect. Although this operator has
a rank of I − 1, we simplify our analysis by focusing on the projection of observations onto its
first direction (Fig. 1) that we call the discriminant axis. We believe this representation provides
a powerful visualization of the variability of the data with respect to the linear decomposition of
the mean embedding. When applied to single-cell transcriptomic data, this visualization initially
demonstrates that despite the statistical significance of the "batch" effect, cells from different batches
appear closely positioned on the discriminant axis dedicated to the batch effect, suggesting minimal
practical differences between batches. Subsequently, when applied to the operator used for assessing
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Figure 1: Top: Response plot (left) and residual plot (right) associated to t = 1. The identity (left) and
horizontal axis (right) are in black. Colors correspond to the medium effect. Bottom : Discriminant
axes associated to testing for the batch effect (left) and the medium effect (right).

the "medium" effect, the visualization underscores the proximity of cells in the initial medium (0H,
blue) to those returned to the self-renewal medium (48HREV, purple), indicating a reversal in their
differentiation. Cells from other mediums (24H, green; 48HDIFF, red) are organized chronologically
along the discriminant axis dedicated to the medium effect, which may then be interpreted as a
differentiation trajectory of cells over time.

Detecting influential observations with the kernelized Cook distance. We conclude our analysis
by proposing a kernelized version of the Cook’s distance that is classically used to detect influential
observations in linear models [5]. Denoting by Θ̂(i) the estimated parameters obtained when ignoring
the ith observation, we propose a kernelized Cook’s distance adapted to any linear combination of Θ̂
to match with the TKHL test we perform, such that:

DL =
1

d
tr
(
(L(Θ̂− Θ̂(i)))

′ Cov(LΘ̂)−1(L(Θ̂− Θ̂(i)))
)
,

where we can show that Cov(LΘ̂) =
(
(L(X′X)−L′)h,h′Σ

)
h,h′∈{1,...,p}. The proofs of the results

and the details of the computation of the kernel Cook’s distance are developed in Appendix F.3. We
conclude our analysis by displaying DLβ |α according to the position of cells along the discriminant
axis (Fig. 2) to identify observations that leverage the medium effect. Our results show that the most
influential observations are cells from mediums 0H and 48HREV, positioned at the right margin of
the discriminant axis. This positioning may indicate cells with unexpected gene expression patterns
in relation to the differentiation process. Since the interpretability of kernel methods relies solely
on individual observations rather than input features, identifying outlier observations is crucial in
practice to fully exploit the potential of the linear model in the feature space.

6 Discussion and Limitations

Here, we introduce a novel framework that generalizes the standard two-sample kernel test to ac-
commodate any general design, thereby significantly expanding the applicability of kernel mean
embedding to practical experimental designs. Our approach combines the benefits of linear mod-
els—particularly in terms of the interpretability of the linear decomposition of mean embeddings
in the RKHS—with the proven power of non-parametric kernel testing. The statistic we propose
constitutes a functional generalization of the Hotelling-Lawley trace test and can also be easily
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Figure 2: Influence of the observations with respect to the position of their projection on the first
generalized discriminant directions associated to the Hotelling-Lawley operator used to test the effect
of the medium with T = 3.

understood as a ratio between the model-driven variance operator and the residual variance operator.
Additionally, classical strategies such as Wilk’s Lambda, Pillai’s Trace, and Roy’s Largest Root,
which are all based on the two operators ĤL and Σ̂, could also be easily adapted to the RKHS
framework. The connection we propose between linear models and kernel testing allows us to enrich
kernel testing with well established diagnostic and exploratory tools, extending the applicability and
interpretability of kernel testing.

Our theoretical work establishes that the truncated kernel Hotelling-Lawley (TKHL) statistic asymp-
totically follows a chi-square distribution under the null hypothesis. From a computational standpoint,
regularization via truncation proves more tractable than ridge penalization. This advantage is further
underscored by our second theorem, which demonstrates that this asymptotic behavior also holds
true for the Nyström version of the TKHL, thereby extending its applicability to large datasets where
such assumptions are practical. Although permutations offer an alternative strategy for computing
quantiles of the null distribution, the complexity of studentized functional contrast testing, which
scales as O(n3), makes easily computed approximations essential, if not indispensable, for handling
large data.

Regarding the selection of landmarks in the Nyström procedure, the generalization of kernel testing
to any design presents a new challenge: selecting landmarks that accurately reflect the variability
induced by the experimental design. Traditional uniform sampling should be adapted to incorporate
more advanced approaches. For example, Determinantal Point Processes can be used to sample
landmarks for the Nyström method [15], which could hopefully lead to an increase in the power of
the downstream testing procedure.

In future work, we plan to conduct a non-asymptotic analysis of our test procedure, similar to recent
minimax power results achieved in ridge-regularized scenarios [10]. This direction could pave the
way for theoretically grounding the choice of the truncation hyper-parameter, currently determined
empirically. Another promising avenue involves establishing a link between the linear decomposition
we propose in the RKHS and the initial distributions compared in the input space. This link is
guaranteed in the two-sample case by the injectivity of the feature map and the characteristic property
of the kernel. Yet, the relationship between the linear functional effects and their distributional
counterparts in the feature space remains to be elucidated.

Finally, our current example employs a Gaussian kernel calibrated by the median heuristic, but our
flexible framework could potentially incorporate aggregation strategies to broaden the choice of
kernels, as suggested by recent studies [21].
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A Operators on H and on Hk

In this section, we provide notation and we define properly all the objects involved in the definition
of the TKHL statistic.

A.1 Operators on H

Let (H, ⟨, ⟩H) be a separable Hilbert space. A linear operator C from H to H is called Hilbert-
Schmidt if

∑
i≥1 ∥Cfi∥2H < ∞, where (fi)i≥1 is an orthonormal basis of H, and in this case the

sum is independent of the chosen orthonormal basis. The set of Hilbert-Schmidt operators HS(H)
endowed with the inner product

⟨C, T ⟩HS(H) =
∑
i≥1

⟨Cfi, Tfi⟩H =
∑
i,j≥1

⟨Cfi, fj⟩H⟨Tfi, fj⟩H

is also an Hilbert space.

A linear operator C on H is called self-adjoint if ⟨Cg, h⟩H = ⟨g, Ch⟩H for any (g, h) ∈ H2. A linear
operator C on H is called class-trace if

∑
i≥1 |⟨Cfi, fi⟩H| < ∞. In this case the sum is independent

of the chosen orthonormal basis and the trace of C is defined as
tr(C) =

∑
i≥1

⟨Cfi, fi⟩H.

A finite rank operator is trace-class, and a trace-class operator is Hilbert-Schmidt.

For (f, g) ∈ H \ 0, we consider the rank one operator f ⊗ g defined by
h ∈ H 7→ f ⊗ g(h) = ⟨g, h⟩Hf ∈ H,

and we have ∥f ⊗ f∥HS(H) = ∥f∥2H and ∥f ⊗ g∥HS(H) ≤ ∥f∥H∥g∥H.

A.2 Norm and operators on Hk

Let k ∈ N∗. We first introduce a scalar product on Hk in a natural way by

⟨g,h⟩Hk :=

k∑
j=1

⟨gj , hj⟩H

for g = (g1, . . . , gk) ∈ Hk and h = (h1, . . . , hk) ∈ Hk. We denote by ∥ ∥Hk the associated norm
on Hk.

We are now in position to define rigorously all the operators that appears in the HL statistic F̂T . A
matrix X ∈ Mn,k(R) is also seen as a linear application from Hk to Hn: for g ∈ Hk, Xg ∈ Hn

and

(Xg)i =

k∑
j=1

xi,jgj i = 1, . . . n. (7)

We next define rigorously the adjoint operator that appears in the HL statistic. For g ∈ Hk, we
consider the associate application between the two Hilbert Spaces HS(H) and Hk defined by

g : A ∈ HS(H) 7→ gA = (Ag1, . . .Agk)
′ ∈ Hk.

The application u : (A,h) ∈ HS(H) × Hk 7→ ⟨gA,h⟩Hk is clearly a sesquilinear form and it is
also bounded because

|u(A,h)| ≤ ∥gA∥Hk∥h∥Hk

≤
k∑

j=1

∥Agj∥H∥h∥Hk

≤
k∑

j=1

∥A∥∥gj∥H∥h∥Hk

≤

 k∑
j=1

∥gj∥H

 ∥A∥HS(H)∥h∥Hk .
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We can therefore consider the adjoint operator of this application (see for instance Theorem 2.2 in
[4]), which is denoted by g⋆ : Hk 7→ HS(H) and we check that g⋆ is actually the operator:

g⋆ : h ∈ Hk 7→ g⋆h =

k∑
i=1

gi ⊗ hi ∈ HS(H). (8)

Indeed, for any (h,A) ∈ Hk ×HS(H), on the one hand, by definition of gA we have

⟨gA,h⟩Hk =

k∑
i=1

⟨Agi, hi⟩H

=

k∑
i=1

∑
j,ℓ

⟨gi, fj⟩H⟨hi, fℓ⟩H⟨Afj , fℓ⟩H,

where (fj)j≥1 is an orthonormal basis of H so gi =
∑

j≥1⟨gi, fj⟩Hfj and hi =
∑

ℓ≥1⟨hi, fℓ⟩Hfℓ.
on the other hand,

⟨A,

k∑
i=1

gi ⊗ hi⟩HS(H) =
∑
j,ℓ

⟨Afj , fℓ⟩H

〈
k∑

i=1

gi ⊗ hifj , fℓ

〉
H

=
∑
j,ℓ

k∑
i=1

⟨Afj , fℓ⟩H⟨gifj⟩H⟨hi, fℓ⟩H.

and we have checked that ⟨gA,h⟩Hk = ⟨A,g⋆h⟩HS(H).

With above definition, for g,h ∈ Hk and M =
(
mi,j

)
i,j∈{1,...,k} ∈ Mk(R), we then we have that:

g⋆Mg =

k∑
i,j=1

mi,jgi ⊗ gj ∈ HS(H), (9)

We also check that the operator gh⋆ : Hk 7→ Hk is exactly the linear operator defined by the matrix
(as in (7)):

gh⋆ :=
(
⟨gi, hj⟩H

)
i,j∈{1,...,k} ∈ Mk(R).

For v = (v1, . . . , vk) ∈ Rk and g ∈ Hk, we will abuse the notation of matrix multiplication by
defining v′g for the linear combination of the elements of g with weights v:

v′g =

k∑
i=1

vigi ∈ H.

For any v, w ∈ Rk, we then have that

⟨v′g, w′h⟩H = v′(gh⋆)w.

For g ∈ Hk, we finally define the linear application

h ∈ H 7→ gh =
(
⟨g1, h⟩H , . . . , ⟨gk, h⟩H

)′ ∈ Rk.

B Linear model in the feature space H

B.1 Least squares estimation on the linear model in the feature space

We check that the estimator given in (2) is the least squares estimator of Θ in the model (1) for this
norm on Hn. The Hilbert space H being separable, let us consider (gs)s≥1 an orthonormal basis of
H. For s ≥ 1 and h ∈ H, we define hs = ⟨h, gs⟩H such that h =

∑
s≥1 h

sgs. From the definition
of the norm ∥ ∥Hn , we easily find that the least squares problem in Hn reduces to a collection of
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independent and classical univariate least squares problems: for Θ = (Θ0, . . . ,Θp−1)
′ ∈ Hp where

Θj =
∑

s≥1 θ
s
jgs, then

∥Φ(Y)−XΘ∥2Hn =
∑

i=1...n

∥ϕ(Yj)− x′
iΘ∥2H

=
∑

i=1...n

∑
s≥1

∣∣∣∣∣∣ϕ(Yj)
s −

∑
j=0...p−1

xi,jθ
s
j

∣∣∣∣∣∣
2

=
∑
s≥1


∑

i=1...n

∣∣∣∣∣∣ϕ(Yj)
s −

∑
j=0...p−1

xi,jθ
s
j

∣∣∣∣∣∣
2


=
∑
s≥1

∥Φ(Y)s −XΘs∥2Rn .

As X is assumed to be full rank, the least squares estimator of Θs = (θs0, . . . , θ
s
p−1)

′ ∈ Rp is given
by Θ̂s = (X′X)−X′Φ(Y)s. From this, we deduce that for the least square estimation of the linear
model (1), we have

Θ̂ = (X′X)−X′Φ(Y).

Moreover, the predictions in the linear model (1) are defined as Φ̂(Y) = X(X′X)−X′Φ(Y) =
PXΦ(Y) where PX = (πi,j)1≤i,j≤n is the (matrix of the) orthogonal projection on Im(X) in
(Rn, ∥ ∥2). We also define the residuals as Ê = (ê1, . . . , ên) satisfy Ê = P⊥

XΦ(Y) = P⊥
XE ∈ Hn,

where P⊥
X = In −PX = (π⊥

i,j)1≤i,j≤n is the orthogonal projection on Im(X)⊥.

According to the following lemma, we check that the matrices PX and P⊥
X can be seen as orthogonal

matrices in Hn.
Lemma 1. Let P an orthogonal projection in (Rn, ⟨, ⟩2). Then P is also an orthogonal projection
in (Hn, ⟨, ⟩Hn). In particular, ∥P f∥Hn ≤ ∥f∥Hn for any f ∈ Hn.

Proof. We easily check that for any f ∈ Hn, P (P f) = (PP )f = P f . Thus P is also a projection
on Hn. Next, it can be easily checked that for any (v, w) ∈ (Rn)2, and (f ,g) ∈ (Hn)2,

⟨(v′v)f , (w′w)f⟩Hn = ⟨v′f , w′f⟩H⟨v, w⟩Rn . (10)

and
⟨(v′v)f ,g⟩Hn = ⟨f , (v′v)g⟩Hn . (11)

since P is an orthogonal projection in (Rn, ∥ ∥2), we can write P =
∑r

i=1 viv
′
i where (vi)i=...r is an

orthonormal basis of Im(P ) in Rn. From (10) and (11), we easily find that ⟨P f ,g⟩Hn = ⟨f ,Pg⟩Hn .

B.2 The KHL and TKHL statistics are well defined

The test operator associated to L is defined as

ĤL = (LΘ̂)⋆(L(X′X)−L′)−1(LΘ̂),

where L = (Lj
ℓ)ℓ∈{1,...,d},j∈{1,...,p} ∈ Rd×p is a surjective matrix.

Note that that ĤL is a well-defined Hilbert-Schmidt operator. Indeed, Θ̂ ∈ Hn, and according to
(7), LΘ̂ ∈ Hd. Next, the matrix L(X′X)−L′ is an d× d invertible matrix because L is surjective.
According to (9), ĤL ∈ HS(H) and can be written as

ĤL =

d∑
i,j=1

ci,j(LΘ̂)i ⊗ (LΘ̂)j ,

where C = (L(X′X)−L′)−1. It is also a finite rank and class-trace operator.
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The residual covariance operator Σ̂ = 1
n

∑n
i=1 êi ⊗ êi is clearly a bounded and finite rank operator,

it is thus compact. It is also self-adjoint and thus according to the spectral theorem there exists an
orthonormal basis of H consisting of eigenvectors of Σ̂. It can then we written as

Σ̂ =

r∑
t=1

λ̂t

(
f̂t ⊗ f̂t

)
with λ̂t ̸= 0 and where r is the rank of Σ̂. Moreover Σ̂ is obviously positive semi-definite positive,
thus λ̂t > 0 for any non null eigenvalue, and we will assume that they are indexed in decreasing order.
We then introduce a generalized inverse for Σ̂ as

Σ̂− =

r∑
t=1

1

λ̂t

(
f̂t ⊗ f̂t

)
,

which is also a positive semi-definite bounded and finite rank self-adjoint operator on H.

The operator Σ̂−ĤL is thus trace-class as Σ̂− is bounded and ĤL is trace-class. We can thus define
the kernalized Hotelling-Lawley statistic as

F̂ = tr(n−1Σ̂−ĤL),

where tr is the trace operator on H. The spectral regularization of parameter T ≤ r is defined as:

Σ̂−1
T =

T∑
t=1

1

λ̂t

(
f̂t ⊗ f̂t

)
. (12)

It is also a positive semi-definite bounded and finite rank self-adjoint operator on H. The Truncated
kernel Hotelling-Lawley (TKHL) trace statistic can thus be finally defined as

F̂T = tr

(
1

n
Σ̂−1

T ĤL

)
.

C Proof of Theorem 1

This section is dedicated to the proof of Theorem 1. The first subsection gives a summary of the
proof. We then provide the main tools for the proof in Propositions 1, 2 and 3.

In this section, we consider the linear model (1) in the feature space H.

C.1 Main proof of Theorem 1

First, we define an alternative truncated Hotelling-Lawley trace based on the true covariance
structure shared between the errors ΣT instead of Σ̂T , such that F̃T = tr(Σ−1

T ĤL), where
Σ−1

T =
∑T

t=1 λ
−1
t

(
ft ⊗ ft

)
is well defined according to Assumption 2. We have :

|F̂T − F̃T | =

∣∣∣∣tr( 1

n

(
Σ̂−1

T − Σ−1
T

)
ĤL

)∣∣∣∣
=

∣∣∣∣∣
〈(

Σ̂−1
T − Σ−1

T

)
,
1

n
ĤL

〉
HS(H)

∣∣∣∣∣
≤

∥∥∥Σ̂−1
T − Σ−1

T

∥∥∥
HS(H)

∥∥∥∥ 1nĤL

∥∥∥∥
HS(H)

.

Let P⊥
X = In − PX = (π⊥

i,j)1≤i,j≤n the orthogonal projection on Im(X)⊥. We define Σ̄n =

ΣT + 1
n

∑n
i=1 π

⊥
i,iΣi,T c . By applying a bounded differences Theorem, under Assumptions 1, 3 and

4, Proposition 2 provides an exponential bound on to
∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

. Following the approach of
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[28], we can then we make use of results from operator perturbation theory to derive the exponential
bound on

∥∥∥Σ̂−1
T − Σ−1

T

∥∥∥
HS(H)

given in Proposition 3.

We then show in Lemma 2 that n−1ĤL is bounded under Assumptions 1 and 3, and we can conclude
that F̂T

P−→ F̃T as n tends to infinity. It only remains to derive the asymptotic distribution of F̃T .

Proposition 1 shows that F̃T corresponds to a standard Hotelling-Lawley Statistic in RT . We then
invoke a result from the literature (see for instance Theorem 12.8 from [19]) to find that if H0 is true,
then nF̃T

D−→ χ2
dT as n tends to infinity.

C.2 Statistics for the test operator

Proposition 1. Under Assumptions 1, 3, 4, 5 and 6, if H0 is true then we have:

nF̃T = tr(Σ−1
T ĤL)

D−→
n→∞

χ2
dT .

Proof. We recall that the ith equation of the linear model (1) can be written as

ϕ(Yi) = x′
iΘ+ ei,

where Eei = 0. According to Assumption 1, we have Cov(ei) = Σi = ΣT + Σi,T c , and
ΣT =

∑T
t=1 λtft ⊗ ft where f1, . . . , fT is an orthonormal set of eigenfunctions of ΣT associ-

ated to the eigenvalues λ1, . . . , λT . For t ∈ {1, . . . , T} and h ∈ H, we define ht = ⟨h, ft⟩H.
For i ∈ {1, . . . , n}, let Zi = (ϕ(Yi)

1, . . . , ϕ(Yi)
T ) in RT , βi = (θ1i , . . . , θ

T
i ) in RT and

β = (β0, . . . , βp−1)
′ ∈ Mp,T (R). We also define εi = (e1i , . . . , e

T
i ) in RT . The projection of

the ith equation of the linear model (1) on Span(f1, . . . , fT ) ⊂ H is:

Zi = x′
iβ + εi.

We recognize a multivariate linear model in RT that has the matrix form:

Z = Xβ + ε, (13)

where Z = (Z1, . . . , Zn)
′ ∈ Mn,T (R) and ε = (ε1, . . . , εn)

′ ∈ Mn,T (R). Remark that the errors
ε1, . . . , εn are independant with Eε1 = 0 and same covariance matrix ST = (σt,t′)t,t′∈{1,...,T} ∈
MT (R). For i ∈ {1, . . . , n} and t, t′ ∈ {1, . . . , T}, we have:

σt,t′ =E(etiet
′

i )

=E ⟨ei, ft⟩H ⟨ei, ft′⟩H
= ⟨ft,E(ei ⊗ ei)ft′⟩H
= ⟨ft,Σift′⟩H .

By construction, as t′ ∈ {1, . . . , T}, ft′ is an eigenvector of Σi associated to the eigenvalue λt′ , thus
according to Assumption 1,

σt,t′ =λt′ ⟨ft, ft′⟩H

=

{
λt if t = t′

0 otherwise.

Thus, we have ST = diag(λ1, . . . , λT ) where λj > 0, j = 1, . . . , T .

In the multivariate linear model (13), the least squares estimator β̂ = (β̂0, . . . , β̂p−1)
′ ∈ Mp,T (R)

of β is defined by

β̂ = (X′X)−X′Z.

By developing Z in this equation, it can be easily checked that that for j ∈ {1, . . . , p}, β̂j =

(θ̂1j , . . . , θ̂
T
j )

′ ∈ RT . Moreover, the covariance matrix ST , which is by definition diagonal can be
estimated by ŜT = diag(λ̂1, . . . , λ̂T ) where λ̂j is the empirical variance of the Zi,j’s.

16



In this multivariate linear model (13), the Hotelling-Lawley trace associated to the hypotheses
H̃0 : Lβ = 0Rd versus H̃1 : Lβ ̸= 0Rd is defined by

Gn = trace

(
1

n
Ŝ−1
T ĤL,T

)
,

where ĤL,T = (Lβ̂)′(L(X′X)−L′)−1(Lβ̂) ∈ MT (R). Note that in Gn we use the trace operator
trace defined on MT (R), to distinguish it from the trace tr defined on the HS operators on H.

We now check that the assumptions of Theorem 12.8 from [19] are satisfied (in particular Assumption
D1 in this theorem). First, Assumption 1 provides the homoscedasticity assumption in RT . Next,
Assumptions 3 and 4 are sufficient to guarantee that the errors are bounded (see Lemma 4) and thus
the εi have obviously a finite fourth moment. Finally, Assumption 5 provides the control of the
coefficient on the diagonal of PX, and the convergence of 1

nX
′X is provided by Assumption 6. All

this gives that if H0 is true, then

nGn
D−→

n→∞
χ2
dT .

In particular, in the proof of the above result, it is also shown that

nG̃n = trace(S−1
T ĤL,T )

D−→
n→∞

χ2
dT .

Thus, it remains to check that F̃T = G̃n to complete the proof.

We denote C = (L(X′X)−L′)−1 = (ci,j)i,j∈{1,...,p} ∈ Mp(R), and then ĤL,T = (Lβ̂)′C(Lβ̂) =∑p
i,j=1 ci,j(Lβ̂)i(Lβ̂)

′
j . For i, j ∈ {0, . . . , p− 1}, we have:

S−1
T (Lβ̂)i(Lβ̂)

′
j =

λ−1
1 (Lβ̂)1i (Lβ̂)

1
j . . . λ−1

1 (Lβ̂)1i (Lβ̂)
T
j

...
. . .

...
λ−1
T (Lβ̂)Ti (Lβ̂)

1
j . . . λ−1

T (Lβ̂)Ti (Lβ̂)
T
j

.

Then nG̃n = trace
(
S−1
T ĤL,T

)
=
∑p−1

i,j=0 ci,j
∑T

t=1 λ
−1
t θ̂ti θ̂

t
j . On the other hand, we have that

nF̃T = tr
(
Σ−1

T ĤL

)
=
〈
ĤL,Σ

−1
T

〉
HS(H)

because Σ−1
T =

∑T
t=1 λ̂

−1
t f̂t ⊗ f̂t is self-adjoint and

finite rank. Thus,

nF̃T =

p−1∑
i,j=0

T∑
t=1

ci,jλ
−1
t

〈
ft ⊗ ft, (LΘ̂)i ⊗ (LΘ̂)j

〉
HS(H)

=

p−1∑
i,j=0

T∑
t=1

ci,jλ
−1
t

〈
ft, (LΘ̂)i

〉
H

〈
ft, (LΘ̂)j

〉
H

=

p−1∑
i,j=0

T∑
t=1

ci,jλ
−1
t (LΘ̂)ti(LΘ̂)tj

=nG̃n.

Lemma 2. Under Assumptions 3 and 4, if H0 is true, then we have:∥∥∥∥ 1nĤL

∥∥∥∥
HS(H)

≤ M2
e ,

where where Me =
√
Mk + pMx max

j∈{1,...,p}
∥θj∥H.

Proof. We inject the expression of Θ̂ in the expression of ĤL:

ĤL = (L(X′X)−X′Φ(Y))⋆(L(X′X)−L′)−1(L(X′X)−X′Φ(Y))
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According to the linear model (1), we have

L(X′X)−X′Φ(Y) = LΘ+ L(X′X)−X′E.

The term LΘ is null under H0. Then we can write:

ĤL = E⋆DE

where D = X(X′X)−L′(L(X′X)−L′)−1L(X′X)−X′ = (di,j)i,j∈{1,...,n} ∈ Mn(R) is an orthog-
onal projector (of Rn), as D′ = D and D2 = D. Thus we can write ĤL = E⋆D′DE. Moreover, it
can be easily checked that (DE)⋆ = E⋆D′. Thus we have:∥∥∥ĤL

∥∥∥
HS(H)

= ∥(DE)⋆(DE)∥HS(H)

≤
n∑

i=1

∥(DE)i ⊗ (DE)i∥HS(H)

≤
n∑

i=1

∥(DE)i∥2H = ∥DE∥2Hn .

By Lemma 1, we have ∥DE∥Hn ≤ ∥E∥Hn , thus, according to Lemma 4, we have :∥∥∥ĤL

∥∥∥
HS(H)

≤∥E∥2Hn

≤
n∑

i=1

∥ei∥2H

≤nM2
e .

Thus we have
∥∥∥n−1ĤL

∥∥∥
HS(H)

≤ M2
e .

C.3 Probability bound on the residual covariance

We define Σ̄n = ΣT + 1
n

∑n
i=1 π

⊥
i,iΣi,T c . Next Proposition is adapted from [22] and [28]. An

obvious consequence of Proposition 2 is that Σ̂− Σ̄n tends to 0 in probability as n tends to infinity.
Proposition 2. If Assumptions 1, 3 and 4 are satisfied, then we have with probability 1− e−ξ:∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

≤ p

n
∥ΣT ∥HS(H) +

M2
e√
n

(
1 + 4

√
3ξ

2

)
=: ζ(n, ξ), (14)

where Me = M
1
2

k +Mx max
j∈{1,...,p}

∥θj∥H.

Proof. We observe that:∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

=
∥∥∥Σ̂− EΣ̂ + EΣ̂− Σ̄n

∥∥∥
HS(H)

≤
∥∥∥Σ̂− EΣ̂

∥∥∥
HS(H)

+
∥∥∥EΣ̂− Σ̄n

∥∥∥
HS(H)

.

We know from Lemma 3 that:∥∥∥EΣ̂− Σ̄n

∥∥∥
HS(H)

=

∥∥∥∥n− p

n
ΣT − ΣT

∥∥∥∥
HS(H)

=
p

n
∥ΣT ∥HS(H) .

To apply the McDiarmid Inequality (see Theorem 3), we introduce to the function:

Hn −→ R
f : E 7−→

∥∥∥Σ̂− E(Σ̂)
∥∥∥
HS(H)

.
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Let i0 ∈ {1, . . . , n}, E = (e1, . . . , en) and Ẽi0 = (ẽ1, . . . , ẽn) in Hn such that ei0 ̸= ẽi0 and
∀i ̸= i0, ei = ẽi. Lemma 5 gives us that:

|f(E)− f(Ẽi0)| ≤
2Me

n

(
Me + ∥(PXE)i0∥H +

∥∥∥(PXẼ)i0

∥∥∥
H

)
=: ci0

and thus
n∑

i0=1

c2i0 ≤ 16M4
e

n
+

16M2
e

n2

n∑
i0

∥(PXE)i0∥
2
H +

16M2
e

n2

∥∥∥(PXẼ)i0

∥∥∥2
H

(15)

≤ 16M4
e

n
+

16M2
e

n2
∥PXE∥2Hn

+
16M2

e

n2

∥∥∥PXẼ
∥∥∥2
Hn

(16)

According to Lemmas 1 and 4, ∥PXE∥Hn ≤ ∥E∥Hn ≤
√
nMe and finally

∑n
i0=1 c

2
i0

≤ 48M4
e

n .

According to McDiarmid Inequality to f , we have with probability 1− e−ξ:∥∥∥Σ̂− EΣ̂
∥∥∥
HS(H)

≤ E
∥∥∥Σ̂− EΣ̂

∥∥∥
HS(H)

+ 4M2
e

√
3ξ

2n
.

By Lemma 6, we bound the expectation term to obtain that with probability 1− e−ξ:∥∥∥Σ̂− EΣ̂
∥∥∥
HS(H)

≤ M2
e

√
n− p

n
+ 4M2

e

√
3ξ

2n

≤ M2
e√
n

(
1 + 4

√
3ξ

2

)
.

Lemma 3. Under Assumption 1, we have that:

E(Σ̂) =
n− p

n
ΣT +

1

n

n∑
i=1

π⊥
i,iΣi,T c .

Proof. The i-th residual can be written as êi =
∑n

j=1 π
⊥
i,jej . where π⊥

i = (π⊥
i,1, . . . , π

⊥
i,n)

′ ∈ Rn is
the ith column of P⊥

X. Since P⊥
X is an orthogonal projector, we have

∀j ∈ {1, . . . , n},
n∑

i=1

π⊥
i,j

2
= π⊥

j,j . (17)

Consequently, the expectation is such that:

E(Σ̂) =
1

n
E(

n∑
i=1

êi ⊗ êi)

=
1

n

n∑
i=1

n∑
j=1

n∑
k=1

π⊥
i,jπ

⊥
i,kE(ej ⊗ ek)

=
1

n

n∑
i=1

 n∑
j=1

π⊥
i,j

2E(ej ⊗ ej) +
∑
j ̸=k

π⊥
i,jπ

⊥
i,kE(ej)⊗ E(ek)

 .

Then, for j ∈ {1, . . . , n},E(ej) = 0. We use Assumption 1 to obtain :

E(Σ̂) =
1

n

n∑
i,j=1

π⊥
i,j

2
(ΣT +Σj,T c)

=
n− p

n
ΣT +

1

n

n∑
j=1

π⊥
j,jΣj,T c

where we apply Lemma 8 and Equation (17) to obtain the last equality.
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Lemma 4. If Assumptions 3 and 4 are satisfied, then for i ∈ {1, . . . , n},

∥ei∥H < Me :=
√
Mk + pMx max

j∈{1,...,p}
∥θj∥H .

Proof. We have:

∥ei∥H = ∥ϕ(Yi)− (XΘ)i∥H
≤∥ϕ(Yi)∥H + ∥(XΘ)i∥H

From Assumption 3, we know that ∥ϕ(Yi)∥H ≤
√
Mk, and from the triangular inequality, we have:

∥(XΘ)i∥H =

∥∥∥∥∥∥
p−1∑
j=0

θjx
j
i

∥∥∥∥∥∥
H

≤ pMx max
j∈{0,...,p−1}

∥θj∥H

and the sum of the two bounds gives the result.

Lemma 5. Let E, Ẽi0 and f defined as in the proof of Proposition 2. Under Assumptions 3 and 4 we
have:

|f(E)− f(Ẽi0)| ≤
2Me

n

(
Me + ∥(PXE)i0∥H +

∥∥∥(PXẼ)i0

∥∥∥
H

)
,

where Me is defined in Lemma 4.

Proof. Denote Σ̃ = 1
n

∑n
i=1 ẽi ⊗ ẽi, we have:

|f(E)− f(Ẽi0)| =
∣∣∣∣∥∥∥Σ̂− E(Σ̂)

∥∥∥
HS(H)

−
∥∥∥Σ̃− E(Σ̂)

∥∥∥
HS(H)

∣∣∣∣
≤
∥∥∥Σ̂− Σ̃

∥∥∥
HS(H)

.

As êi = ei − π′
iE where πi is the i-th column (or row) of PX, we have:

Σ̂ =
1

n

n∑
i=1

ei ⊗ ei −
1

n

n∑
i=1

ei ⊗ (π′
iE)− 1

n

n∑
i=1

(π′
iE)⊗ ei +

1

n

n∑
i=1

(π′
iE)⊗ (π′

iE).

As PX is an orthogonal projector, we have that PX = P′
X = P2

X. Thus for i, j ∈ {1, . . . , n}, we
have πi,j = πj,i and

∑n
k=1 πi,kπj,k = πi,j . Then by developing each term π′

iE =
∑n

j=1 πi,jej , we
obtain that:

1

n

n∑
i=1

ei ⊗ (π′
iE) =

1

n

n∑
i=1

(π′
iE)⊗ ei =

1

n

n∑
i=1

(π′
iE)⊗ (π′

iE).

It leads to:

Σ̂ =
1

n

n∑
i=1

ei ⊗ ei −
1

n

n∑
i=1

ei ⊗ (π′
iE).

We replace Σ̂ and Σ̃ by this expression and use the triangular inequality to obtain:

|f(E)− f(Ẽi0)| ≤
1

n

∥∥∥∥∥
n∑

i=1

ei ⊗ ei − ẽi ⊗ ẽi

∥∥∥∥∥
HS(H)

+
1

n

∥∥∥∥∥
n∑

i=1

ẽi ⊗ (π′
iẼ)− ei ⊗ (π′

iE)

∥∥∥∥∥
HS(H)︸ ︷︷ ︸

=A

.

The first term is such that:

1

n

∥∥∥∥∥
n∑

i=1

ei ⊗ ei − ẽi ⊗ ẽi

∥∥∥∥∥
HS(H)

=
1

n
∥ei0 ⊗ ei0 − ẽi0 ⊗ ẽi0∥HS(H)

≤ 2M2
e

n
. (18)
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The second term can be decomposed as:

A =
1

n

∥∥∥∥∥∥
n∑

i=1,i̸=i0

ei ⊗
(
(π′

i(Ẽ−E)
)
+ ẽi0 ⊗ (π′

i0Ẽ)− ei0 ⊗ (π′
i0Ẽ)

∥∥∥∥∥∥
HS(H)

=
1

n

∥∥∥∥∥
n∑

i=1

ei ⊗
(
(π′

i(Ẽ−E)
)
+ (ẽi0 − ei0)⊗ (π′

i0Ẽ)

∥∥∥∥∥
HS(H)

≤ 1

n

∥∥∥∥∥
n∑

i=1

ei ⊗
(
π′
i(Ẽ−E)

)∥∥∥∥∥
HS(H)︸ ︷︷ ︸

A1

+
1

n

∥∥∥(ẽi0 − ei0)⊗ (π′
i0Ẽ)

∥∥∥
HS(H)︸ ︷︷ ︸

A2

.

We first bound A1. Note that par definition of Ẽ, we have π′
i(Ẽ − E) = πi,i0(ẽi0 − ei0) and

thus
∑n

i=1 ei ⊗
(
(π′

i(Ẽ−E)
)
=
∑n

i=1 ei ⊗ (πi,i0(ẽi0 − ei0)) = (
∑n

i=1 πi,i0ei) ⊗ (ẽi0 − ei0) =

(PXE)i0 ⊗ (ẽi0 − ei0). From this we obtain that

A1 ≤ 1

n
∥(PXE)i0 ⊗ (ẽi0 − ei0)∥HS(H)

≤ 2Me

n
∥(PXE)i0∥H

Regarding A2, by noting that π′
i0
Ẽ = (PXẼ)i0 , we get that A2 ≤ 2Me

n

∥∥∥(PXẼ)i0

∥∥∥
H

and thus

A ≤ 2Me

n

(
∥(PXE)i0∥H +

∥∥∥(PXẼ)i0

∥∥∥
H

)
. We conclude the proof by combining this bound with

(18).

Lemma 6. Under Assumptions 3 and 4, we have:

E
∥∥∥Σ̂− EΣ̂

∥∥∥
HS(H)

≤M2
e

√
n− p

n
,

where Me is defined in Lemma 4.

Proof. Note that:

E
∥∥∥Σ̂− EΣ̂

∥∥∥2
HS(H)

=E
∥∥∥Σ̂∥∥∥2

HS(H)
− 2E

〈
Σ̂,EΣ̂

〉
HS(H)

+
∥∥∥EΣ̂∥∥∥2

HS(H)

=E
∥∥∥Σ̂∥∥∥2

HS(H)
− 2

〈
EΣ̂,EΣ̂

〉
HS(H)

+
∥∥∥EΣ̂∥∥∥2

HS(H)

=E
∥∥∥Σ̂∥∥∥2

HS(H)
−
∥∥∥EΣ̂∥∥∥2

HS(H)
.

By Jensen’s inequality, we have that:

E
∥∥∥Σ̂− EΣ̂

∥∥∥
HS(H)

≤
[
E
∥∥∥Σ̂− EΣ̂

∥∥∥2
HS(H)

] 1
2

≤
[
E
∥∥∥Σ̂∥∥∥2

HS(H)
−
∥∥∥EΣ̂∥∥∥2

HS(H)

] 1
2

.

Remember that PX = (πi,j)1≤i,j≤n is the orthogonal projection on Im(X). We can develop Σ̂ to
obtain that:

Σ̂ =
1

n

n∑
i=1

(1− πi,i)ei ⊗ ei −
1

n

n∑
i,j=1,i̸=j

πi,jei ⊗ ej . (19)

Thus: ∥∥∥Σ̂∥∥∥2
HS(H)

= A− 2B + C,
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where

A =
1

n2

n∑
i=1

n∑
j=1

(1− πi,i)(1− πj,j) ⟨ei ⊗ ei, ej ⊗ ej⟩HS(H) ,

B =
1

n2

n∑
i=1

n∑
j=1

n∑
k=1,k ̸=j

(1− πi,i)πj,k ⟨ei ⊗ ei, ej ⊗ ek⟩HS(H) ,

C =
1

n2

n∑
i=1

n∑
j=1,j ̸=i

n∑
k=1

n∑
l=1,l ̸=k

πi,jπk,l ⟨ei ⊗ ej , ek ⊗ el⟩HS(H) .

We now compute the expectation of each term:

E(A) =
1

n2

n∑
i=1

(1− πi,i)
2E
(
⟨ei ⊗ ei, ei ⊗ ei⟩HS(H)

)
+

1

n2

n∑
i=1

n∑
j=1,j ̸=i

(1− πi,i)(1− πj,j) ⟨E (ei ⊗ ei) ,E (ej ⊗ ej)⟩HS(H)

=
1

n2

n∑
i=1

(1− πi,i)
2E
(
∥ei∥4H

)
+

1

n2

n∑
i=1

n∑
j=1,j ̸=i

(1− πi,i)(1− πj,j) ⟨Σi,Σj⟩HS(H) .

We can directly see that every term of B contains at least one indice j or k different from the others,
involving that the expectation of each term of B is null, which give that E(B) = 0. The same happens
for every term of C where indices k and l are different from indices i and j. Consequently we have:

E(C) =
1

n2

n∑
i=1

n∑
j=1,j ̸=i

πi,j
2
(
E ⟨ei ⊗ ej , ei ⊗ ej⟩HS(H) + E ⟨ei ⊗ ej , ej ⊗ ei⟩HS(H)

)
=

2

n2

n∑
i=1

n∑
j=1,j ̸=i

πi,j
2E ∥ei∥2H E ∥ej∥2H .

According to Equation (19), EΣ̂ is such that:

EΣ̂ =
1

n

n∑
i=1

(1− πi,i)E(ei ⊗ ei) +
1

n

n∑
i,j=1,i̸=j

n∑
j=1,j ̸=i

πi,jEei ⊗ Eej

=
1

n

n∑
i=1

(1− πi,i)Σi.

Then:∥∥∥EΣ̂∥∥∥2
HS(H)

=
1

n2

n∑
i=1

n∑
j=1

(1− πi,i)(1− πj,j) ⟨Σi,Σj⟩HS(H)

=
1

n2

n∑
i=1

(1− πi,i)
2 ∥Σi∥2HS(H) +

1

n2

n∑
i=1

n∑
j=1,j ̸=i

(1− πi,i)(1− πj,j) ⟨Σi,Σj⟩HS(H) .

Now we can sum E(A),E(C) and
∥∥∥EΣ̂∥∥∥2

HS(H)
:

E
∥∥∥Σ̂∥∥∥2

HS(H)
−
∥∥∥EΣ̂∥∥∥2

HS(H)
=E(A) + E(C)−

∥∥∥EΣ̂∥∥∥2
HS(H)

=
1

n2

n∑
i=1

(1− πi,i)
2
(
E ∥ei∥4H − ∥Σi∥2HS(H)

)
+

2

n2

n∑
i,j=1,i̸=j

πi,j
2E ∥ei∥2H E ∥ej∥2H
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Note that under Assumptions 3 and 4, Lemma 4 gives that for i ∈ {1, . . . , n}, E ∥ei∥4H −
∥Σi∥2HS(H) ≤ E ∥ei∥4H ≤ M4

e and that E ∥ei∥2H ≤ M2
e . Thus, we have :

E
∥∥∥Σ̂∥∥∥2

HS(H)
−
∥∥∥EΣ̂∥∥∥2

HS(H)
≤ 1

n2

n∑
i=1

(1− πi,i)
2M4

e +
2

n2

n∑
i,j=1,i̸=j

πi,j
2M4

e

≤M4
e

n2
(n− p+ 2p)

≤M4
e (n+ p)

n2

by applying Lemma 8 to both terms. It finally gives that

E
∥∥∥Σ̂− EΣ̂

∥∥∥
HS(H)

≤M2
e

√
n− p

n
.

C.4 Probability bound on the inverse covariance operator

Under Assumption 1, we define Σ̄n = ΣT + 1
n

∑n
i=1 π

⊥
i,iΣi,T c . Under Assumptions 1 and 2, and

according to Lemma 7, Σ̄n is symmetric positive operator and admits a spectral decomposition
ΣT =

∑t
t=1 λtft ⊗ ft where the eigenvalues λ1 > · · · > λT and eigenfunctions f1, . . . , fT

correspond to those of of ΣT .
Proposition 3. Assume that Assumptions 1, 2, 3 and 4 are verified. There exists NT such that for
n ≥ NT , we have with probability 1− e−ξ:∥∥∥Σ̂−1

T − Σ−1
T

∥∥∥
HS(H)

≤ ζ(n, ξ)

λT − ζ(n, ξ)

(
T∑

t=1

2

δ̃t
+

T

λT

)
,

where ζ(n, ξ) is given in Proposition 2.

Remark 1. In the Proposition, for t < T , all the spectral gaps δ̃t do not depend on n. Regarding the
spectral gap at T , note that δ̃T = δT ∧ δT−1 ≥ (λT −µT )/2∧ (λT−1 − λT )/2 > 0 (see Remark 2).
Consequently the exponential bound of the proposition implies the convergence in probability.

Proof. For t ∈ {1, . . . , n− 1}, denote δt = (λt − λt+1)/2 and δ̃t = min(δt, δt−1) for the spectral
gaps of Σ. Let Πft = ft ⊗ ft and Πf̂t

= f̂t ⊗ f̂t the orthogonal projector on the axis spanned by ft

(resp. f̂t).

According to Proposition 2, we have that with probability 1− e−ξ:∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

≤ ζ(n, ξ).

Moreover, according to the Hoffman-Wielandt Inequality in infinite dimensional setting [2] (see also
the proof of Theorem 3 from [28]), we have

max
t=1,...,n

|λ̂t − λt| ≤
∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

. (20)

According Lemma 7, the eigenvalues λ1, . . . λT of Σ̄n are simple. In particular the spectral gap at T
is strictly positive: λT − λT+1 ≥ λT − µT+1 > 0, see also Remark 2.

It then can be easily checked that there exists NT such for n ≥ NT , the event

A =
{
∥Σ̂− Σ̄n∥HS(H) ≤ ζ(n, ξ) ∧ min

t=1...T
δt

}
∩
{
λ̂T > 0

}
∩
{
λ̂1 > · · · > λ̂T > λ̂T+1

}
is satisfied with probability at least 1− e−ξ. Moreover, NT only depends on λT , on δ1, . . . δT , and
on the constants involved in ζ(n, ξ), that is p, Me and ∥ΣT ∥HS(H).
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In particular, Theorem 4 applies on the event A: for any t ∈ {1, . . . , T},

∥∥∥Πf̂t
−Πft

∥∥∥
HS(H)

≤
2
∥∥∥Σ̂− Σ

∥∥∥
HS(H)

δ̃t
. (21)

On the event A, the rank r of Σ̂T is larger than T and thus Σ̂−1
T =

∑T
t=1 λ̂

−1
t f̂t ⊗ f̂t. We can use the

spectral decomposition of the inverse operators to obtain that on A:∥∥∥Σ̂−1
T − Σ−1

T

∥∥∥
HS(H)

=

∥∥∥∥∥
T∑

t=1

λ̂−1
t f̂t ⊗ f̂t − λ−1

t ft ⊗ ft

∥∥∥∥∥
HS(H)

=

∥∥∥∥∥
T∑

t=1

λ̂−1
t Πf̂t

− λ−1
t Πft

∥∥∥∥∥
HS(H)

≤
T∑

t=1

λ̂−1
t

∥∥∥Πf̂t
−Πft

∥∥∥
HS(H)

+

T∑
t=1

|λ̂−1
t − λ−1

t | ∥Πft∥HS(H) . (22)

For the first term of (22), on the event A we find from (21) that for n ≥ ÑT

T∑
t=1

λ̂−1
t

∥∥∥Πf̂t
−Πft

∥∥∥
HS(H)

≤ ζ(n, ξ)

λ̂T

T∑
t=1

2

δ̃t

≤ ζ(n, ξ)

λT − ζ(n, ξ)

T∑
t=1

2

δ̃t
.

Regarding the second term in the upper bound (22), on A and for n ≥ ÑT , we have that 1

λ̂T
≤

1
λT−ζ(n,ξ) and thus for all t ∈ {1, . . . , T}

|λ̂−1
t − λ−1

t | =λ̂−1
t λ−1

t |λ̂t − λt|

≤λ−1
T λ̂−1

T ζ(n, ξ),

≤ 1

λT

ζ(n, ξ)

λT − ζ(n, ξ)
.

Also note that ∥Πft∥HS(H) = ∥ft∥2H = 1. Thus, on the event A, we have that

T∑
t=1

|λ̂−1
t − λ−1

t | ∥Πft∥HS(H) ≤
T

λT

ζ(n, ξ)

λT − ζ(n, ξ)
.

Thus, for n ≥ NT , we have with probability 1− e−ξ:∥∥∥Σ̂−1
T − Σ−1

T

∥∥∥
HS(H)

≤ ζ(n, ξ)

λT − ζ(n, ξ)

(
T∑

t=1

2

δ̃t
+

T

λT

)
.

Lemma 7. Under Assumptions 1 and 2, the operator Σ̄n = ΣT + 1
n

∑n
i=1 π

⊥
i,iΣi,T c is a symmetric

and positive operator that admits a spectral decomposition Σ̄n =
∑t

t=1 λtft ⊗ ft where the
eigenvalues are in descending order, with the first ones λ1 > · · · > λT and the corresponding
eigenfunctions f1, . . . , fT being the same as those of of ΣT . Moreover, the spectral gap at T is
strictly positive: λT − λT+1 ≥ λT − µT+1 > 0.

Remark 2. Note that λt depends on n for t ≥ T + 1 and it does not for t ≤ T . Thus, the spectral
gap δt = λt − λt+1 does not depend on n for t ≤ T − 1. Moreover, the last spectral gap λT − λT+1

is lower bounded by λT − µT+1 for all n ≥ 1.
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Proof. The operator Σ̄n is symmetric and positive as a linear combination of symmetric and positive
operators, and because π⊥

i,i =
∑n

j=1 π
⊥
i,j

2 ≥ 0 (see Lemma 8). We directly check that for t ≤ T ,
the eigenfunction ft for the eigenvalue λt of ΣT is also an eigenfunction of Σ̄n for the eigenvalue
λt. Moreover, for any h ∈ Span (f1, . . . , fT )

⊥, we have ∥Σ̄nh∥H ≤ 1
n

∑n
i=1 π

⊥
i,i∥Σi,T ch∥H ≤

∥h∥H maxi=1...n λi,T+1

(
1
n

∑n
i=1 π

⊥
i,i

)
< n−p

n µT+1∥h∥H. Thus 0 ≤ λt < µT+1 < λT for any
t > T + 1. In particular λT − λT+1 ≥ λT − µT+1 > 0.

D Proof of Theorem 2: KFDA with Nyström

This section provides the proof for the consistency of the Nyström TKHL statistic, see Theorem 2.

D.1 Main proof of Theorem 2

Let P⊥
X = In −PX = (π⊥

i,j)1≤i,j≤n the orthogonal projection on Im(X)⊥. Under Assumptions 1′

and 2′, as for the non-Nyström case, we consider

Σ̄n := ΣT +
1

n

n∑
i=1

π⊥
i,iΣi,T c

= Σm +
1

n

n∑
i=1

π⊥
i,iΣi,mc ,

where the second equality is valid because T ≤ m. According to Lemma 7, we have that Σ̄n

is a symmetric and semi-definite positive operator that admits a spectral decomposition Σ̄n =∑
t≥1 λtft ⊗ ft where the eigenvalues are in descending order, with the first ones λ1 > · · · > λm

and the corresponding eigenfunctions f1, . . . , fm being the same as those of Σm.

Let I be a n-uple of indices sampled uniformly in {1, . . . , n} to define the q landmarks for Nyström.
Let also Z = (ϕ(Yi))i∈I = (Z1, . . . , Zq) be the q landmarks and XI the associated design matrix
extracted from X. Let Σ̂I be the landmark residual covariance operator induced by the linear
model (1) based on Z,XI . For this model we define (as in the non-Nyström case) the operator
Σ̄I = Σm+ 1

q

∑q
i=1 π

I,⊥
i,i Σi,mc , where PI,⊥

X = (πI,⊥
i,j ) is the orthogonal projection onto Im(XI)⊥ in

Rq . According to Lemma 7 (adapted to this model), we have that Σ̄I is a symmetric and semi-definite
positive operator. It admits a spectral decomposition which first m eigenvalues λ1 > · · · > λm and
corresponding eigenfunctions f1, . . . , fm are the same as those of Σm.

For s ≤ m− 1, we denote by δt = (λt − λt+1)/2 the spectral gaps of Σm (and of Σ̄I ).

We define the m first unit eigenfunctions (â1, . . . , âm) of the landmark residual covariance operator
Σ̂I as our Nyström anchors. The Nyström residual covariance operator Σ̂a is finally defined as
Σ̂a = 1

n

∑n
i=1 ê

a
i ⊗ êai where êai is the orthogonal projection of êi onto Span(â1, . . . , âm).

According to Proposition 4, when q is large enough, we have with probability 1− 2e−ξ:∥∥∥Σ̂a − Σ̄n

∥∥∥
HS(H)

≤ 1

2
ζ(n, ξ) + 2mM2

e ζ(q, ξ)

m∑
s=1

1

δ̃s
.

From this, we obtain (see Proposition 5) that with probability 1− 2e−ξ,∥∥∥Σ̂a
T
−1 − Σ−1

T

∥∥∥
HS(H)

≤ η(n, q, ζ)

λT − η(n, q, ζ)

(
T∑

t=1

2

δ̃t
+

T

λT

)

with η(n, q, ζ) = C1√
n

(
1 +

√
ζ
)
+ C2√

q

(
1 +

√
ζ
)∑m

s=1
1

δ̃s
, where C1 and C2 are constants that

depend on (λs)s≤m, µm+1, p and Me. Thus, we have
∥∥∥Σ̂a

T
−1 − Σ−1

T

∥∥∥
HS(H)

≤ C′
√
q

(
1 +

√
ζ
)

where

C ′ is a constant which does not depends on q (and n). Thus Σ̂a
T
−1 converges in probability to Σ−1

T
as q tends to infinity.
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As the landmarks are not used to approximate ĤL, we conclude the proof of Theorem 2 by following
the lines of the proof of Theorem 1: we use the convergence in probability of Σ̂a

T
−1 (instead of the

these of Σ̂−1
T ) together with Proposition 1.

D.2 Probability bound on the Nyström residual covariance

Proposition 4. Under Assumptions 1′, 2′, 3 and 4, when q is large enough, we have with probability
1− 2e−ξ: ∥∥∥Σ̂a − Σ̄n

∥∥∥
HS(H)

≤ 1

2
ζ(n, ξ) + 2mM2

e ζ(q, ξ)

m∑
s=1

1

δ̃s
:= η(n, q, ζ)

where ζ is defined in Proposition 2, and where δ̃s = δs∧δs−1 for s < m and δm := (λm−µm+1)/2.

Proof. For s ∈ {1, . . . ,m}, we denote by Πfs and Πâs
the orthogonal projections onto the one-

dimensional axis supported by fs and âs respectively. Then we have Πfs = fs ⊗ fs, Πâs
= âs ⊗ âs

and by definition of Σ̂a:

Σ̂a =
1

n

n∑
i=1

( m∑
s=1

Πâs
êi

)
⊗
( m∑

s′=1

Πâs′
êi

)
.

We also define :

Σ̃a =
1

n

n∑
i=1

( m∑
s=1

Πfs êi

)
⊗
( m∑

s′=1

Πfs′ êi

)
,

and we have ∥∥∥Σ̂a − Σ̄n

∥∥∥
HS(H)

≤
∥∥∥Σ̂a − Σ̃a

∥∥∥
HS(H)

+
∥∥∥Σ̃a − Σ̄n

∥∥∥
HS(H)

. (23)

First, for i ∈ {1, . . . , n} and s ∈ {1, . . . ,m}, we have :

(Πâs
êi)⊗ (Πâs′

êi)− (Πfs êi)⊗ (Πfs′ êi) =
(
(Πâs

−Πfs)êi
)
⊗ (Πâs′

êi) + (Πfs êi)⊗
(
(Πâs′

−Πfs′ )êi
)

According to the triangular inequality, we have :∥∥∥Σ̂a − Σ̃a
∥∥∥
HS(H)

≤ 1

n

n∑
i=1

m∑
s,s′=1

∥∥((Πâs
−Πfs)êi

)
⊗ (Πâs′

êi)
∥∥
HS(H)

+
∥∥(Πfs êi)⊗

(
(Πâs′

−Πfs′ )êi
)∥∥

HS(H)

≤ 1

n

n∑
i=1

m∑
s,s′=1

∥Πâs
−Πfs∥HS(H)

∥∥Πâs′

∥∥
HS(H)

∥êi∥2H

+
∥∥Πâs′

−Πfs′

∥∥
HS(H)

∥Πfs∥HS(H) ∥êi∥
2
H

≤ 2mM2
e

m∑
s=1

∥Πâs
−Πfs∥HS(H) .

because ∥Πfs∥HS(H) = ∥Πâs
∥HS(H) = 1 and ∥êi∥ ≤ Me, see Lemma 4.

We now apply Proposition 2 to Σ̂I with the sample Z which associated design matrix design is XI .
Assumption 1′ is still satisfied for Z, which corresponds to Assumption 1 for a truncate parameter m
(instead of T ). Assumptions 3 and 4 are also obviously valid. Thus, conditionally to the Nyström
sample I , with probability larger than 1− e−ξ,∥∥∥Σ̂I − Σ̄I

∥∥∥
HS(H)

≤ p

q
∥Σm∥HS(H) +

M2
e√
q

(
1 + 4

√
3ξ

2

)
=: ζ(q, ξ).

Note that this upper bound does not depends on the Nyström sample I and thus the probability bound
is also valid after intergrating according to the distribution of I .
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The m first eigenvalues of Σ̄I being simple, following the first lines of the proof of Proposition 3,
there exists Qm such for q ≥ Qm, the event

Ã =
{
∥Σ̂I − Σ̄I∥HS(H) ≤ ζ(q, ξ) ∧ min

t=1...T
δt

}
∩
{
λ̂T > 0

}
∩
{
λ̂1 > · · · > λ̂T > λ̂T+1

}
is satisfied with probability at least 1− e−ξ. Regarding the last spectral gap, according to Lemma 7,
the last spectral gap λm − λm+1 is lower bounded by λm − µm+1 for all q ≥ 1, see Remark 2.

Following the first lines of the proof of Proposition 3, the eigenvalues of Σ̄I being simple, we find
that Theorem 4 can be applied on an event of probability at least 1− e−ξ and for q large enough: for
s ≤ m,

∥Πâs
−Πfs∥HS(H) ≤

2
∥∥∥Σ̄I − Σ̂I

∥∥∥
HS(H)

δ̃s
where δ̃s = δs ∧ δs−1, and where we take δm := (λm − µm+1)/2. Thus, for q large enough, we
have that on the event Ã: ∥∥∥Σ̂a − Σ̃a

∥∥∥
HS(H)

≤ 4mM2
e ζ(q, ξ)

m∑
s=1

1

δ̃s
. (24)

Regarding the second term in the upper bound (23), we have Πfs = fs ⊗ fs, which leads to :

Σ̃a =
1

n

n∑
i=1

m∑
s,s′=1

(Πfs êi)⊗ (Πfs′ êi)

=
1

n

n∑
i=1

m∑
s,s′=1

⟨fs, êi⟩H ⟨fs′ , êi⟩H fs ⊗ fs′

=

m∑
s,s′=1

〈
fs, Σ̂fs′

〉
H
fs ⊗ fs′ .

We also have that for Σ̄n:
m∑

s,s′=1

〈
fs, Σ̄nfs′

〉
H fs ⊗ fs′ =

m∑
s,s′=1

λs′ ⟨fs, fs′⟩H fs ⊗ fs′

=

m∑
s=1

λsfs ⊗ fs

=Σm.

Finally, we obtain: ∥∥∥Σ̃a − Σ̄n

∥∥∥
HS(H)

=

m∑
s,s′=1

〈
fs, (Σ̂− Σ̄n)fs′

〉
H
fs ⊗ fs′

≤
m∑

s,s′=1

∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

∥fs∥2H ∥fs′∥2H

≤m2
∥∥∥Σ̂− Σ̄n

∥∥∥
HS(H)

.

We then apply Proposition 2 (for all the data) to control this term and combine it with (24) to conclude
the proof of the proposition.

D.3 Probability bound on the inverse Nyström residual covariance

Proposition 5. Assume that Assumptions 1′, 2′ 3 and 4 are verified. When q and n are large enough,
with probability 1− 2e−ξ:∥∥∥Σ̂a

T
−1 − Σ−1

T

∥∥∥
HS(H)

≤ η(n, q, ζ)

λT − η(n, q, ζ)

(
T∑

t=1

2

δ̃t
+

T

λT

)
,

where η(n, q, ζ) is given in Proposition 4.
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Proof. We follow exactly the lines of Proposition 3, but starting from Proposition 4 instead of
Proposition 2.

E Auxiliary results

E.1 McDiarmid Inequality

Theorem 3 (McDiarmid inequality [18]). If Y1, . . . , Yn are i.i.d. random variables in a measurable
space Y and the function

Yn −→ R
f : y1, . . . , yn 7−→ f(y1, . . . , yn)

is such that for all i ∈ {1, . . . , n}, we have:

sup
y1,...,yn,yi′∈Y

∣∣f(y1, . . . , yi, . . . , yn)− f(y1, . . . , yi′ , . . . , yn)
∣∣ ≤ ci.

Then we have with probability lower than e−ξ that:

f(y1, . . . , yn)− E
(
f(y1, . . . , yn)

)
≥

√√√√ξ

2

n∑
i=1

c2i ,

and we also have with probability lower than e−ξ that:

E
(
f(y1, . . . , yn)

)
− f(y1, . . . , yn) ≥

√√√√ξ

2

n∑
i=1

c2i .

E.2 Perturbation bounds

In this section, we use some results from operator perturbations theory to obtain an exponential bound
on a truncated inverse of Σ̂, that is used in the proof of Theorem 1. We apply the following result
from [28] and [14] rewritten in the particular case where only the T first eigenvalues are assumed to
be simple.
Theorem 4 (Theorem 2 from [28], Lemma 5.2 from [14]). Let A ∈ HS(H) be a symmetric positive
operator such that its T first eigenvalues are positive and simple: λ1 > λ2 > . . . λT > λT+1 ≥
λT+1 ≥ . . . ≥ 0. The spectral gaps of A at dimension t are denoted δt = (λt − λt+1)/2 and
δ̃t = δt ∧ δt−1. Let B ∈ HS(H) a symmetric operator such that A+B is a positive operator such
that the T first eigenvalues are also positive and simple. If for some t ≤ T we have ∥B∥HS(H) ≤ δ̃t/2,
then

∥Πt(A)−Πt(A+B)∥HS(H) ≤
2 ∥B∥HS(H)

δ̃t
,

where Πt(A) denotes the orthogonal projector onto the one-dimensional subspace of H spanned by
the tth eigenfunction of A.

E.3 Results on Orthogonal Projectors

Lemma 8. Let PX = (πi,j)i,j∈{1,...,n} ∈ Mn(R) be the matrix of an orthogonal projector of rank
p, then we have:

n∑
i=1

n∑
j=1

πi,j
2 = p,

n∑
i=1

πi,i
2 ≤ p,

n∑
i=1

(1− πi,i)
2 ≤ n− p.
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Proof. As P′
XP′

X = PX, we directly have
∑n

j=1 πi,j
2 = πi,i and by computing the trace we find

that:
n∑

i=1

n∑
j=1

πi,j
2 = p.

Then:
n∑

i=1

πi,i
2 ≤

n∑
i=1

n∑
j=1

πi,j
2

≤p,
n∑

i=1

(1− πi,i)
2 =

n∑
i=1

(1− 2πi,i + πi,i
2)

≤n− p.

F Kernel tricks

In this section, we apply kernel tricks to compute explicit expressions for all the quantities presented
in the paper.

F.1 Kernel trick for the truncated kernel Hotelling-Lawley statistic

F.1.1 Diagonalization of the residual covariance operator.

We start with the determination of the eigenfunction and associated eigenvalues of the residual
covariance operator Σ̂. Observe that we have Σ̂ = n−1Ê⋆Ê = n−1

∑n
i=1 êi ⊗ êi ∈ HS(H), where

Ê = P⊥
XΦ(Y). We then define Ke = n−1ÊÊ⋆ =

(
n−1 ⟨êi, êj⟩H

)
i,j∈{1,...,n}

∈ Mn(R). This

matrix can be numerically computed and diagonalized, as we have :

Ke =
1

n
P⊥

XKYP⊥
X,

where KY = (k(Yi, Yj))i,j∈{1,...,n} is the gram matrix of Y with respect to k(·, ·). The following
proposition highlights the link between Σ̂ and Ke.

Proposition 6. The Hilbert-Schmidt operator Σ̂ has the same spectrum than the matrix Ke. Moreover,
if u is an unit eigenvector of Ke associated to the eigenvalue λ̂, then an unit eigenfunction f̂ of Σ̂
associated to λ̂ may be obtained by :

f̂ =
1√
nλ̂

u′Ê (25)

Proof. Observe that n−1ÊÊ⋆Ê ∈ Hn can be read as n−1(ÊÊ⋆)Ê = KeÊ as well as
n−1Ê(Ê⋆Ê) = ÊΣ̂, where Ê is interpreted as an application defined as in (8). Thus we have
the relation

KeÊ = ÊΣ̂ (26)

. Then, if f̂ is an unit eigenfunction of Σ̂ associated to the eigenvalue λ̂, we have:

Σ̂f̂ = λ̂f̂

⇔ÊΣ̂f̂ = λ̂Êf̂

⇔Ke

(
Êf̂
)
= λ̂

(
Êf̂
)
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Thus the vector Êf̂ ∈ Rn is an eigenvector of Ke associated to the eigenvalue λ̂, and the spectrum of
Σ̂ is included in the spectrum of Ke. On the other hand, let u be an unit eigenvector of Ke associated
to the eigenvalue λ̂. We have:

u′Ke = λ̂u′

⇔u′KeÊ = λ̂u′Ê

⇔u′(ÊΣ̂) = λ̂u′Ê

⇔Σ̂
(
u′Ê

)
= λ̂

(
u′Ê

)
,

where the last equivalence is due to u′(ÊΣ̂) = u′(Σ̂êi)i=1,...,n
= Σ̂

∑n
i=1 uiêi = Σ̂(u′Ê).

Thus the vector u′Ê ∈ H is an eigenvector of Σ̂ associated to the eigenvalue λ̂, and the spectrum of
Ke is included in the spectrum of Σ̂. We conclude that Σ̂ and Ke share the same spectrum.

Let u be an unit eigenvector of Ke associated to the eigenvalue λ̂. We have that:∥∥∥u′Ê
∥∥∥2
H

=

〈
n∑

i=1

uiêi,

n∑
j=1

uj êj

〉
H

=

n∑
i=1

n∑
j=1

ui ⟨êi, êj⟩H uj

=nu′Keu

=nλ̂u′u

=nλ̂

Thus, (nλ̂)−
1
2u′Ê ∈ H is an unit eigenfunction of Σ̂.

F.1.2 Computation of the truncated kernel Hotelling-Lawley trace statistic

Let U = (u1, . . . , uT ) ∈ Mn,T (R) and Λ̂ = diag(λ̂1, . . . , λ̂T ) ∈ MT (R) be the ma-
trix containing the T first eigenvectors and eigenvalues of Ke respectively, and let D =
X(X′X)−L′(L(X′X)−L′)−1L(X′X)−X′ = (di,j)i,j∈{1,...,n} ∈ Mn(R). D is an orthogonal
projector, as D′ = D and D2 = D and we have ĤL = Φ(Y)⋆DΦ(Y) =

∑n
i,j=1 di,jϕ(Yi)⊗ϕ(Yj).

Then :
F̂T =tr(Σ̂−1

T ĤL)

=
〈
Σ̂−1

T , ĤL

〉
HS(H)

=

n∑
i,j=1

T∑
t=1

di,j λ̂
−1
t

〈
f̂t ⊗ f̂t, ϕ(Yi)⊗ ϕ(Yj)

〉
HS(H)

=

n∑
i,j=1

T∑
t=1

di,j λ̂
−1
t

〈
f̂t, ϕ(Yi)

〉
H

〈
f̂t, ϕ(Yj)

〉
H
.

=trace(KTDK′
T ),

(27)

where KT = n− 1
2 Λ̂

−1
U′P⊥

XKY =
(
λ̂
− 1

2
t

〈
f̂t, ϕ(Yi)

〉
H

)
t∈{1,...,T},i∈{1,...,n}

∈ MT,n(R). The

following proposition shows the relation between KTDK′
T and Σ̂−1

T ĤL. Ψ

Proposition 7. The Hilbert-Schmidt operator Σ̂−1
T ĤL has the same spectrum than the matrix

KTDK′
T . Moreover, if v is an unit eigenvector of KTDK′

T associated to the eigenvalue λ̂, then an
unit eigenfunction ĝ of Σ̂−1

T ĤL associated to ξ may be obtained by :

ĝ =
1√∑T

t=1 λ̂
−1
t vt

Ψ⋆v, (28)
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where Ψ = n− 1
2 Λ̂

−1
U′P⊥

XΦ(Y)

Proof. Note that we have KT = ΨΦ(Y)⋆ and

Σ̂−1
T =

1

n
Φ(Y)⋆P⊥

XUΛ̂
−2

U′P⊥
XΦ(Y)

= Ψ⋆Ψ.

Thus, Σ̂−1
T ĤL = (Ψ⋆Ψ)(Φ(Y)⋆DΦ(Y)) and KTDK′

T = ΨΦ(Y)⋆DΦ(Y)Ψ⋆. Observe that
similarly to (26), we have that:

Σ̂−1
T ĤLΨ

⋆ = Ψ⋆KTDK′
T ,

that :

ΨΦ(Y)⋆DΦ(Y)Σ̂−1
T ĤL = KTDK′

TΨΦ(Y)⋆DΦ(Y),

and that :

ΨΨ⋆ = Λ̂
− 1

2
(〈

f̂t, f̂t′
〉
H

)
t,t′∈{1,...,T}

Λ̂
− 1

2

= Λ̂
−1

Then, if ĝ is an unit eigenfunction of Σ̂−1
T ĤL associated to the eigenvalue ξ, we have:

Σ̂−1
T ĤLĝ = ξĝ

⇔ΨΦ(Y)⋆DΦ(Y)Σ̂−1
T ĤLĝ = ξΨΦ(Y)⋆DΦ(Y)ĝ

⇔KTDK′
T

(
ΨΦ(Y)⋆DΦ(Y)ĝ

)
= ξ
(
ΨΦ(Y)⋆DΦ(Y)ĝ

)
Thus the vector ΨΦ(Y)⋆DΦ(Y)ĝ ∈ Rn is an eigenvector of KTDK′

T associated to the eigenvalue
ξ, and the spectrum of Σ̂−1

T ĤL is included in the spectrum of KTDK′
T . On the other hand, let v be

an unit eigenvector of KTDK′
T associated to the eigenvalue ξ. We have:

v′KTDK′
T = ξv′

⇔v′KTDK′
TΨΦ(Y)⋆DΦ(Y) = ξv′ΨΦ(Y)⋆DΦ(Y)

⇔v′(ΨΦ(Y)⋆DΦ(Y)Σ̂−1
T ĤL) = ξ

(
v′ΨΦ(Y)⋆DΦ(Y)

)
⇔Σ̂−1

T ĤL

(
v′ΨΦ(Y)⋆DΦ(Y)

)
= ξ
(
v′ΨΦ(Y)⋆DΦ(Y)

)
See the proof of Proposition 6 for the details of the last equivalence. Thus the vector
v′ΨΦ(Y)⋆DΦ(Y) ∈ H is an eigenvector of Σ̂−1

T ĤL associated to the eigenvalue ξ, and the spectrum
of KTDK′

T is included in the spectrum of Σ̂−1
T ĤL. We conclude that Σ̂−1

T ĤL and KTDK′
T share

the same spectrum. Let v be an unit eigenvector of KTDK′
T associated to the eigenvalue ξ. We have

that:

∥v′ΨΦ(Y)⋆DΦ(Y)∥2H =v′ΨΦ(Y)⋆DΦ(Y)Φ(Y)⋆DΦ(Y)Ψ⋆v

=v′KTDKYDK′
T v

Thus, (v′KTDKYDK′
T ĝ)

− 1
2 v′ΨΦ(Y)⋆DΦ(Y) ∈ H is an unit eigenfunction of Σ̂−1

T ĤL.

F.2 Kernel trick for the Nyström statistic

F.2.1 Computation of the landmarks and anchors

To compute the Nystrom approximation of the truncated kernel Hotelling-Lawley trace statistic (5), e
need a kernel trick to determine the eigenfunctions and eigenvalues of Σ̂a.
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Let Z = (Z1, . . . , Zq) be the q < n landmarks sampled from Y. We denote φ : {1, . . . , q} −→
{1, . . . , n} such that Z = (Yφ(1), . . . , Yφ(q)) and the associated explanatory variables are XI =

(xφ(1), . . . , xφ(q))
′ ∈ Mq,p(R). Let PZ ∈ Mq,n(R) such that the ith column of P ′

Z is the
vector of Rn full of zero except in φ(i) where it is equal to 1, then we have Z = PZY
and XI = PZX. Let Φ(Z) = (ϕ(Z1), . . . , ϕ(Zn)) be the embeddings of the landmarks in
H. We define the Gram matrices KZ = (⟨ϕ(Zi), ϕ(Zj)⟩H))i,j∈{1,...,q} ∈ Mq(R), KY,Z =
(⟨ϕ(Yi), ϕ(Zj)⟩H))i∈{1,...,n},j∈{1,...,q} ∈ Mn,q(R) and KZ,Y = K′

Y,Z. We have Φ(Z) =

PZΦ(Y), KZ = Φ(Z)Φ(Z)⋆, KY,Z = Φ(Y)Φ(Z)⋆ and KZ,Y = Φ(Z)Φ(Y)⋆. We assume
that XI is full rank and denote PXI = XI(XI ′XI)−1XI ′ and P⊥

XI = (Iq −PXI ), then we have

the vector of landmark residuals ÊZ = (êZ1 , . . . , ê
Z
q ) in Hn such that :

ÊZ = P⊥
XIΦ(Z) (29)

The landmark residual covariance operator is such that Σ̂I = q−1ÊZ
⋆
ÊZ. The m anchors a =

(â1, . . . , âm)′ are defined as the orthonormal set of eigenfunctions of Σ̂I associated to its highest
and non-increasing set of eigenvalues encoded in the diagonal matrix Λ̂Z = Diag(λ̂Z

1 , . . . , λ̂
Z
m) ∈

Mm(R). We also define KZ
e = q−1ÊZÊZ

⋆
= q−1P⊥

XIKZP
⊥
XI . The following proposition

highlights the link between Σ̂I and KZ
e :

Proposition 8. The Hilbert-Schmidt operator Σ̂I has the same spectrum than the matrix KZ
e . More-

over, if uZ is an unit eigenvector of KZ
e associated to the eigenvalue λ̂Z, then an unit eigenfunction

f̂Z of Σ̂I associated to λ̂Z may be obtained by :

f̂Z =
1√
qλ̂Z

uZ′ÊZ
(30)

Proof. The proof is exactly the same than the proof of Proposition 6.

We denote UZ = (uZ
1 , . . . , u

Z
m) ∈ Mq,m(R) the matrix where the m columns form an orthonormal

set of eigenvectors of KZ
e associated to the eigenvalues λ̂Z

1 , . . . , λ̂
Z
m, then for i ∈ {1, . . . ,m}, we

have :

a =
1
√
q
Λ̂Z

− 1
2
UZ′

ÊZ. (31)

F.2.2 Diagonalisation of the Nyström residual covariance operator

We now derive a kernel trick to determine the orthonormal eigenfunctions f̂a
1 , . . . , f̂

a
m of Σ̂a associated

to the eigenvalues λ̂a
1, . . . , λ̂

a
m . Let Êa = (êa1, . . . , ê

a
n) be the vector of Hn containing the projections

of the residuals onto Span(â1, . . . , âm). We have êai =
∑m

s=1 ⟨âs, êi⟩H âs and Σ̂a = 1
n

∑n
i=1 ê

a
i⊗êai .

We define Ka
e ∈ Mm(R) with general term ⟨âs, Σ̂âs′⟩H. The following proposition highlights the

link between Σ̂a and Ka
e.

Proposition 9. The Hilbert-Schmidt operator Σ̂a has the same spectrum than the matrix Ka
e. More-

over, if ua is an unit eigenvector of Ka
e associated to the eigenvalue λ̂a, then an unit eigenfunction f̂a

of Σ̂a associated to λ̂a may be obtained by :

f̂a = ua′ a (32)

Proof. Observe that:

Σ̂a =
1

n

n∑
i=1

( m∑
s=1

⟨âs, êi⟩H âs

)
⊗
( m∑

s′=1

⟨âs′ , êi⟩H âs′
)

=
1

n

m∑
s,s′=1

〈
âs,
( n∑

i=1

êi ⊗ êi

)
âs′

〉
H

âs ⊗ âs′

= â⋆Ka
eâ.
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As the anchors (â1, . . . , âm) form an orthonormal basis of Ha, we have a a⋆ =(
⟨âi, âj⟩H

)
i,j∈{1,...,m} = Im ∈ Mm(R). Thanks to this relation, we directly have that

a Σ̂a = Ka
e a. Let ua be the eigenvector of Ka

e associated to the non-zero eigenvalue λ̂a. We
have ua′(Ka

e a) = ua(a Σ̂a) = Σ̂a(ua a), where the last equality is obtained similarly to the proof of
Proposition 6. We also have (ua′Ka

e) a = λ̂aua′ a, thus ua′ a is an eigenfunction of Σ̂a associated to
the eigenvalue λ̂a, thus the non-zero eigenvalues of Ka

e are included in the set of non-zero eigenvalues
of Σ̂a. Now let f̂a be an eigenfunction of Σ̂a associated to the non-zero eigenvalue λ̂a. As Σ̂a is
self-adjoint, for i ∈ {1, . . . , n} we have

(
(a Σ̂a)f̂a

)
i
= ⟨Σ̂aâi, f̂a⟩H = ⟨âi, Σ̂af̂a⟩H. Thus, we

have Ka
e a f̂

a = a Σ̂af̂a = λ̂a a f̂a. Then a f̂a ∈ Rm is an eigenvector of Ka
e associated to the

eigenvalue λ̂a, thus the non-zero eigenvalues of Σ̂a are included in the set of non-zero eigenvalues of
Ka

e. Thus, Σ̂a and Ka
e share the same spectrum. As we have ∥ua′ a∥H = 1, then f̂a = ua′ a.

In practice, the full expression of Ka
e is such that :

Ka
e =

1

nq
Λ̂Z

− 1
2
UZ′

P⊥
XIKZ,YP⊥

XKY,ZP
⊥
XIU

ZΛ̂Z
− 1

2

F.2.3 Computation of the Nystrom statistic

Let Ua = (ua
1, . . . , u

a
T ) ∈ Mm,T (R) and Λ̂a = diag(λ̂a

1, . . . , λ̂
a
T ) ∈ MT (R) be the matrix

containing the T first eigenvectors and eigenvalues of Ka
e respectively. The Nystrom statistic F̂NY

T

can be written with respect to Ua, Λ̂a and D. With the same development than in Equation (27), we
have :

F̂NY
T = trace(Ka

T
′DKa

T ),

where Ka
T = (qΛ̂a)−

1
2Ua′Λ̂Z

− 1
2
UZ′

P⊥
XIKZ,Y =

(
λ̂a
t

− 1
2
〈
f̂a
t , ϕ(Yi)

〉
H

)
t∈{1,...,T},i∈{1,...,n}

∈

MT,n(R).

F.3 Kernel trick for the diagnostics and kernel Cook’s distance

F.3.1 Computation of the Diagnostic Plots

For t ∈ {1, . . . , T}, the tth kernel response plot and tth kernel residual plot represent the val-

ues of the tth column of the matrix 1√
n
KYP⊥

XUΛ̂
− 1

2 =
(〈

ϕ(Yi), f̂t

〉
H

)
i∈{1,...,n},t∈{1,...,T}

∈

Mn,T (R) and the values of the tth column of the matrix 1√
n
P⊥

XKYP⊥
XUΛ̂

− 1
2 =(〈

êi, f̂t

〉
H

)
i∈{1,...,n},t∈{1,...,T}

respectively, both with respect to the values of the tth column

of the marix 1√
n
PXKYP⊥

XUΛ̂
− 1

2 =
(〈

ϕ̂(Yi), f̂t

〉
H

)
i∈{1,...,n},t∈{1,...,T}

∈ Mn,T (R).

F.3.2 Computation of the kernel Cook’s distance

In order to generalize the Cook’s distance to our linear model (1) in the feature space H, we
need to define the expectation and covariance of vectors of Hd in order to compute E(LΘ̂)

and Cov(LΘ̂). Let g = (g1, . . . , gd) a random vector of Hd. We define the expectation
of g as E(g) = (E(g1), . . . ,E(gd)) ∈ Hd. We define the covariance of g as a d × d ma-
trix where the coordinates are elements of HS(H), such that for i, j ∈ {1, . . . , d}, we have
Cov(g)i,j = Cov(gi, gj) = E ((gi − E(gi))⊗ (gj − E(gj))). Now we compute the expectation
E(LΘ̂) and covariance Cov(LΘ̂) of LΘ̂. Note that the combination of Equations (1) and (2) gives
LΘ̂ = LΘ+L(X′X)−X′E. Let j ∈ {1, . . . , d}, we have (LΘ̂)j = (LΘ)j+w′

jE, where wj ∈ Rn

is the jth column of X(X′X)−L′. Then we have E
(
(LΘ̂)j

)
= (LΘ)j . Let i, j ∈ {1, . . . , d}, we
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have:

Cov
(
(LΘ̂)i, (LΘ̂)j

)
=E

(
((LΘ̂)i − (LΘ)i)⊗ ((LΘ̂)j − (LΘ)j)

)
=E

(
(w′

iE)⊗ (w′
jE)
)

=

n∑
k,l=1

wi,kwj,lE (ek ⊗ el)

=

n∑
k=1

wi,kwj,kΣk

=

n∑
k=1

wi,kwj,kΣT +

n∑
k=1

wi,kwj,kΣk,T c

=(L(X′X)−L′)i,jΣT +

n∑
k=1

wi,kwj,kΣk,T c .

We choose to focus on the truncated covariance CovT (LΘ̂) of general term (L(X′X)−L′)i,jΣT

approximated through ĈovT (LΘ̂) of general term (L(X′X)−L′)i,jΣ̂T . Let i ∈ {1, . . . , n}, the
RKHS version of the expression expression of L(Θ̂− Θ̂(i)) is such that (see [5] for the multivariate
version):

L(Θ̂− Θ̂(i)) =


w1,i

1−πi,i
êi

...
wd,i

1−πi,i
êi

 ∈ Hd

Then we have that:

DL =
1

d
tr

 d∑
j,k=1

wj,i

1− πi,i

wk,i

1− πi,i
(L(X′X)−L′)−1

j,k êi ⊗ Σ̂T êi


=
1

d

d∑
j,k=1

wj,i

1− πi,i

wk,i

1− πi,i
(L(X′X)−L′)−1

j,k tr
(
êi ⊗ Σ̂T êi

)
We remark that:

d∑
j,k=1

wj,i

1− πi,i

wk,i

1− πi,i
(L(X′X)−L′)−1

j,k =
w′

i(L(X
′X)−L′)−1wi

(1− πi,i)2

And we have:

tr
(
êi ⊗ Σ̂T êi

)
=

T∑
t=1

λ̂−1
t

〈
f̂t, êi

〉2
H
.

We recognize the inner products contained in the matrix 1√
n
P⊥

XKYP⊥
XUΛ̂

− 1
2 , thus we have:

tr
(
êi ⊗ Σ̂êi

)
=
1

n
(P⊥

XKYP⊥
XUΛ̂

−2
U′P⊥

XKYP⊥
X)i,i

Finally, we have an expression for the Cook distance DL associated to the ith observation:

w′
i(L(X

′X)−L′)−1wi

dn(1− πi,i)2
(P⊥

XKYP⊥
XUΛ̂

−2
U′P⊥

XKYP⊥
X)i,i.

F.4 Computational costs

Computational cost of the TKHL statistic We compute the projection matrix P⊥
X for O(p3)

operations. We compute and diagonalize the matrix Ke for O(n3) operations. Then we compute the
matrix KT and the TKHL statistic for O(T 2n+ n2T ) operations. As n ≫ p and n ≫ T , the global
computational cost of the algorithm is O(n3).
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Computational cost of the TKHL statistic We compute the projection matrix P⊥
XI for O(p3)

operations. We compute and diagonalize the matrix KZ
e for O(q3) operations. Then we compute and

diagonalize the matrix Ka
e for O(m3 +m2q +mq2 +mqn+mn2). Then we compute the matrix

Ka
T and the Nystrom TKHL statistic for O(T 2m+ Tm2 + Tmq + Tq2 + Tqn+ Tn2) operations.

Typically, we have n ≫ q ≥ m ≥ T and p is small, then the global computational cost of the
algorithm is O(n2(m+ T ) + q3 +m3), which is lower than O(n3).
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