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Abstract: In this paper, we address the problem of estimating the position of a mobile such as a drone
from noisy position measurements using the framework of Lie groups. To model the motion of a
rigid body, the relevant Lie group happens to be the Special Euclidean group SE(n), with n = 2 or 3.
Our work was carried out using a previously used parametric framework which derived equations
for geodesic regression and polynomial regression on Riemannian manifolds. Based on this approach,
our goal was to implement this technique in the Lie group SE(3) context. Given a set of noisy points
in SE(3) representing measurements on the trajectory of a mobile, one wants to find the geodesic
that best fits those points in a Riemannian least squares sense. Finally, applications to simulated
data are proposed to illustrate this work. The limitations of such a method and future perspectives
are discussed.

Keywords: Lie groups; SE(n); regression; Riemannian manifolds; affine connection; linear connection;
air traffic management

1. Introduction

Estimating the position of an aircraft in the context of air traffic management (ATM) is
necessary in two situations. In the first one, the goal is to present air traffic controllers with
a clean image of the aircraft positions in their sectors. In this case, only the past trajectory
is known, and one wants to give the best estimate of the current position. This is the
radar tracking problem that has been dealt with for decades using Kalman filtering and its
extensions [1], which has recently been studied in the framework of Lie groups [2,3]. In [4,5],
the symmetries of the state space seen as a manifold are used to improve estimation. In the
second situation, a database of full or partial trajectories is available so that the estimate
of a position may be computed using past and future measurements. The corresponding
noise removal procedure is known as regression and generally relies on a simple, often
local model of the trajectory whose parameters are estimated so as to minimize a least
squares criterion.

When the data belong to a Euclidean space, statistical regression analyses are usu-
ally of two kinds: parametric methods such as linear and polynomial regression and
non-parametric methods such as kernel-based technique, spline smoothing, and local poly-
nomial regression. As an alternative, due to the functional nature of trajectories mapping
time to position, the problem arising from the targeted application may also be described
in the general framework of functional data statistics in which mobile trajectories are func-
tional objects belonging to a given Hilbert space. Usually, in the absence of the notion of
density probability in the original infinite-dimensional Hilbert space, the classical approach
is to project on a finite-dimensional subspace. However, this works only if it is possible to
find a suitable basis in low dimension representing well all the possible trajectories, which
is not the case in the context of highly maneuvering aircraft.

Rather than considering trajectories in the state space, we may use the framework of Lie
groups by studying the motion of the mobiles in another representation space. Lie groups
are continuous groups of transformations such as scalings, rotations, and translations. For
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poses of a rigid object, the appropriate Lie group is the Special Euclidean group SE(n),
which has been used in the last few years in the fields of navigation [6–8]; robotics [9,10];
computational anatomy [11–14]; automation and control theory [15–17], which explains
concepts involved in calculus on manifolds such as covariant derivatives and curvature;
and signal processing [18–20], among others.

Recently, non-parametric estimation methods on Lie groups have also been explored,
such as [21], in which the authors developed non-parametric kernel-based regression where
the response variable is real-valued, and the Lie group-valued predictors are contaminated
by measurement errors.

Parametric models have also been studied: the analogies of Riemannian kth-order
polynomials with the theory of geodesics in Riemannian manifolds were studied in [22] and
further generalized regarding splines on manifolds in [23]. Riemannian polynomials [24]
as well as manifold-valued spline schemes based on Bézier curves [25,26] have also been
investigated. Our work is guided by the applications and is situated in a parametric
framework of the geodesic regression method developed in [27]. This method was extended
in [24] to higher-order polynomials on Riemannian manifolds, which include Lie groups
with a left or right invariant Riemannian metric. The algorithm for geodesic and polynomial
regression is explicitly derived in SO(3). Our goal is to follow the same idea by modeling
the motion of rigid bodies and rigid transformations with the Special Euclidean group
SE(n), n = 2 or 3. This group, unfortunately, does not provide a bi-invariant metric (a metric
may be left- or right-invariant but not both at the same time) and, thus, does not allow for
regression consistent with group operations, meaning that regression on a given sample
may be similar to the regression applied to the same sample either translated on the left or
on the right.

In [24], geodesic and polynomial calculations were carried out using the Levi–Civita
connection, the main advantage of which is that it is compatible with the metric, and the
calculations are indeed performed using that connection only. In the present contribution,
instead of introducing Lagrange multipliers, a more straightforward approach is taken, by
reasoning in terms of differential forms (minimizing an objective function means finding
the points that cancel its first differential). Then, we extend this principle to an arbitrary
connection since many applications use connections other than the Levi–Civita connection.
For example, Ref. [28] uses Cartan–Schouten connections to express geodesics in Lie groups
as one-parameter subgroups. Similarly, α-connections [29] are often used in statistical
models on manifolds. The advantage of using any given connection can be seen in two
ways: either it simplifies the writing of the problem, or it allows us to express a non-intrinsic
quantity, i.e., one whose writing depends on a specific coordinate system (e.g., this is the
case for polynomial curves, which are expressed differently depending on the coordinate
system chosen).

The paper is organized as follows: In the second section, the elements of differential
geometry necessary to lay the theoretical background are discussed. The third section
presents the notion of a polynomial function in a Lie group using jet bundles. The fourth
section provides a mathematical formulation for the regression problem using differential
forms. Finally, several applications to simulated data are proposed. The limitations of the
method are discussed, and future perspectives to improve the estimation are proposed.

2. Elements of Differential Geometry
2.1. Manifolds, Lie Groups, and Vector Bundles

We assume the reader is familiar with the definition of a manifold as a submanifold of
Rn and recall the definition of an abstract manifold here:

Definition 1. An n-dimensional smooth manifold is a second countable, Hausdorff setM endowed
with an equivalence class of n-dimensional atlases of class C∞ onM. An n-dimensional atlas of
class C∞ onM is a set of pairs {(Ui, ϕi)}i∈I satisfying the following axioms:

• Each Ui is an open subset ofM and,M⊂ ⋃i Ui;
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• Each ϕi is a bijection from Ui into an open subset ϕi(Ui) of Rn, and ϕi(Ui
⋃

Uj) ⊂ Rn is
open for every i and j;

• For every pair (i, j), the map ϕj ◦ ϕ−1
i : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj) is a C∞ diffeomorphism.

A Lie group inherits the algebraic properties of a group and the topological properties
of a manifold.

Definition 2. A Lie group G is a smooth manifold and a group such that the multiplication
m : G× G → G, (x, y) 7→ x ◦ y and the inversion i : G → G, x 7→ x−1 are smooth operations.

We shall use the following notations:

• Lg : G → G, x 7→ gx for the left translation;
• Rg : G → G, x 7→ xg for the right translation;
• e ∈ G for the unit element.

Definition 3. Let E,M be smooth manifolds. A real vector bundle onM is a triple (E, π,M)
with π : E→M a smooth onto mapping such that

(i) For all p ∈ M, π−1(p) is a real vector space isomorphic to Rk, k a fixed integer;
(ii) For all p ∈ M, there exists an open set U ⊂ M, p ∈ U and a diffeomorphism ϕU : U ×

Rk → π−1(U) such that

• ∀q ∈ U, v ∈ Rk, π(ϕU(q, v)) = q;
• ∀q ∈ U, the mapping v ∈ Rk 7→ ϕU(q, v) is an isomorphism on ϕ−1(q).

Remark 1. Definition 3 can be utilized verbatim to define vector bundles with other fields of scalars,
particularly complex or quaternionic vector bundles. However, this additional generality will not be
required for the purposes of this paper.

Notation 1. A bundle (E, π,M) is often represented by its total space E along, π being
implicit.

Definition 4. Let U ⊂ M be an open set and (E, π,M) a vector bundle on M. A smooth
mapping s : U → E such that ∀p ∈ M, π(s(p)) = p is called a local section. When U =M, s is
designated as a global section or simply a section.

Proposition 1. Let U ⊂ M be an open set and (E, π,M) a vector bundle onM. The set of
sections on U has the structure of a real vector space and a C∞(U,R) module.

Notation 2. The C∞(U,R)-module of local sections on U is designated by Γ(U; E). When
U =M, it is simply denoted by Γ(E).

Remark 2. One can define equivalently a vector bundle as the sheaf generated by the local sections.

Remark 3. A vector bundle of dimension 1 is called a line bundle. Its sections are the C∞(M,R)-
mappings.

Definition 5. A triple (M, E,∇) withM a smooth manifold, E a vector bundle onM and ∇ a
Koszul connection on E is called a gauge structure.

Proposition 2. Let E, F be two vector bundles over M. The pointwise operations on sections
⊕,⊗, hom(·, ·) define the respective vector bundles E⊕ F, E⊗ F, hom(E, F).

Proof. See [30], Theorem 6.2, p. 67.

Definition 6. The hom bundle with F = R is called the dual bundle of E and is denoted by E∗.
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2.2. Koszul Connections

Definition 7. Let (E, π,M) be a vector bundle over M. A Koszul connection is an R-linear
mapping:

∇ : Γ(E)→ Γ(TM∗ ⊗ E)

such that
∀s ∈ Γ(E), ∀ f ∈ C∞(M,R), ∇( f s) = d f ⊗ s + f∇s (1)

A Koszul connection is often called a covariant derivative.

Remark 4. Applying Definition 7 on a local frame {ei, i = 1 . . . m} of E yields the so-called
Christoffel symbols:

∀k, j ∈ 1, . . . , m, i = 1 . . . dim(M),∇∂i
ej = Γk

ijek

with ∂i, i = 1 . . . dim(M) a basis of TM. The Christoffel symbols obviously uniquely characterize
the connection ∇.

Remark 5. There is no reason for a locally constant section to vanish under the action of a Koszul
connection.

Definition 8. Given a local frame of sections {ei}, the connection forms are the one forms ωi
j

such that
∇ej = ei ⊗ωi

j (2)

Proposition 3. If E, F are two vector bundles and ∇E,∇F are, respectively, connections on E, F,
there exist two canonical connections:

∇E ⊕∇F : sE ⊕ sF 7→ (∇EsE)⊕ (∇FsF), (3)

∇E ⊗∇F : sE ⊗ sF 7→ (∇EsE)⊗ sF + sE ⊗ (∇FsF). (4)

Proposition 4. Let E be a vector bundle overM and let E⋆ be its dual bundle. If ∇ is a Koszul
connection on E, then the dual-connection ∇⋆ on E⋆ is defined as follows:

∇⋆
X(ω)(Y) = X(ω(Y))−ω(∇XY), X, Y ∈ Γ(TM), ω ∈ Γ(E⋆). (5)

Definition 9 ([31]). Let f ∈ C∞(M,R), that is f is a section of the trivial bundleM×R. The
covariant derivative of f , still denoted by ∇ f , is defined as:

∇ f = d f . (6)

Propositions 3 and 4 and Definition 9 can be combined in order to obtain the covariant
derivative of arbitrary tensors.

Definition 10. Let (E, πE,M), (F, πF,N ) be two vector bundles. A bundle morphism is a couple
of mappings ϕ̃ : E → F, ϕ : M → N such that, for all x ∈ M, the mapping u ∈ π−1

E (x) →
ϕ−1

F (ϕ(x)) is linear, which makes the next diagram commute:

E F

M N

ϕ̃

πE πF

ϕ

(7)

Definition 11. Let ϕ : M → N be a smooth mapping and (F, πF,N ) a vector bundle on N .
The pullback bundle ϕ∗F is the vector bundle onM generated by the local sections of the form
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x 7→ s(ϕ(x)) where s is a local section of F. Furthermore, there exists a bundle morphism ϕ̃ : E→ F
sending a generating section s ◦ ϕ to s.

Definition 12. LetM,N be smooth manifolds and ϕ : M → N a smooth mapping. Let E be
a vector bundle on N equipped with a Koszul connection ∇. The pullback connection of ∇ by ϕ,
designated by ∇ϕ, is defined by generating sections s ◦ ϕ as follows:

∇ϕ
Xs ◦ ϕ = ∇DϕXs (8)

where X ∈ TM.

Remark 6. The quantities in Equation (8) depend only on X(p) ∈ TpM and Tϕ(p)N .

2.3. Covariant Derivatives and Parallel Sections

Definition 13. LetM be a smooth manifold, E a vector bundle onM and ∇ a Koszul connection
on E. Let γ : ]0, 1[→ M a smooth mapping, that is a curve onM. The covariant derivative of
s ∈ Γ(E) along γ is the mapping:

t ∈]0, 1[→ ∇γ
1 s ◦ γ(t) (9)

where 1 is the unit constant vector in ]0, 1[.

Notation 3. The covariant derivative of a section s along a curve γ is often denoted
as follows:

∇γ̇s

Proposition 5. With the same writing conventions as in Definition 13, the covariant derivative of
a section s = siei expressed in a local frame (e1, . . . , en) is given as follows:

dsi(γ̇(t))ei + Γk
ijs

iγ̇j(t)en (10)

Proof. This result is a direct application of Definition 12 with ϕ = γ.

Remark 7. The first term in Equation (10) can be written by a common abuse of notation:

d
dt

si(t)ei (11)

where siei stands for the section in the pullback bundle associated to s.

Definition 14. Let (M, E,∇) be a gauge structure and let γ : ]0, 1[→M be a smooth curve. A
section s ∈ Γ(E) is said to be ∇-parallel along γ if

∇γ̇s = 0.

Remark 8. A parallel section is, in a local frame, the solution of an ordinary differential equation
(ODE):

d
dt

sk(t) + Γk
ijs

iγ̇j(t) = 0, k = 1 . . . n (12)

This gives a practical way to determine a parallel section from an initial condition.

Notation 4. The parallel transport of a section s from a to b will be denoted ∏b
a s.
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Given a gauge structure (M, TM,∇), x ∈ M and a tangent vector X ∈ TxM, the
next ODE locally defines a smooth curve γ:

γ̇(t) = s ◦ γ(t)
∇γ̇s = 0
γ(0) = x

(13)

Definition 15. Let (M, TM,∇) be a gauge structure. For any x ∈ M, there exists an open
neighborhood U of 0 in TxM such that the curve γ defined by Equation (13) exists to time 1 for a
tangent vector X ∈ U. The mapping is as follows:

X 7→ expx X = γ(1) (14)

where γ is the solution curve to Equation (13) is called the exponential map.

Definition 16. Let (e1, . . . , en) be a basis of TxM such that the exponential map exists for all the
ei, i = 1 . . . n. The mapping

(t1, . . . , tn) ∈ [0, 1]n 7→ expx

(
n

∑
i=1

tiei

)
(15)

defines a local coordinate system in a neighborhood of x called the normal coordinates at x.

Remark 9. By the very definition of a flow, the following is deduced:

d
dt

expx tX = s(γ(t)) (16)

with γ, s is the solution to ODE (13). Taking the second derivative is slightly awkward since the
corresponding tangent vector would lie in TTM. However, it makes sense to consider the covariant
derivative along γ:

∇γ̇s = 0. (17)

The normal coordinate system thus has a vanishing second (covariant) derivative. The generalization
of this property to higher covariant derivatives will be used later as an extension of the notion of
polynomial curves.

Notation 5. A normal coordinate system at x is often denoted by xi, i = 1 . . . n and the
associated vector fields by ∂i. A vector field X is said to be a coordinate vector field if it can
be written as X = ai∂i with ai, i = 1 . . . n constant mappings [31].

Proposition 6. Any two coordinate vector fields X, Y have a vanishing commutator [X, Y] = 0.

Proof. Writing X = Xi∂i, Y = Yi∂i, and using the fact that Xi, Yi, i = 1 . . . n are constant
mappings, the following is derived:

[X, Y] =
((

∂jYi
)

X j −
(

∂jXi
)

Y j
)

∂i = 0

2.4. Musical Isomorphisms

In the sequel, we will often have to toggle between matching differential forms and
vectors. We define the musical isomorphisms using the metric g.
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Definition 17. Let (M, g) be a Riemannian manifold. Let α ∈ T∗M. α♯ is the only element of
TM such that, for all X ∈ TM,

α(X) = g(α♯, X) (18)

and we note it as α♯ := ♯(α).
In a similar way, for Y ∈ TM, Y♭ is the only element of T∗M such that, for all X ∈ TM,

Y♭(X) = g(X, Y) (19)

and we note it as Y♭ := ♭(Y).

Both isomorphisms can be expressed in local coordinates:

α♯ = ♯(α) = ♯(αiei) = gijαj︸︷︷︸
Xi

ei,

X♭ = ♭(X) = ♭(Xiei) = gijX j︸ ︷︷ ︸
αi

ei.

where gij and gij are, respectively, the i, j coefficient of the metric matrix and the i, j coeffi-
cient of the inverse of the metric matrix.

3. Manifold-Valued Polynomial Functions

Here, we provide the basic elements on how a manifold-valued polynomial function
P : I ⊂ R→M can be well defined.

As a consequence of the Taylor formula, the notion of a polynomial function of degree
k on Rn is defined as a smooth mapping P : Rn → R such that

∂|I|P
∂I1 x1 . . . ∂In xn

= 0

for any multi-index I = (I1, . . . , In) such that |I| = ∑n
i=1 Ii > k.

While it is meaningful to speak about higher derivatives only for vector space-valued
maps, things are more complicated for manifold-valued maps. This kind of property may
hold locally, that is, for example, if a function has a finite length Taylor expansion in terms
of a local coordinate system, but generally, it fails globally, due to the transition functions
between local charts. Two possibilities exist to overcome this:

• Ref. [32] restricts the Hessian to the kernel of d fp so that the second derivative makes
sense through the transition maps of the manifold;

• A possibility to bypass this [33] is to consider directly a k-th order Taylor series through
jet bundles: let γ1, γ2 be two curves I ⊂ R → M such that γ1(0) = γ2(0) = p and
(U, ϕ) a local chart such that ∀i ∈ 1 . . . k,

di

dti

∣∣∣∣
t=0

ϕ ◦ γ1(t) =
di

dti

∣∣∣∣
t=0

ϕ ◦ γ2(t)

This relation is an equivalence relation in which equivalence classes are called k-jets at
p, noted Jk

p. The space of all k-jets of the bundle (E, π,M) is the union of k-jets at p
over all the points ofM.
The set of all k-jets at p can be given a differentiable structure in a “tower-like” bundle
endowed with adapted coordinates, in which

∀m ∈ 1, . . . , k, ∀p ∈ M, πm : Jm → Jm−1, [γ]mp 7→ [γ]m−1
p

are projections from one level of the bundle to the one under.
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Jm

Jm−1

...

J0 = E

M

π

π1

πm−1

πm

This work uses the second approach, though it will not be explicitly reminded in the
sequel.

4. Optimality Conditions

In this section, the first and second-order local optimality conditions for a real-valued
mapping with domain a Riemannian manifold are briefly introduced.

Lemma 1. LetM be a smooth manifold and f : M→ R a smooth mapping. For p ∈ M to be a
local minimum of f , it is necessary that p be a critical point of f , which is the case if and only if the
differential of f at p vanishes: d fp = 0.

Proof. See [34]

In fact, if γ : ]− ϵ,+ϵ[→ M is a smooth curve on M such that γ(0) = p, then d fp(γ̇(0))
is the first-order variation of f in the direction of the tangent vector γ̇(0) ∈ Tp M. This
approach can be extended by iterating the derivative.

Definition 18. LetM be a smooth manifold: a retraction is a smooth map

R : TM→M, (x, v) 7→ Rx(v)

such that for any curve c : ]− ε, ε[→M, t 7→ Rx(tv), we have c(0) = x and c′(0) = v.

Remark 10. The Riemannian exponential (x, v) 7→ expx(v) and the linear map (x, v) 7→ x + v
are examples of a retraction.

From this, a possible algorithm for optimization on manifolds is the Riemannian
gradient descent (RGD) explained in Algorithm 1, taken from [34]:

Algorithm 1: Riemannian gradient descent
Input: x0 ∈ M

1 for k=0, 1, 2 . . . do
2 Pick a step size αk > 0
3 xk+1 = Rxk (−αkgrad f (xk))

where R is a retraction.
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5. The Geodesic Regression Problem
5.1. Polynomial Curves

We recall that in a Lie group G with its Lie algebra g, there is a way to easily construct
a left-invariant metric from any given inner product on g, which itself can be derived from
the Euclidean inner product, since g ∼= Rdim G:

⟨⟨Xg, Yg⟩⟩g =
〈

TgLg−1 Xg, TgLg−1Yg

〉
(20)

Please note that any symmetric positive-definite matrix may be used to produce different
left invariant metrics:

⟨⟨Xg, Yg⟩⟩A,g =
〈

TgLg−1 AXg, TgLg−1 AYg

〉
(21)

Likewise, a right-invariant metric can also be defined. A minimizing geodesic between
two points g0, g1 with respect to ⟨⟨·, ·⟩⟩g is a curve γ : [0, 1] → G, such that γ(0) = g0,
γ(1) = g1n minimizing the functional

L(γ) =
1
2

∫ 1

0
⟨⟨γ̇(t), γ̇(t)⟩⟩gdt (22)

Due to the left invariance of the metric, it is enough to seek a solution to the reduced
problem:

L(X) =
1
2

∫ 1

0
⟨⟨Ẋ(t), Ẋ(t)⟩⟩edt (23)

where X : ]− ϵ, ϵ[→ g is a g-valued curve. It is well known that X satisfies the so-called
Euler–Arnold equation [35]:

Ẋ(t) = adt
X(t) X(t) (24)

From the solution of Equation (24), the original geodesic is reconstructed with the help of
the left translation

γ̇(t) = TeLγ(t)X(t) (25)

which simplifies in a matrix Lie group as follows:

γ(t) = exp
(∫ t

0
X(u)du

)
(26)

Minimizing geodesics are Riemannian equivalents to straight lines and are thus the
natural object to consider for extending the linear regression to a Lie group G. Furthermore,
if ∇ is a connection on G, then a minimizing geodesic γ has to satisfy the following:

∇γ̇(t)γ̇(t) = 0 (27)

thus, the Riemannian equivalent to a degree k polynomial is a curve γ such that(
∇γ̇(t)

)k
γ̇(t) = 0 (28)

Here again, by the left invariance of the metric, the connection in TgG has to be con-
sidered only on the basis of left-invariant vector fields TeLge1, . . . , TeLgen. The connection
restricted to elements of the Lie algebra will be denoted ∇ in the sequel.

Applying the Koszul formula to the basis vectors (e1, . . . en) of g, the following is obtained:

Γk
ij =

1
2

(
ck

ij + cj
ki − ci

jk

)
(29)

where the ck
ij =

〈
[ei, ej], ek

〉
are the structure constants and the Γk

ij, (i, j, k) ∈ 1, . . . , n are the
Christoffel symbols of the connection.
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Using this form, one can compute a degree p polynomial curve X in g by solving an
augmented differential equation

v1(t) = ∇X(t)v0(t), v2(t) = ∇X(t)v1(t), . . . ,∇X(t)vp−1(t) = 0 (30)

with the convention v0 = X. Please note that the previous system can be written in the
following form:

d
dt

 v0
...

vp−1

 = F
(
v0, . . . , vp−1

)
(31)

where the vector v0, . . . vp−1 is in Rpn, with n the dimension of g as a real vector space.

5.2. Regression in a Lie Group

An extended notion of parametric linear regression on Riemannian manifolds, called
intrinsic geodesic regression, has been independently developed in [27,36]. Let (y1, . . . , yN)
be a set of points representing the trajectory of the mobile on a Riemannian manifold
(M, g). The idea is to find a geodesic curve γ(t) on the manifold that best fits those points
in a "linear" manner at known times t1, . . . , tN . The estimate is found by minimizing a least
squares criterion based on a Riemannian distance between the model γ(t) and the data.

More formally, the geodesic regression model is expressed in [27] as follows:

Y = Expγ(t)(ε) = ExpExpp(tv)
(ε)

where γ(t) = Expp(tv) is the geodesic curve given by the initial conditions γ(0) = p and
γ̇(0) = v, and ε denotes a Gaussian random variable taking values in the tangent space
at γ(t).

In [24], this geodesic regression model is generalized to a polynomial one

Y = Expγ(t)(ε)

where the curve γ(t) is a Riemannian polynomial of order k, as defined by Equation (28).
The Riemannian least mean squares estimate is obtained by minimizing the next criterion
over the decision vectors (γ(0), γ̇(0), . . . , γ̇(i)(0), . . . , γ̇(k)(0)) as follows:

E(γ) =
1
N

N

∑
j=1

d
(
γ(tj), yj

)2 (32)

where d is a geodesic distance between the model γ(tj) and the data yj, j = 1, . . . , N.
This minimization problem is then performed under the constraints that the model curve

γ has, in the geodesic regression problem, a parallel first derivative, namely∇γ̇(t)γ̇(t) = 0, or,
more generally, a k-th order polynomial constraint (∇γ̇(t))

kγ̇(t) = 0 that is uniquely solved
by adding initial conditions γ(0), γ̇(0), . . . , γ̇(i)(0), . . . , γ̇(k)(0).

Using properties of translation given by Equations (23) and (25) in a Lie group, by
denoting X1, . . . , Xi, . . . , Xk the i-th order velocities of in g, we obtain the “forward” poly-
nomial equations 

d
dt γ(t) = γ(t)X1(t)

...
d
dt Xi(t) = ∇X1 Xi(t) + Xi+1(t)

...
d
dt Xk(t) = ∇X1 Xk(t)

(33)
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Let us now move to minimizing the criterion given by Equation (32). The next lemma
is a well-known result that can be proven using normal coordinates.

Lemma 2. Let p, q ∈ M such that logp q = V ∈ Tp M is well defined. The differential at p of the
mapping m 7→ d2(m, q) is the 1-form αq : X ∈ Tp M 7→ 2g(X, V).

Proposition 7 (Variational formula [37] p. 333, Theorem B.3). Let X be a vector field depending
on a parameter λ, with value at point p denoted as X(p; λ). Let ΦX be its flow, i.e., ΦX(t, x; λ) is
the value of the integral curve of X at time t, with Φ(0, x; λ) = x. Then, the derivative ∂λΦ of Φ
with respect to λ is the solution of the following:

d
dt

∂λΦX(t, x; λ) = ∂xX(Φ(t, x; λ); λ)∂λΦX(t, x; λ) + ∂λX(ΦX(t, x; λ), λ) (34)

with the initial condition as follows:

∂λΦX(0, x; λ) = 0. (35)

Similarly, the derivative with respect to the initial condition is the solution of the following:

d
dt

∂xΦX(t, x; λ) = ∂xX(Φ(t, x; λ); λ)∂xΦX(t, x; λ) (36)

with the initial condition as follows:

∂xΦX(0, x; λ) = Id. (37)

The variational equation can be applied to the geodesic equation ∇γ̇γ̇ = 0 by consid-
ering a perturbation in the derivative at 0 in the form λ 7→ γ̇(0) + λv while keeping the
starting point p = γ(0) constant. The one-parameter family of curves will be denoted by
γ(p, t; λ). Letting J = ∂λγ, we obtain the following:

d2

dt2 Ji = −
(

∂lΓ
i
jk

)
γ̇iγ̇j Jl − 2Γi

jk
d
dt

J jγ̇k, (38)

where the 2 factor is a consequence of ∇ being torsionless. A more familiar form can be
obtained by expanding J on a frame X1(t), . . . Xn(t) coming from parallel transport of a
basis of Tp M. In this case, letting J(t) = Jα(t)Xα(t), Equation (38) becomes

d2

dt2 J + R∇(J, γ̇)γ̇ = 0. (39)

with R∇ the curvature of ∇.

Remark 11. Equation (39) is valid for an arbitrary Koszul connection without torsion, even if it
is a more common use in the Riemannian setting. A solution vector field J along γ is said to be a
Jacobi vector field.

Remark 12. The result is used locally before the injectivity radius of the exp function.

Going back to the original problem, which is to find a local minimum of Criterion (32),
and assuming that γ is the integral curve of a vector field X with the initial condition
γ(0) = p, an application of Lemma 2 and Proposition 7 yields the next expression for the
differential at TpM of E(γ) with respect to the initial conditions as follows:
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dE : Y ∈ TpM 7→


2
N ∑N

i=1 g
(

γ(ti); ∂pγ(ti, p).Y, logγ(ti ,p)
yi

)
,

2
N ∑N

i=1 g
(

γ(ti); ∂vγ(ti, p).Y, logγ(ti ,p)
yi

)
,

v = γ̇(0).

(40)

The Riemannian gradient at Tp M is thus the tangent vector Z0 ∈ TpM (resp. Z1 ∈ TpM)
such that [27]

∀Y ∈ TpM,

 g(p; Y, Z0) =
2
N ∑N

i=1 g
(

γ(ti); ∂pγ(ti, p).Y, logγ(ti ,p)
yi

)
,

g(p; Y, Z1) =
2
N ∑N

i=1 g
(

γ(ti); ∂vγ(ti, p).Y, logγ(ti ,p)
yi

)
.

(41)

Let, for i = 1, . . . , N, the individual contributions of the gradient

dEp
i := g

(
γ(ti); ∂pγ(ti, p).Y, logγ(ti ,p)

yi

)
, (42)

dEv
i := g

(
γ(ti); ∂vγ(ti, p).Y, logγ(ti ,p)

yi

)
, (43)

∂∗γ(ti, p).Y and logγ(ti ,p)
yi both belong to Tγ(ti)

M. As illustrated in Figure 1 (where
Π0

tk
denotes the parallel transport from Tγ(tk)

M to Tγ(0)M, and ϵk = logγ(tk ,p) yk denotes
the residue at time tk), we can transport them back to TpM, so that there are two vectors
(Zi

0, Zi
1) such that

dEp
i = g

(
γ(ti); ∂pγ(ti, p).Y, ϵi

)
= g(p; Y, Zi

0), (44)

dEv
i = g(γ(ti); ∂vγ(ti, p).Y, ϵi) = g(p; Y, Zi

1). (45)

The vector Z0 (respectively, Z1) can be evaluated by summing the individual contributions
as follows:

∀Y ∈ TpM,

{
g(p; Y, Z0) =

2
N ∑N

i=1 g(p; Y, Zi
0) =

2
N g(p; Y, ∑N

i=1 Zi
0),

g(p; Y, Z1) =
2
N ∑N

i=1 g(p; Y, Zi
1) =

2
N g(p; Y, ∑N

i=1 Zi
1).

(46)

Figure 1. Parallel transport of the residues.

Finding each Zi
0, (respectively, Zi

1) boils down to inverting the matrix ∂pγ(ti, p) (re-
spectively, ∂vγ(ti, p)) and then transposing it with respect to the metric. However, an
easier way to do this is by parallelly transporting the residue logγ(ti ,p)

yi from Tγ(ti)
M back

to TpM.
Following [24], the problem can be tackled with the introduction of the adjoint equa-

tions. While the original work was conducted with the Levi–Civita connection, the deriva-
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tion of the adjoint equations can be performed mutantis mutandis using the dual-connection
∇∗ as follows:

∇∗γ̇λi(t) = −λi−1(t), (47)

∇∗γ̇λ0(t) = −∑
i

R∇
∗
(vi(t), λi(t))v1(t), (48)

where the vi values are the vector fields solutions of Equation (30), and the λi values are
adjoint vector fields coupled with the vi values.

5.3. Application to SE(3)

Coming back to the original problem, which is to estimate a trajectory (i.e., a time-
stamped curve) from raw positioning data belonging to SE(3), we remind here some
specific elements about SE(n) and its Lie algebra se(n).

Definition 19. The set of affine maps f : Rn → Rn such that f (x) = Rx + T where R is a
rotation matrix (R ∈ SO(n)), and T is a vector of Rn is called the Special Euclidean group SE(n)
and is a Lie group.

SE(n) is often called the group of rigid motions, or rigid-body motions. An element

A ∈ SE(n) can be represented by a (n + 1)-by-(n + 1) matrix of the form
(

R T
0 1

)
where

R ∈ SO(n) and T ∈ Rn It is a group, where the product of two elements of SE(3) is given
as follows: (

R1 T1
0 1

)
×
(

R2 T2
0 1

)
=

(
R1R2 R1T2 + T1

0 1

)
and the inverse of an element is as follows:(

R T
0 1

)−1

=

(
RT −RTT
0 1

)

We have dim(SE(n)) = n(n+1)
2 ; therefore, dim(SE(3)) = 6.

Definition 20. The vector space of real (n + 1)-by-(n + 1) matrices of the form

X =

(
K V
0 0

)
(49)

where K is a skew-symmetric n-by-n matrix and V is a vector in Rn and the Lie algebra of SE(n).

Remark 13. It can be easily shown that the matrix exponential of any matrix defined by (49)
belongs to SE(n). It can also be proven by the exp map se(n)→ SE(n) is onto but not one-to-one
due to the rotation part of the matrix being the same with angles differing by an integer multiple
of 2π.

Since dim(se(3)) = dim(SE(3)) = 6, a basis for se(3) corresponding to the infinitesi-
mal rotations and translations along all three axes can be written as follows:

E1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

, E2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

, E3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

,

E4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

, E5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

E6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
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There is a canonical isomorphism between se(3) and R6 often denoted ∧ (“hat”), with
its inverse being denoted ∨ (“vee”) as follows:

∧ : R6 → se(3),∨ : se(3)→ R6

With these elements in mind, we can solve the regression. Ref. [24] gave a closed-form
expression for geodesics in groups like SO(3) that have a bi-invariant metric, but no such
closed form can be derived for a higher-order polynomial. Unfortunately, SE(3) has no
such bi-invariant metric [11], and numerical integration is the only solution available, even
for order 1 polynomials, i.e., geodesics.

6. Implementation
Algorithms

We now show how the solution is numerically implemented.
The algorithm was tested on several generic trajectories generated with the MatLab soft-

ware, with different noise variances according to the pseudo-code presented in Algorithm 2.
In this algorithm, a maneuver is defined as a change in the motion or orientation of the
object, altering its speed and direction with respect to a fixed reference point. A maneuver
can be as simple as a turn, a climb, a descent, or something more complex such as a loop
or helix.

Note that, here, for a given maneuver, the velocity in se(3) is assumed to be constant
during the said maneuver; otherwise, we would have to integrate the velocity vector field
over time, as in Equation (26).

The metric used is the one derived from the usual inner product in matrix spaces:

⟨A, B⟩ = tr(AT B)

We used the Levi–Civita connection for its compatibility with the metric to measure
the differences between the actual, noisy, and estimated trajectories. The algorithm may
easily be changed to account for another connection.

The pseudocode in Algorithm 3 describes the procedure for determining the optimal
geodesic but can easily be extended to determine an optimal curve of order k.

The following factors should be noted:

• Initialization of p = γ(0) may be carried out in several ways: naive initialization
p0 = e may work, but the Fréchet mean ([38]) is often a better alternative. Another
possibility is to use one of the measured points;

• Equations (33) are solved in Algorithm 3 in the specific case of a geodesic, which
means k = 1 as follows: we may rewrite the forward equations using the Christoffel
symbols of the connection and then solve a “large” system of ODEs.



d
dt γ(t) = γ(t)X1(t)

...
d
dt Xi(t) = ∇X1 Xi(t) + Xi+1(t)

...
d
dt Xk(t) = ∇X1 Xk(t)

=⇒



γ(t) = exp
(∫ t

0 X1(u)du
)

...
Ẋi(t) = Γm

lj Xl
1X j

i + Xi+1
...

Ẋk(t) = Γm
lj Xl

1X j
k
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Algorithm 2: Simulated data generation
Input:
• Nmeas (number of measurements),
• Nman (number of maneuvers),
• σ, standard deviation of the noise,
• x0 a starting point in R3 /* optional, helps visualising data in 3D */

1 for r=1 to Nman do
Choose: vr

se3 /* velocity in the Lie algebra, corresponding to the
rth maneuver, assumed to be constant */

2 ξ ← vr
se3

3 for i=1 to Nmeas do
4 ySE3

real (
i

Nmeas
) = exp

(
i

Nmeas
ξ
)
/* exp(tξ) ∈ G with t= i

N */

5 yR3
real(

i
Nmeas

) = ySE3
real (

i
Nmeas

)× x0

6 ySE3
meas(

i
Nmeas

) = exp
(

i
Nmeas

ξ + n( i
Nmeas

)
)
/* n ∼ N (0, σ2) ∈ se(3) */

7 yR3
meas(

i
Nmeas

) = ySE3
meas(

i
Nmeas

)× x0

8 x0 ← yR3
meas(1) /* Update of the starting point before the next

maneuver */
Output:

• y_meas_SE3, noisy trajectory as a set of motions in SE(3),
• y_real_SE3, real trajectory as a set of motions in SE(3),
• y_meas_R3, noisy trajectory as a set of points in R3,
• y_real_R3, real trajectory as a set of points in R3.

Algorithm 3: Determining the optimum geodesic
Init:

γ(0) = p← p0,
γ̇(0) = v← 0,
ϵ (step size)
δmin (convergence threshold)
v← TeLγ(0)−1 v /* v is translated to se(3) */

1 while ||Z0|| > δmin OR ||Z1|| > δmin do
2 Solve in se(3): /* Forward equations with the Christoffel symbols */
3 γ̇e(t) = γe(t)v(t)
4 v̇(t) + Γm

lj vlvj = 0

5 Solve in SE(3):
6 γ(t) = expp(γe(t))
7 Solve the backward Equations (44) and (45):
8 for j=1:Nmeas do
9 Compute to t = 0 each dEp

j , dEv
j by parallel transport of the residue ϵj

translated back to se(3)

10 Compute Z0, Z1 ∈ se(3) /* Equations (46) */
11 Update of p and v:
12 v← v + ϵZ1 /* displacement on se(3) */
13 p← expp(ϵZ0) /* displacement on SE(3) */

Optional: Change ϵ for better convergence
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The first examples are shown in Figures 2 and 3. We can see that the estimate is close
to the actual trajectory, even though a slightly curving move is present due to the estimated
rotation part of the trajectory in SE(3) being close to zero but not exactly zero. This could
be corrected by post-processing by the flagging of the trajectory.

0.94 0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.5

1

1.5

2

2.5

3

3.5

Estimate

Measured

Actual

Figure 2. A straight line.

Figure 3. A straight line, with a “large” additive noise.

Figure 4 displays a trajectory that is highly unlikely for a civilian aircraft but could
be plausible for a UAV. This kind of trajectory would be difficult to track by a Kalman
filter unless the state variables also lie on a Lie group. Also, turn maneuvers were tested as
shown in Figures 5 and 6.
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(a) A helix in 2D view

(b) A helix in 3D view
Figure 4. A helix.

We can measure how well the model fits the data using a coefficient of determination
R2. Following [27], since the data do not belong to an Euclidean space, we will have to use
the Fréchet variance as the denominator as follows:

VarF =
1
N

min
y∈M∑

j
d(y, yj)

2,

leading to

R2 = 1− SSE
sample Fréchet variance

= 1−
∑j d(γ(tj), yj)

2

miny∈M ∑j d(y, yj)2 (50)
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Note that since we use simulated data, we can also measure the R2 coefficient with
respect to the “real” data:

R2 = 1−
∑j d(γ(tj), yreal

j )2

miny∈M ∑j d(y, yreal
j )2

(51)

Similarly to the Euclidean case, an R2 close to 0 will indicate that the estimator does
not provide a better estimate than the sample mean (Fréchet mean for manifold-valued
data), whereas an R2 equal to 1 will indicate a perfect fit between the model and the data.

Some of the results obtained from the simulations are provided in Table 1.

Figure 5. A gradual turn.

Figure 6. A sharp turn.
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Table 1. Results after simulations.

Maneuver Noise Std Nmeas R2

Straight line 10−3 25 1
Straight line 10−2 25 0.99
Straight line 10−1 25 0.84
Straight line 10−2 25 0.99
Straight line 10−2 15 0.99
Straight line 10−2 10 0.99
Straight line 10−1 25 0.84
Straight line 10−1 15 0.82
Straight line 10−1 10 0.81
Gradual turn 10−2 25 0.99
Gradual turn 10−2 15 0.99
Gradual turn 10−2 10 0.99
Gradual turn 10−1 25 0.79
Gradual turn 10−1 15 0.75
Gradual turn 10−1 10 0.74
Sharp turn 10−1 25 0.92
Sharp turn 10−1 15 0.89
Sharp turn 10−1 10 0.81

Note: the bold lines are illustrated by images.

We notice that the algorithm performs rather well even with “sharp” maneuvers, even
though the performance degrades when the noise variance increases, which makes total
sense. The algorithm seems to perform well even with a small sample size such as 10 points.
The nature of the maneuver does not seem to affect the performance. The source code and
more data sets are available as Supplementary Material.

7. Conclusions and Future Work

In this work, we have written polynomial regression in Lie groups as a solution of a
k-times-iterated covariant derivative. For that, the iterated connection is not necessarily the
Levi–Civita connection. The solution was tested in the specific case of the Special Euclidean
group SE(3) that models rigid-body motions.

From that, several possibilities may be pursued. A theoretical study of the performance
of the estimator in terms of convergence could be undertaken. Also, since the connection
exponential defines a local coordinate system, we can go further and find coordinate
systems that flatten the manifold, thus greatly simplifying the regression problem and
having it behave as in the Euclidean case. Further work would consist of characterizing the
statistical quantities associated with the estimation process using polynomial regression.
Determining the limit law to be considered in this case is a problem in itself. Another axis
would involve using local G-valued polynomials to track the changes in maneuvers and
adapt the parameters of the optimum fitting curve.

Supplementary Materials: All MATLAB scripts and some datasets are freely available at https://
github.com/jhnaby/LieGroupRegression (accessed on 26 September 2024).
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