
HAL Id: hal-04747713
https://hal.science/hal-04747713v1

Preprint submitted on 22 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Scheduling with lightweight predictions in
power-constrained HPC platforms

Danilo Carastan-Santos, Georges da Costa, Igor Fontana de Nardin, Millian
Poquet, Krzysztof Rzadca, Patricia Stolf, Denis Trystram

To cite this version:
Danilo Carastan-Santos, Georges da Costa, Igor Fontana de Nardin, Millian Poquet, Krzysztof Rzadca,
et al.. Scheduling with lightweight predictions in power-constrained HPC platforms. 2024. �hal-
04747713�

https://hal.science/hal-04747713v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Scheduling with lightweight predictions in
power-constrained HPC platforms

Danilo Carastan-Santos ∗ Georges Da Costa †

Igor Fontana de Nardin † Millian Poquet †

Krzysztof Rzadca ‡ Patricia Stolf † Denis Trystram ∗

Abstract

With the increase of demand for computing resources and the strug-
gle to provide the necessary energy, power-aware resource management
is becoming a major issue for the High-performance computing (HPC)
community. Including reliable energy management to a supercomputer’s
resource and job management system (RJMS) is not an easy task. The
energy consumption of jobs is rarely known in advance and the workload
of every machine is unique and different from the others.

We argue that the first step towards properly managing power is to
deeply understand the power consumption of the workload, which involves
predicting the workload power consumption and exploiting it by using
smart power-aware scheduling algorithms. Crucial questions are (i) how
sophisticated a prediction method needs to be to provide accurate work-
load power predictions, and (ii) to what point an accurate workload’s
power prediction translates into efficient power management.

In this work, we proposed a method to predict and exploit HPC work-
loads power consumption with the objective of reducing the supercomput-
ers power consumption, while maintaining the management (scheduling)
performance of the RJMS. Our method exploits workload submission logs
with power monitoring data, and relies on a mix of lightweight power
prediction methods and a classical EASY Backfillling inspired heuristic.
Then, we model and solve the power capping scheduling as a greedy knap-
sack algorithm. This algorithm improves the Quality of Service and avoids
starvation while keeping the solution lightweight.

We base this study on logs of Marconi 100, a 980-node supercom-
puter. We show using simulation that a lightweight history-based predic-
tion method can provide accurate enough power prediction to improve the
energy management of a large scale supercomputer compared to energy-
unaware scheduling algorithms. These improvements have no significant
negative impact on performance.

∗University Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG
†University of Toulouse, IRIT, CNRS
‡University of Warsay, Google

1

https://orcid.org/0000-0002-1878-8137
https://orcid.org/0000-0002-3365-7709
https://orcid.org/0000-0002-1728-8173
https://orcid.org/0000-0002-1368-5016
https://orcid.org/0000-0002-4176-853X
https://orcid.org/0000-0001-5169-1831
https://orcid.org/0000-0002-2623-6922

Keywords: Machine learning, HPC, Resource management,
Power capping, Simulation

1 Introduction
High-Performance Computing (HPC) technology is becoming more accessible
and less expensive to build, which opens the door to new fields to capitalize
on the large computational capabilities afforded only by such large systems.
However, as opposed to the production cost, the power consumption of HPC
platforms only increases, reaching levels [1] in the order of the power consump-
tion of a small city. Besides the carbon footprint issue [2] raised by this increase
in the power consumption, current climate events may heavily strain the elec-
tricity grids [3] that power HPC platforms. To avoid outages, it has become
crucial for HPC platform maintainers to deploy measures to ease the strain in
the electricity grid, which is typically achieved by enforcing a power capping
over time in the platform. The platform’s resource manager must therefore
adapt to the available power during this power constrained period.

Most existing works have proposed methods to predict the power consump-
tion of the workload, coupled with a speed scaling (DVFS) method, to adapt
to the available power. The drawback is the risk of unforeseeable effects on
Quality of Service (QoS). Only few works in the literature have proposed a full
framework, including a workload power prediction method feeding energy data
at the submission time to a resource manager. These few works often result in
complex and/or heavyweight optimization schemes that are perceived to be ei-
ther too risky that might disrupt regular functioning, or too expensive in terms
of computational resources, further reducing the (constrained) power available
for the applications.

In contrast with related works, the purpose of this paper is to propose meth-
ods that adapt to the available power and deal with the power constraints
as lightweight and simple as possible. We exploit power consumption data to
develop models to predict the power consumption of an HPC application in
advance. These models feed power consumption predictions of arriving appli-
cations to a scheduler, and the scheduler uses these predictions to comply with
the power constraints while keeping the supercomputer operational. Our exper-
imental results highlighted that a lightweight, history-based predictor – which
is arguably one of the simplest descriptors of an application power consumption
– coupled with an EASY Backfilling [4] inspired scheduler can make a close
to optimal use of the available power in constrained periods. We also model
the power capping problem as a knapsack problem, solving it using a greedy
approach that keeps the scheduling lightweight. This knapsack using the power
predictions improves the Quality of Service (QoS) and avoids starvation.

This paper extends our previous work [5] by making the following additions:

1. We added the job’s power consumption standard deviation to the pre-
dicted metrics . The idea is to exploit the central limit theorem to account
for the stochasticity of the jobs’ power consumption profiles.

2

2. We introduced a new way to verify if a set of jobs is under power cap-
ping using Gaussian distribution. Gaussian distribution estimates the
probability of being under the power capping using mean and standard
deviation predictions for each job. This verification is included in the
EASY backfilling scheduling.

3. We modeled the job scheduling under power capping as a knapsack prob-
lem. To solve this problem, we proposed a greedy approach, maintaining
our approach as lightweight as possible. This greedy knapsack can use
the same power verification as EASY, such as max, mean, and Gaussian
distribution.

4. We largely extended our experimental section to account for the new
scheduling algorithms. We perform a deep discussion about the char-
acteristics of each scheduling algorithm. Both EASY and knapsack have
been evaluated with Gaussian distribution. We showed that Gaussian
verification outperformed our previous best result by better respecting
the platform power cap, while keeping a good utilization of the available
power. Finally, the greedy knapsack improves the quality of service and
avoids starvation by design.

We organized the rest of this paper as follows: Section 2 presents related
works in the literature, Section 3 presents preliminary concepts needed to un-
derstand our work’s context, and Sections 4 and 5 present our methods to predict
HPC applications power consumption and to schedule them in an HPC plat-
form, respectively. We present and discuss our experimental results in Section 6,
and we present our concluding remarks and future perspectives in Section 7.

2 Related Work
This section provides an overview of the related works regarding supercomputers
power monitoring/predictions and prediction-aided HPC resource management.
The reader can consult Kocot et al. [6] work for a more comprehensive survey
on energy-aware resource management in HPC platforms.

Many works have proposed to exploit predictions to improve the performance
of HPC resource management. For instance, Zrigui et al. [7] used a coarse grain
prediction of jobs into long and short to design a scheduling algorithm taking
this information into account for the minimization of the maximum completion
time of a set of jobs. In [8], the authors proposed a new scheduling algorithm
that outperforms the popular EASY backfilling algorithm by 28% considering
the average bounded slowdown objective taking into account predictions on the
job running times. In the context of predicting the power consumption, Storlie
et al. [9] developed a framework that predicts energy consumption of arriving
jobs. They built a statistical model to approximate the power used by HPC
jobs using hierarchical Bayesian modeling with hidden Markov and Dirichlet
process models. The goal of their model is to enable the use of an individual

3

node-capping power strategy shown to be more effective for limiting energy
consumption than a uniform one.It is the most wholesome model in comparison
to the others, though it comes with a high level of complexity. Bugbee et al. [10]
proposed another model by combining a priori (resource manager’s meta-data)
and in situ data (collected during jobs execution). They focus on the specific
applications that exhibit a periodic behavior, which accounts for only 45% of
the total workload. Another limitation is that developing fine-tuned models
for each possible application may be impractical and too resource demanding.
Borghesi et al. [11] and more recently Saillant et al. [12] and Antici et al. [13]
proposed Machine Learning (ML) and Rote-Learning approaches that rely on
resource manager meta-data in order to predict the power consumption of a
HPC workload. They combined this meta-data with measurements from the
RAPL [14] interface. Borghesi et al. [11] introduced the idea that the mean
value is a good descriptor of the HPC applications power consumption.

We distinguish from these works in two aspects: (i) we explored and com-
pared a prediction method that does not rely on ML to predict the power con-
sumption, and (ii) we further investigated on how predicted power consumption
statistics can be useful to a resource manager to adapt to the constrained power.

In [15], the authors focused on large-scale parallel jobs for predicting the
energy of a parallel application just by observing a few of its active nodes (as
opposed to monitor all the deployed nodes). Chapsis et al. [16] proposed a
power prediction and a resource management framework that includes the power
variability due to hardware manufacturing. Their work involves a fine-grained
monitoring of the applications and using hardware specific features (hardware
counters) to predict the power consumption. Such an approach can be computa-
tionally expensive, especially due to the overhead introduced in the computing
nodes by the fine-grained monitoring of numerous counters. The approach we
proposed in this paper intents to reach a balance in the granularity of the used
information: providing coarse grained information on the power profile while
using only resource manager related information and past, coarse-grained, mon-
itored executions on the platform.

Our Gaussian method of probabilistic guarantees on power capping is similar
to N-sigma method of packing tasks to a single datacenter node [17,18]: however,
these works targeted CPU utilization on a single node, while this paper considers
power capping the whole HPC machine.

3 Preliminary Concepts
Modern HPC platforms contain large number of nodes. They usually are homo-
geneous (all computing nodes have the same CPU/accelerators configuration).
Many users submit parallel applications (hereafter referred to as jobs) to be ex-
ecuted in the HPC platform, and these jobs can arrive at any point in time (i.e.,
online job submission). The jobs submissions are managed by the Resources
and Jobs Management System (RJMS), such as Slurm [19]. The RJMS decides
when and where to process each job. Typical meta-data available to the RJMS

4

for a given job j is its arrival time (rj), requested number of processors (qj)
and an estimation of its processing time (p̃j) which is provided by the user who
submitted j. Table 1 presents all notations for this paper. Resources allocation
and execution is usually represented in a Gantt chart (Figure 1).

Table 1: Notations

Variable Description
j Job
t Time
s Sliding window size
w Week index

t(w) Timestamp of the end of the week w
rj Arrival time of job j
qj Number of processors of job j
Cj Completion time of job j
pj Processing time of job j
p̃j Estimated processing time of job j
Q Set of jobs waiting in the queue
J [t] Set of jobs executing in the platform
j Jobs to start
n Available processors in the platform
P Current platform power consumption
P Platform power capping

Pj [t] Time-series of the power consumption of job j over the time t
P •

j Observed metric (mean, max, or standard deviation) of job j

P̂ •

j Predicted metric (mean, max, or standard deviation) of power consumption
of job j

Pmax
j Observed max of job j

P̂max
j Predicted max of power consumption of job j

Pavg
j Observed mean of job j

P̂avg
j Predicted mean of power consumption of job j

Pσ
j Observed standard deviation of job j

P̂σ
j Predicted standard deviation of power consumption of job j

W Jobs considered for the sliding window in weighted average
θj Aging adjustment for jobs of weighted average
α Aging penalty

f̂(j) Online learning predictor
Jtrain Dataset of jobs to train the online learning

Jinference Dataset of jobs to predict using the online learning
Kc Capacity of the knapsack
m Number of jobs available to put in the knapsack
vj Profit of the job j
wej Weight of the jobs j
xj Boolean indicating whether j is put in the knapsack or not

waitj Waiting time of the job j at the moment

The RJMS needs even more information when scheduling jobs under power
capping. It needs at least a power profile which will serve as a power constraint
over a certain time window. Recent HPC platforms are deployed with energy
consumption monitoring tools such as IPMI [20], wattmeters, or software mod-
ules (often using RAPL [14]). Such an energy monitoring tool can provide power
consumption data at the computing node level, as a time series of the power

5

80

120

(w
a
tt

s)
C

o
re

 I
D

Figure 1: The two sources of data used in a single, 32-core processor example:
(top) data coming from the RJMS regarding the jobs execution and allocation
(processing time versus cores allocated), and (bottom) data coming from a
power monitoring tool of the computing node (power versus time).

consumption of the computing node (bottom graph in Figure 1).
We can merge the RJMS’s jobs data with the computing nodes power mon-

itoring data to get an idea about the power consumption of the jobs. In the
case of jobs that share a same computing node (stacked rectangles in Figure 1),
the resulting power consumption is in function of each of the jobs energy con-
sumption plus potential interference between the jobs, which makes it hard to
distinguish each of the jobs contribution to the nodes power consumption. When
taking into account jobs that had exclusive access to computing nodes, however,
we can identify a power consumption profile of the jobs. The exact job power
profile can only be known after executing the job.

In this work we focused on exploiting the jobs power consumption profiles to
perform better scheduling under power constraints in the simplest way possible.
We choose simplicity because (i) sophisticated methods often lead to numerically
complex computations whose power consumption can reduce or at some point
nullify the power savings from better scheduling, and (ii) sophisticated methods
are often hard to explain/justify which hinders their deployment in practice [21].

More specifically, we focus on the following research questions:

1. Which simple piece of information regarding the jobs power profile
contribute to better scheduling under power constraints?

2. How to predict this simple piece of information before the jobs execu-
tion? How much prediction accuracy can we achieve?

3. How to exploit these predictions to perform intelligent jobs schedul-
ing under power constraints?

We consider as simple piece of information (hereafter referred to as jobs
power consumption for simplicity) the mean, maximum, and standard de-
viation metrics of the jobs power consumption profile. We decide to study the

6

mean and the maximum because, when used used in isolation, these two met-
rics can have different impacts in the scheduling with power constraints. We
uncovered these impacts in Section 6.5.

4 Predicting the power consumption of HPC jobs
For each job, the RJMS runs the following algorithm before the job’s execu-
tion: (i) read all the meta-data of the job (including the user’s id); (ii) predict
statistics of the power consumption of the job (the mean, the maximum and
the standard deviation); (iii) provide the job to the scheduler along with power
information. The RJMS also has access to past measures, including meta-data
and power consumption of past jobs.

We propose two job power prediction methods with an increasing level of
complexity to predict the jobs power consumption: the first method uses the
power consumption of previous users jobs (users job history). The second
method uses previous jobs power consumption data and jobs metadata (Ta-
ble 2) with Machine Learning (ML) regression methods.

4.1 The first method: predicting power consumption with
users jobs history.

For each job j of a given user and and a sliding window size s, we estimate some
statistics P̂ •

j of its power consumption by taking a weighted average of historical
power consumption over previous runs. The statistics we estimate can be the
mean (P̂ avg

j), maximum (P̂max
j), or standard deviation (P̂σ

j) of the job’s power
consumption. The general method to predict P̂ •

j is defined as follows:

P̂ •

j =

∑
j′∈W θj′P

•

j′∑
j′∈W θj′

(1)

W = {j′ | (rj − s) ≤ Cj′ ≤ rj} (2)

θj′ =

(
1−

(
rj − Cj′

s

))α

(3)

where Cj′ is the completion time of a previously executed job j′ of same
user who submitted j, and P •

j′ is the measured metric of power consumption of
j′. The metric of power consumption of a previous job P •

j′ can be known at the
time we predict P̂j since Cj′ ≤ rj .

Note that this method is job-level-agnostic, i.e., we can use any job-level
statistics of power consumption to estimate the same statistics for the next
job. More concretely, for each job j′, its measured power consumption is a
time series, Pj′ [t], non-zero for t in between the start time and the completion
time. So, to estimate the maximum power consumption P̂max

j , we use the
measured maximums from previous jobs, replacing P •

j′ by Pmax
j′ = maxt Pj′ [t]

7

in Eq.1. Similarly, to estimate the average power consumption, P̂ avg
j , we use

averages from previous jobs, replacing P •

j′ by P̂ avg
j′ = 1/pj′

∑
t Pj′ [t] (where pj′

is the duration of the job). Finally, our Gaussian methods additionally use
estimated standard deviations, with P̂σ

j estimated from standard deviations,

replacing P •

j′ by P̂σ
j′ =

√
1/pj′

∑
(Pj′ [t]− P avg

j′)2) (where P avg
j′ is the average

power consumption; and we take into account only jobs with non-unit duration).
Equation 1 is a weighted average of previous jobs j′ of the user that finished

within a sliding time window with size s (Equation 2). We assign the weight
θj′ (Equation 3) in function of how long in the past j′ finished compared to
the arrival time of j. A value of θj′ = 0 means that j′ finished at the oldest
allowed date, and θj′ = 1 means that the j′ finished exactly at the arrival time
of j. The parameter α changes the way we penalize older jobs by changing the
θj′ behavior between 0 and 1, from a linear α = 1, to a super-linear α = 2 or
sub-linear α = 0.5 fashion.

4.2 The second method: predicting using supervised re-
gression.

The former prediction method cannot harness the jobs metadata (e.g., requested
resources, submission time, expected processing time, etc.) to potentially pro-
vide better predictions. We can circumvent this problem by using supervised
regression with the hypothesis of increasing the prediction accuracy, using the
jobs metadata and the power consumption history as input features.

We propose an online learning method to predict the jobs power consump-
tion. The method retrains the prediction models at periodic time intervals (e.g.,
at the end of each week) in order to adapt, as the jobs history increases and
changes. In this context, online still refers to the behavior of the RJMS using
all past data, and only meta-data of the arriving jobs. For an already passed
week with index w (i.e., week 0, 1, 2, . . .), let t(w) be the timestamp of when
the models will be retrained at the end of week w. Then, we define our job
dataset Jtrain as follows.

Jtrain = {j | Cj < t(w)} (4)

In other words, Jtrain contains the jobs history. Then, we train a predictor
f̂(j) of the jobs power consumption that minimizes the Mean Squared Error
(MSE, Equation 5).

MSE =
1

|Jtrain|
∑

j∈Jtrain

(
P

•

j − f̂(j)
)2

(5)

After training a predictor f̂(j) we use it to predict the power consumption
P̂ •

j′ for all jobs j′ ∈ Jinference, where Jinference is defined as follows.

Jinference = {j′ | t(w) ≤ rj′ ≤ t(w + 1)} (6)

8

In other words, we use the jobs history to train a model at week w that
already passed, and use this model to perform predictions of the power con-
sumption of the jobs that will arrive online at week w + 1. At the end of week
w+1 (i.e., at timestamp t(w+1)) the training procedure repeats, generating a
new predictor f̂(j), which will be used for week w+2. A particular situation is
for week w = 0, where there is no such dataset to train a regression model. In
this case we can use f̂(j) = P̂ •

j (Equation 1). We present the choice of regression
methods to train f̂(j), and how we exploit the jobs data (i.e, the features of j)
in Section 6.2.

5 Scheduling with jobs power profile prediction

5.1 Scheduling algorithms
As the focus of this work is on the impact of power prediction, we will use a
classic EASY backfilling algorithm [4]. This algorithm is used in production in a
large number of HPC centers. We assume that the platform is static: no failure
of nodes nor new nodes are considered during the experiments. We also assume
that the servers will always be switched on. Moreover, there is no constraints
on the applications related to the host they can run on. All these assumptions
enable us to focus on the impact of the prediction framework, further studies
on these hypotheses are kept as perspectives.

The implemented EASY uses a first-come first serve (FCFS) policy and
works as follows. EASY is executed when the following events occur: a new
task arrives or a task finishes. Tasks are stored in a queue in their order of
arrival — the order of this queue will then never be changed. EASY starts the
oldest jobs in the queue until either finishing the queue or arriving on a job
(called high-priority job) that cannot start due to lack of resources. In the later
case, EASY will try to backfill jobs, that is to say: start waiting jobs right now
if they do not delay the highest-priority job estimated starting time.

Algorithm 1 presents the modifications (highlighted in red) of the classic
EASY to make it power capping-aware. The main modification we have made
to the classical EASY is how to check whether resources are available. Classic
EASY only checks whether there are enough available nodes/cores. Here, our
implementation named EASY+PC also checks whether there is enough power
regarding a given power cap (lines 5 and 11). We assume that an estimator (such
as the ones we proposed) can estimate the power needed for a job. Based on
this estimator, EASY+PC estimates the currently platform power consumption
and the requested power for each job in the queue. All of EASY+PC decisions
are based solely on these estimations. Section 5.2 details the methods applied
for these verifications.

Besides this EASY+PC, we compare four scheduling algorithms, namely,
EASY FCFS, EASY SAF, Knapsack Wait., and Knapsack Stretch. The EASY
FCFS algorithm is the EASY+PC using FCFS (Algorithm 1), serving as a base-
line to compare the other algorithms. EASY SAF is similar to Algorithm 1, but

9

Algorithm 1: EASY+PC backfilling. The highlighted lines show
the power verification.

input : Jobs waiting queue Q, number of available processors n, current
platform power consumption PPP , platform power cap PPP

output: Set of jobs J to start processing
1 begin
2 J ← ∅;
3 Sort Q;
4 for j′ ∈ Q do
5 if there are enough resources and power to start j′ then
6 Update power consumption PPP ;
7 n← n− qj′ ;
8 J ← J ∪ j′;
9 else

10 for j′′ ∈ Q \ j′ do
11 if j′′ does not delay j′ and there are enough resources and

power to process j′′ then
12 Update power consumption PPP ;
13 n← n− qj′′ ;
14 J ← J ∪ j′ ;
15 end
16 end
17 end
18 end

it sorts the queue using Smallest Area First (SAF) in line 3 [22]. To do so, it
calculates the expected processing time multiplied by the number of demanded
resources. The jobs with lower area start before. This order helps to reduce
the average turnaround by giving high priority to small jobs. However, big jobs
may never receive priority, resulting in job starvation [23].

In addition to the two EASY approaches, we modeled our problem as a 0/1
knapsack [24]. This optimization problem considers a knapsack with capacity
Kc and m items denoted by index j. Each item j has a profit vj and a weight
wej . It needs to determine the subset of items that fits into the knapsack and
that maximizes the total profit. The classic formulation is to define a boolean
xj that is set to 1 if the item is selected and 0 if it is not [24]:

maximize

j=m−1∑
j=0

xj × vj (7)

subject to

j=m−1∑
j=0

xj × wej ≤ Kc (8)

In our case, the items are the jobs in the queue. The capacity Kc is the power
capping and the weight wej is the predicted job power consumption. Regarding
the profit, we modeled it as a QoS metric. Since we are trying to improve the
turnaround, and the turnaround is highly impacted by the waiting time, we
modeled two profit functions using the waiting time. The first one (Knapsack

10

Wait.) is the waiting time for every job (vj = waitj , where waitj is the waiting
time). Thus, the jobs that are longer in the queue receive higher priority, which
can be seen as similar to FCFS. The second one (Knapsack Stretch) is:

vj =
waitj + p̃j

p̃j
(9)

Where p̃j is the expected execution time. This formula should increase
the priority of the jobs waiting longer, but according to their size. In other
words, this functions makes long jobs wait longer than small jobs. However,
at some point, these long jobs are prioritized because their priority increases
with waiting time (aging mechanism). Therefore, no job can wait indefinitely,
avoiding starvation.

A way to solve this knapsack problem is by using dynamic programming.
However, the size of our problem explodes the combinatorial possibilities (large
number of jobs and large capacity). In addition, our Gaussian approach verifies
if we are below the power capping by considering all jobs taken together. For
these reasons, we propose a greedy approach to solve our knapsack problem in
a reasonable time. Algorithm 2 presents this approach. This greedy algorithm
sorts all the jobs by the profit divided by the weight in descending order (line 6).
Then, it takes each job in this order and verifies if the job can be executed now.
The algorithm stops on the first job that can not fit in the capacity. Outside the
power capping window, both greedy knapsacks implement the same algorithm
as EASY FCFS since we do not have the power capping anymore (line 3).

Algorithm 2: Greedy knapsack. The highlighted lines show the
power verification.

input : Jobs waiting queue Q, number of available processors n, current
platform power consumption PPP , platform power cap PPP

output: Set of jobs J to start processing
1 begin
2 if we are outside the power capping window then
3 Execute Algorithm 1;
4 else
5 J ← ∅;
6 Sort Q by vj/wj ;
7 for j ∈ Q do
8 if there are enough resources and power to start j then
9 Update power consumption PPP ;

10 n← n− qj ;
11 J ← J ∪ j;
12 else
13 break;
14 end
15 end
16 end
17 end

11

5.2 Testing for sufficient power
All the algorithms (in the highlighted lines in Algorithms 1 and 2) above test
whether adding a new job j to the set of currently executing jobs J [t] would
violate the platform power cap P . The test in both Algorithms 1 and 2 consists
of two steps: verification and update. Verification (lines 5 and 11 in Algorithm 1
and line 8 in Algorithm 2) tests if placing the new job will violate the power
capping P . If executing the job does not violate the power capping, the up-
date step (lines 6 and 12 in Algorithm 1 and line 9 in Algorithm 2) adds this
newly-scheduled jobs to the platform power consumption. We use the following
methods for verification and update.

Mean: This method uses the predicted mean of each job. Therefore, as-
suming that P̂j = P̂ avg

j is the mean, the sum of the means must be lower or
equal to the power capping P . That is: P̂j

avg
+

∑
i∈J [t] P̂i

avg
≤ P . If so, it

updates the platform power consumption: P = P̂j
avg

+
∑

i∈J [t] P̂i
avg

.
Maximum: This method is similar to the previous one, but P̂j = P̂max

j is
the max instead of the mean. The same verification P̂j

max
+
∑

i∈J [t] P̂i
max

≤ P

is applied. If so, it updates the platform power consumption: P = P̂j
max

+∑
i∈J [t] P̂i

max
.

Gaussian: The Gaussian method uses a probabilistic model for jobs energy
consumption. This method tries to quantitatively formalize the intuition that,
when many jobs execute concurrently, it is unlikely that all jobs simultaneously
consume their peak power usage. This approximation uses an estimation of the
expected power consumption and an estimation of its standard deviation. Then,
as modern platforms execute tens to thousands of jobs concurrently, we use an
approximation based on the central limit theorem to convert these estimations
into probabilities.

More formally, by linearity of expected value, expected total power require-
ment P̂ avg(J [t]) of the set of jobs executing at time t, J [t], is simply the sum
of expectations over these jobs J [t], i.e.,

∑
i∈J [t] P̂

avg
i .

For the standard deviation, in general, the variance of the sum of two random
variables is the sum of their variances and their covariance, V ar(X + Y) =
V ar(X)+V ar(Y)+2Cov(X,Y). However, as jobs in a HPC center are usually
started at different times and belong to different users, we will assume that power
requirements are not correlated, thus Cov(X,Y) = 0. This leads to a simple
estimator of a standard deviation of a set of jobs as: σ̂(J [t]) =

√∑
i∈J [t](P

σ
i)

2.
When testing whether an extra job J fits the power budgets, we extend

these estimates with the estimates for this job, getting the expected value: µ =

P̂j
avg

+P̂ avg((J)[t]) and a standard deviation of: σ =
√

(P̂j
σ
)2 +

∑
i∈J [t](P̂j

σ
)2.

We can now replace the crisp fitting test with a probabilistic one: if µ +
σ < P , the set of jobs stays within the energy budget with an approximate
probability of 0.68. If µ + 2σ < P , the set of jobs stays within the energy
budget with an approximate probability of 0.95. And, similarly, if µ+ 3σ < P ,

12

0 250 500 750 1000 1250 1500
Total power (W)

0

20000

40000

60000

80000

100000

120000

140000
Nu

m
be

r o
f J

ob
s

(a) Mean total power consumption

0 250 500 750 1000 1250 1500 1750 2000
Total power (W)

0

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f J
ob

s

(b) Max total power consumption

0 250 500 750
Total power (W)

0

20000

40000

60000

80000

100000

120000

Nu
m

be
r o

f J
ob

s

(c) Power consumption standard deviation

Figure 2: Distributions of the actual mean, maximum, and standard deviation
of power consumption per node of the filtered jobs in the Marconi100 trace.

this probability is approximately 0.997.

6 Results

6.1 Jobs power prediction: dataset description
This work uses the trace collected from the Marconi100 supercomputer [25].
Marconi100 consisted of 980 computing nodes, each of which consisted of a
two-socket IBM POWER9 AC922 (32 cores in total), and four NVIDIA Volta
V100 GPUs. The trace contains jobs meta-data such as jobs submission times,
processing times, anonymized user ids, and node ids allocated to the jobs. It
also contains data about the nodes’ total power consumption, measured at each
20-second periods, using an IPMI module installed in the nodes.

From this trace we used the data regarding the operation of the Marconi100
from January 2022 to September 2022. To circumvent the limitation mentioned
in Section 3, we filtered out the jobs that shared a node from the original trace.
We also filtered out jobs that run in less than a minute because they have too
few power measurements. After filtering we end up with a dataset of 523,204
jobs submitted by 576 users.

Figure 2 shows the mean, max, and standard deviation power consumption
of the computing nodes for each of the jobs in the dataset. We can observe a
peak density of jobs with mean and max consumption of around 700 watts. This
insight in itself could serve as a prediction if the whole distribution was clear

13

Table 2: Features used in the mean power consumption regression methods

Feature Description

1 Submission time (hour of the day)
2 Number of processors (qj)
3 Number of nodes
4 Requested processing time p̃j

5 The sliding window history prediction P̂ •

j (Equation 1)
6 Standard deviation σ({Pj′ | j′ ∈ W})
7 The power consumption Pj′ where j′ is the last finished user job

and concentrated at around 700 watts. However, the jobs distribution is not
so clear for other power values. which justifies the need of more sophisticated
prediction methods.

6.2 Jobs power prediction: experimental setting
For the history based power prediction method (Section 4), we set the parameter
α (Equation 3) with a value of 2. This choice is based on the hypothesis that
recent jobs have more importance than older jobs when predicting the power
consumption. An α = 2 puts more weight into recent jobs, and the weight
decreases fast for older jobs. We set the sliding window size s to account for
the whole user’s job history, which translates to s being completion time of the
first finished job of a user. We decided on this design to avoid eventual empty
sliding windows during the prediction process. For the regression based power
prediction method, we use the features presented in Table 2. Features 1 to 4
are standard job data that can be obtained at job submission, and features 5
to 7 are lagged features (i.e., a standard feature engineering technique), which
can be obtained by using the user’s job submission history.

We trained predictors f̂(j) using a selection of regression methods in the
scikit-learn [26] library: (i) Linear Regression (LinearRegression), (ii) Ran-
dom Forest (RandomForestRegressor), (iii) Support Vector Regression with
Linear Kernel (LinearSVR), and (iv) Stochastic Gradient Descent Regression
(SGDRegressor). For each training week and method, we applied scikit-learn’s
recursive feature elimination technique to choose the appropriate subset of fea-
tures from Table 2 to use according to the training data. We perform this
feature elimination and we set each of the regression methods hyper-parameters
with a 5-fold cross validation scheme.

14

6.3 How to predict jobs power information before their
execution? How much prediction accuracy can we
achieve?

Figure 3 shows the mean absolute error (MAE) of the methods used to predict
the mean and the max jobs power consumption. The boxplots represent the
distribution of the prediction performance for each of the 576 users present in our
job dataset. For the mean power, we achieved a median prediction MAE from
67 W (using jobs history method, Section 4) to 76.2 W (using linear regression,
Section 4). For predicting the maximum power consumption, we achieved a
median prediction MAE from 149.3 W (jobs history method) to 170.1 W (linear
regression). Lastly, for the standard deviation, we achieved a median prediction
MAE from 32.7 W (jobs history method) to 40.2 W (linear regression). For all
power metrics (i.e., mean, maximum and standard deviation) we can not clearly
distinguish which prediction method is better. We can observe, however, that
our jobs history prediction method achieves equivalent prediction performance
than the more sophisticated ML methods.

0 100 200 300
Mean Absolute Error (MAE)

History

LinearRegression

RandomForest

LinearSVR

SGDRegressor

Pr
ed

ict
io

n
M

et
ho

d

(a) Mean total power consumption

0 200 400 600
Mean Absolute Error (MAE)

History

LinearRegression

RandomForest

LinearSVR

SGDRegressor

Pr
ed

ict
io

n
M

et
ho

d

(b) Max total power consumption

0 50 100 150
Mean Absolute Error (MAE)

History

LinearRegression

RandomForest

LinearSVR

SGDRegressor

Pr
ed

ict
io

n
M

et
ho

d

(c) Total power consumption standard de-
viation

Figure 3: Mean Absolute Error of the mean, maximum, and standard deviation
power consumption prediction methods for the jobs in the Marconi100 trace.

This is an important finding. Because we develop these prediction meth-
ods to control the power consumption of operating supercomputers, we must
reduce the energy consumption overhead induced by introducing these methods
as much as possible. Achieving a high level of power prediction performance

15

with the lowest level of overhead is therefore a priority. Although all of the
regression methods used can be seen as lightweight when compared to neural
network methods, a simple jobs history based method is clearly much less en-
ergy demanding than a Machine Learning regression method, which requires
much more processing steps (i.e., normalizing data, selecting the best features
and finding the best hyper-parameters with cross-validation, etc.).

6.4 Jobs scheduling with power prediction: experimental
setup

We simulate 30 different workloads using EASY+PC (Section 5) with various
powercap values and with various job power predictors. Each workload consists
of jobs taken from the filtered Marconi100 supercomputer dataset (Section 6.1).
Jobs are selected following workload trace replay guidelines [27]. EASY+PC
applies a power constraint solely during the first 3 hours of each simulation
(power capping window). The powercap values we use range from 40% to 70%
of the highest dynamic power consumption of the Marconi100 dataset in 2022
(955080 W).

We study EASY+PC’s behavior depending on the information it uses to
determine the power consumption of a job:

• predicted mean, predicted max, and three Gaussian distributions (gaussian_68,
gaussian_95, and gaussian_99) using predicted mean and standard de-
viation;

• real mean, real max, and three Gaussian distributions (gaussian_68, gaussian_95,
and gaussian_99) using real mean and standard deviation;

• naive uses the maximum reachable power consumption of a job (i.e.,
2100W * qj , where 2100W is the maximum single-node power value present
in the Marconi100 dataset in 2022). naive is used as a baseline predictor
to evaluate the accuracy of the other predictors proposed.

We use Batsim [28] and SimGrid [29] to perform the scheduling simulations,
using a SimGrid representation of the whole 980-node of Marconi100. We use
the schedule produced by the simulators plus the time-series data about the
jobs power consumption from the Marconi100 dataset to calculate the total
power consumption. Taking into account the 30 workloads and the job power
predictors, our experimental campaign consists of 1320 simulation instances.
Additionally, each workload is executed on EASY (without powercap) to serve
as baseline and evaluate both impacts on total power consumption and QoS.

6.5 Which jobs power information contribute to better
scheduling under power constraints?

Figures 4 and 5 summarize our simulation campaign (Section 6.4) by aggregating
data from all workloads. One workload has been excluded from Figure 5 as

16

powercapping greatly increases scheduling performance on it. Values given in
the remaining of this section are computed by (workload, powercap) group, and
then averaged on all groups. They analyze (I) the extent to which each predictor
is able to use the power at its disposal while powercap is active, and (II) how
they degrade QoS performance (through turnaround time) compared to baseline
EASY’s.

pcap=0.4 pcap=0.5 pcap=0.6 pcap=0.7

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Job power estimator

M
ea

n
pl

at
fo

rm
 p

ow
er

 c
on

su
m

pt
io

n

predicted real

Figure 4: Distribution of the platform power consumption during the powercap-
constrained 3-hour time window. The power cap is the horizontal black line.
All power values (y axis, facet powercap pcap) are expressed as a proportion of
the maximum dynamic power range. Here and in the remaining plots we use
standard boxplots, with boxes spanning between the first and the third quartiles,
and whiskers reaching the furthers outliers within 1.5 of the interquartile range.

Since naive considers the maximum achievable node power for the whole
jobs duration, EASY+PC is incapable of harnessing the power consumption
fluctuations that occur during job execution to better use the available power.
This incapability leads to a severe power under-utilization (74%), and a signifi-
cant increase in the turnaround time (14%).

max provides better information about the maximum power consumption
than naive, thus better harnessing the fluctuations. max still remains, however,
as a “conservative” method which hypothesizes that the maximum value occurs
all the time during the jobs execution. Such hypothesis helps assuring that
EASY+PC does not trespass the power cap (it never did, even when using
our max prediction method), though this results in power under-utilization and
increase in the turnaround time (respectively around 44% and 8%).

More “aggressive”, mean hypothesizes that the mean power is the value that
occurs most of the time during the jobs execution. This hypothesis gives more
flexibility to EASY+PC to harness the jobs power fluctuations. The drawback
is the increased risk of exceeding the powercap. In our experiments, the mean
method is the one that makes the best use of the available power (0.96% power

17

pcap=0.4 pcap=0.5 pcap=0.6 pcap=0.7

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

na
iv

e

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

−10000

−5000

0

5000

10000

Job power estimator

M
ea

n
tu

rn
ar

ou
nd

 ti
m

e
in

cr
ea

se
 (

s)

predicted real

Figure 5: Distribution of the performance degradation (compared to EASY)
for 29/30 workloads. The turnaround time of a job is the amount of time
the job spends in the system (from submission to finish). The workload mean
turnaround time is the arithmetic mean all the jobs turnaround time. Standard
boxplots.

predicted real

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n

m
ax

ga
us

si
an

_9
9

ga
us

si
an

_9
5

ga
us

si
an

_6
8

m
ea

n
0%

25%

50%

75%

100%

Job power estimator

P
ro

po
rt

io
n

of
 ti

m
e

 a
bo

ve
 p

ow
er

ca
p

Figure 6: The proportion of the time above the power cap for the 30 workloads
and the four power capping methods using predicted and real power consump-
tion. This value goes from 0% (no violation) to 100% (during the entire 3-hour
simulation window, the power consumption is above the cap). A dot represents
a single instance. The lower, the better.

over-utilization in average, but 3% when ignoring the power capping 0.7) and the
one that increases the turnaround time the least (1.65%). Using mean trespasses
the powercap in most instances (88%) but the trespassing is small: the maximum
instantaneous powercap break observed is in average and median 11% above the
powercap. Figure 6 shows how much time each execution stays above the power
capping for each way to verify the power consumption. This Figure shows that

18

the mean has several cases where the power usage stays above the power capping
for a long period, even using the real mean value for each job. Therefore, even
if the break is not high, it keeps violating the power capping for a good part of
the window.

Aiming to reduce the aggressiveness of the mean approach, we introduce the
three Gaussian ways to verify the power capping (as explained in Section 5).
Among them, gaussian_68 is the most aggressive, and gaussian_99 is the
most conservative. They all present a mean under-utilization (8%, 4%, and
0.7% for gaussian_99, gaussian_95, and gaussian_68, respectively) and a
turnaround increase close to the mean approach (around 2% for all of them).
Concerning the maximum instantaneous power capping break observed, they
reduce it to 3%, 5%, and 8% for gaussian_99, gaussian_95, and gaussian_68,
respectively (while mean has 11%). Regarding the proportion of the time above
the power capping (Figure 6), we can see that all Gaussian approaches reduce
this proportion compared to the mean, with the gaussian_99 being the best
among the Gaussian.

Lastly, the prediction accuracy of the mean and standard deviation methods
(Section 6.3) results in satisfactory performances when compared to using real
values. It impacts both the mean and Gaussian approaches. Please note that
real values are baselines and cannot be obtained before the jobs execution.

6.6 How the predictors can be introduced to other schedul-
ing algorithms?

After presenting the power prediction results, we implement four scheduling
algorithms to provide other possibilities for using our predictions. The main idea
is to improve the Quality of Service (QoS) of the results, using the predictions to
stay below the power capping. We analyze the same workloads as the previous
sections under a power capping of 0.5. Regarding the power verification, we
used for all algorithms the same gaussian_99 as before. In this section, we
compare the four algorithms presented in Section 5: EASY FCFS, EASY SAF,
Knapsack Wait., and Knapsack Stretch. Figure 7 presents the results for
these algorithms.

First, it is possible to notice that the three new algorithms (EASY SAF and
the two knapsacks) are more aggressive than EASY FCFS considering the power
capping (Figure 7a). The reason is that they run more jobs inside the power
capping window (see Figure 7d). EASY FCFS has 18% of the total number of jobs
inside the window, and the others have more than 30%. Since they run more
jobs, they are more sensitive to mean and standard deviation variations from
the prediction. Taking the results using the real mean and standard deviation,
both knapsacks are very close to the power capping. The reason is that these
algorithms tend to maximize the items inside the “knapsack”, approximating
the sum weight of the items to the max knapsack capacity. Nevertheless, this
behavior increases the probability of violating the power capping linked to the
prediction errors (see the predicted results on Figure 7a). Regarding the QoS,
Figure 7b shows that EASY FCFS has the worst mean turnaround time increase,

19

0.3

0.4

0.5

Eas
y F

CFS

Eas
y S

AF

Kna
ps

ac
k W

ait
.

Kna
ps

ac
k S

tre
tch

M
ea

n
po

w
er

 c
on

su
m

pt
io

n

predicted real

(a)

0e+00

5e+04

1e+05

Eas
y F

CFS

Eas
y S

AF

Kna
ps

ac
k W

ait
.

Kna
ps

ac
k S

tre
tch

M
ea

n
tu

rn
ar

ou
nd

 im
pr

ov
em

en
t (

s) (b)

−25000

0

25000

50000

Eas
y F

CFS

Eas
y S

AF

Kna
ps

ac
k W

ait
.

Kna
ps

ac
k S

tre
tch

M
ax

 tu
rn

ar
ou

nd
 in

cr
ea

se
 (

s)

(c)

0

20

40

60

80

Eas
y F

CFS

Eas
y S

AF

Kna
ps

ac
k W

ait
.

Kna
ps

ac
k S

tre
tch

Jo
bs

 in
si

de
 w

in
do

w
 (

%
)

(d)

Scheduling

Figure 7: The results of different scheduling policies using real mean and stan-
dard deviation, and gaussian_99 power capping verification. This figure is
divided into four parts: (a) The mean platform power consumption, highlight-
ing how far the algorithms are to the power capping (the closer to the line, the
better); (b) the mean turnaround time improvement compared to a EASY FCFS
without power capping, showing the impact on the QoS. The negative values of
EASY FCFS means that it is worst than the the baseline (the higher, the bet-
ter); (c) the max turnaround time increase compared to a EASY FCFS without
power capping, highlighting the starvation of the job with worst turnaround
(the lower, the better); and (d) the percentage of the workload jobs (in number)
executed inside the power capping window (the higher, the better).

and EASY SAF has the best. EASY SAF gives priority to small jobs, which helps
to reduce the impact of waiting time on them. However, Figure 7c illustrates
the main EASY SAF drawback. This algorithm increases the large jobs waiting
time making these jobs starve. On the other hand, both knapsack algorithms
improve the mean turnaround compared to the EASY FCFS without starving
large jobs. Comparing both knapsacks, they have quite similar results, with the
Knapsack Stretch having slightly better results considering the QoS.

20

7 Conclusion
We presented in this paper three main contributions: a complete integrated
environment from monitored data to the jobs execution, an evaluation of several
jobs power consumption prediction methods, and some scheduling algorithms to
use the predictions in the decision making process. In particular, we showed that
“lightweight” (frugal) predictions used in the scheduling module lead to similar
performance improvements, when compared to more costly and sophisticated
predictions or compared to the optimal value. Simple history prediction method
(such as mean and standard deviation) is sufficiently good to express the jobs
power profiles during scheduling, which fosters lower-cost scheduling algorithms.

The proposed approach focused on the capability to take into account these
lightweight predictors for a classical and widely used EASY scheduling policy.
In particular, we proposed a knapsack algorithm for determining a good trade-
off between performance and the power limits. From this positive experience on
EASY and knapsack, the next step is to investigate more complex scheduling
policies harnessing the new information from the predictors, but also adding
actual monitoring values to improve the quality of its decision. It would also be
interesting to refine the jobs model, to take into account phases of long duration
applications. Using such information would help to improve the management
of short duration jobs.

Acknowledgements
Experiments presented in this paper were carried out using the Grid’5000 testbed,
supported by a scientific interest group hosted by Inria and including CNRS, RE-
NATER and several Universities as well as other organizations (see https://www.grid5000.fr).
This work was supported by the research program on Edge Intelligence of the
Multi-disciplinary Institute on Artificial Intelligence MIAI at Grenoble Alpes
(ANR-19-P3IA-0003), ENERGUMEN (ANR-18-CE25-0008), the France 2030
NumPEx Exa-SofT (ANR-22-EXNU-0003) and Cloud CareCloud (ANR-23-
PECL-0003) projects managed by the French National Research Agency (ANR),
REGALE (H2020-JTI-EuroHPC-2019-1 agreement n. 956560), and LIGHTAIDGE
(HORIZON-MSCA-2022-PF-01 agreement n. 101107953). A CC-BY public
copyright licence has been applied by the authors to the present document and
will be applied to all subsequent versions up to the Author Accepted Manuscript
arising from this submission, in accordance with the grants’ open access condi-
tions. We thank Salah Zrigui for starting the study on the job energy profiles.
We also thank Francesco Antici for curating and sharing the Marconi100 dataset.

Artifact Availability
The experiments described in this article have been made with open science and
reproducibility concerns in mind. Code, data and documentation to reproduce
our work is available on Zenodo [30].

21

https://www.grid5000.fr

Conflicts of Interest
Krzysztof Rzadca is also affiliated with Google.

References
[1] “Frontier’s architecture,” https://www.olcf.ornl.gov/wp-content/uploads/

Frontier-Architecture-Overview_Abraham.pdf, 2024, last access 18 Octo-
ber 2024.

[2] N. Bates, G. Ghatikar, G. Abdulla, G. A. Koenig, S. Bhalachandra,
M. Sheikhalishahi, T. Patki, B. Rountree, and S. Poole, “Electrical grid
and supercomputing centers: An investigative analysis of emerging oppor-
tunities and challenges,” Informatik-Spektrum, vol. 38, no. 2, pp. 111–127,
2015.

[3] Wikipedia, “2021 Texas power crisis, Online; last access 29 november 2023,”
https://en.wikipedia.org/wiki/2021_Texas_power_crisis, 2023.

[4] D. G. Feitelson and A. M. Weil, “Utilization and predictability in schedul-
ing the ibm sp2 with backfilling,” in Proceedings of the First Merged In-
ternational Parallel Processing Symposium and Symposium on Parallel and
Distributed Processing. IEEE, 1998, pp. 542–546.

[5] D. Carastan-Santos, G. Da Costa, M. Poquet, P. Stolf, and D. Trystram,
“Light-weight prediction for improving energy consumption in hpc plat-
forms,” in Euro-Par 2024: Parallel Processing, J. Carretero, S. Shende,
J. Garcia-Blas, I. Brandic, K. Olcoz, and M. Schreiber, Eds. Cham:
Springer Nature Switzerland, 2024, pp. 152–165.

[6] B. Kocot, P. Czarnul, and J. Proficz, “Energy-aware scheduling for high-
performance computing systems: A survey,” Energies, vol. 16, no. 2, p. 890,
2023.

[7] S. Zrigui, R. Y. de Camargo, A. Legrand, and D. Trystram, “Improving the
performance of batch schedulers using online job runtime classification,”
Journal of Parallel and Distributed Computing, vol. 164, pp. 83–95, 2022.

[8] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling
by using machine learning to predict running times,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’15. New York, NY, USA: Association for
Computing Machinery, 2015.

[9] C. Storlie, J. Sexton, S. Pakin, M. Lang, B. Reich, and W. Rust, “Modeling
and predicting power consumption of high performance computing jobs,”
2015.

22

https://www.olcf.ornl.gov/wp-content/uploads/Frontier-Architecture-Overview_Abraham.pdf
https://www.olcf.ornl.gov/wp-content/uploads/Frontier-Architecture-Overview_Abraham.pdf
https://en.wikipedia.org/wiki/2021_Texas_power_crisis

[10] B. Bugbee, C. Phillips, H. Egan, R. Elmore, K. Gruchalla, and
A. Purkayastha, “Prediction and characterization of application power use
in a high-performance computing environment,” Statistical Analysis and
Data Mining: The ASA Data Science Journal, vol. 10, no. 3, pp. 155–165,
2017.

[11] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “Predic-
tive modeling for job power consumption in hpc systems,” in High Perfor-
mance Computing, J. M. Kunkel, P. Balaji, and J. Dongarra, Eds. Cham:
Springer International Publishing, 2016, pp. 181–199.

[12] T. Saillant, J.-C. Weill, and M. Mougeot, “Predicting job power consump-
tion based on rjms submission data in hpc systems,” in High Perfor-
mance Computing, P. Sadayappan, B. L. Chamberlain, G. Juckeland, and
H. Ltaief, Eds. Cham: Springer International Publishing, 2020, pp. 63–82.

[13] F. Antici, K. Yamamoto, J. Domke, and Z. Kiziltan, “Augmenting ml-based
predictive modelling with nlp to forecast a job’s power consumption,” in
Proceedings of the SC’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis, 2023, pp.
1820–1830.

[14] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action: Experiences in using rapl for power measurements,” ACM Trans.
Model. Perform. Eval. Comput. Syst., vol. 3, no. 2, mar 2018.

[15] H. Shoukourian, T. Wilde, A. Auweter, and A. Bode, “Predicting the en-
ergy and power consumption of strong and weak scaling hpc applications,”
Supercomputing Frontiers and Innovations, vol. 1, no. 2, 2014.

[16] D. Chasapis, M. Moretó, M. Schulz, B. Rountree, M. Valero, and M. Casas,
“Power efficient job scheduling by predicting the impact of processor manu-
facturing variability,” in Proceedings of the ACM International Conference
on Supercomputing, 2019, pp. 296–307.

[17] N. Bashir, N. Deng, K. Rzadca, D. Irwin, S. Kodak, and R. Jnagal, “Take
it to the limit: peak prediction-driven resource overcommitment in data-
centers,” in Proceedings of the Sixteenth European Conference on Computer
Systems, 2021, pp. 556–573.

[18] P. Janus and K. Rzadca, “Slo-aware colocation of data center tasks based
on instantaneous processor requirements,” in Proceedings of the 2017 Sym-
posium on Cloud Computing, 2017, pp. 256–268.

[19] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for
resource management,” in JSSPP 2003. Springer, 2003, pp. 44–60.

[20] G. Da Costa, J.-M. Pierson, and L. Fontoura-Cupertino, “Mastering sys-
tem and power measures for servers in datacenter,” Sustainable Computing:
Informatics and Systems, vol. 15, pp. 28–38, 2017.

23

[21] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong,
“Theory and practice in parallel job scheduling,” in JSSPP: IPPS’97
Processing Workshop Geneva, Switzerland, April 5, 1997 Proceedings 3.
Springer, 1997, pp. 1–34.

[22] D. Carastan-Santos, R. Y. De Camargo, D. Trystram, and S. Zrigui, “One
can only gain by replacing easy backfilling: A simple scheduling policies
case study,” in 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). IEEE, 2019, pp. 1–10.

[23] A. Tanenbaum, Modern operating systems. Pearson Education, Inc.„ 2009.

[24] S. Martello and P. Toth, “Algorithms for knapsack problems,” North-
Holland Mathematics Studies, vol. 132, pp. 213–257, 1987.

[25] A. Borghesi, C. Di Santi, M. Molan, M. S. Ardebili, A. Mauri, M. Guar-
rasi, D. Galetti, M. Cestari, F. Barchi, L. Benini et al., “M100 exadata: a
data collection campaign on the cineca’s marconi100 tier-0 supercomputer,”
Scientific Data, vol. 10, no. 1, p. 288, 2023.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-
learn: Machine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[27] J. Emeras, “Workload Traces Analysis and Replay in Large Scale Dis-
tributed Systems,” Theses, Université de Grenoble, Oct. 2013.

[28] P.-F. Dutot, M. Mercier, M. Poquet, and O. Richard, “Batsim: a
Realistic Language-Independent Resources and Jobs Management Systems
Simulator,” in 20th Workshop on Job Scheduling Strategies for Parallel
Processing, Chicago, United States, May 2016. [Online]. Available:
https://hal.science/hal-01333471

[29] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, scalable, and accurate simulation of distributed applications and
platforms,” Journal of Parallel and Distributed Computing, vol. 74, no. 10,
pp. 2899–2917, Jun. 2014.

[30] M. Poquet, D. Carastan-Santos, I. Fontana de Nardin, G. Da Costa,
K. Rzadca, P. Stolf, and D. Trystram, “Artifact data of article "Scheduling
with lightweight predictions in power-constrained HPC platforms", TPDS
2024,” 2024. [Online]. Available: https://doi.org/10.5281/zenodo.13961003

24

https://hal.science/hal-01333471
https://doi.org/10.5281/zenodo.13961003

	Introduction
	Related Work
	Preliminary Concepts
	Predicting the power consumption of HPC jobs
	The first method: predicting power consumption with users jobs history.
	The second method: predicting using supervised regression.

	Scheduling with jobs power profile prediction
	Scheduling algorithms
	Testing for sufficient power

	Results
	Jobs power prediction: dataset description
	Jobs power prediction: experimental setting
	How to predict jobs power information before their execution? How much prediction accuracy can we achieve?
	Jobs scheduling with power prediction: experimental setup
	Which jobs power information contribute to better scheduling under power constraints?
	How the predictors can be introduced to other scheduling algorithms?

	Conclusion

