
HAL Id: hal-04747670
https://hal.science/hal-04747670v1

Submitted on 22 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vulnerability Assessment for the Rowhammer Attack
Using Hardware Performance Counters and Machine

Learning
Bogdana Kolić, Maria Mushtaq

To cite this version:
Bogdana Kolić, Maria Mushtaq. Vulnerability Assessment for the Rowhammer Attack Using Hard-
ware Performance Counters and Machine Learning. International Workshop on Security Proofs for
Embedded Systems (PROOFS 2024), Sep 2024, Halifax, Canada. �hal-04747670�

https://hal.science/hal-04747670v1
https://hal.archives-ouvertes.fr


This space is reserved for the EPiC Series header, do not use it

Vulnerability Assessment for the Rowhammer Attack Using

Hardware Performance Counters and Machine Learning

Bogdana Kolić12 and Maria Mushtaq2

1 École Polytechnique, Palaiseau, France
bogdana.kolic@polytechnique.edu

2 LTCI, Télécom Paris, Institute Polytechnique de Paris, Palaiseau, France
maria.mushtaq@telecom-paris.fr

Abstract

Numerous machines using DRAM chips as main memory are vulnerable to the Rowham-
mer attack, which can be used as a tool for privilege escalation. The existing mitigation
techniques either require complex hardware implementation or have a high performance
cost. A potential improvement would be to implement a detection mechanism and trigger
performance-costly mitigation only in the case of attack detection. In this paper, we study
this defence method on three systems using Intel Skylake, Tiger Lake and Alder Lake pro-
cessors, and DDR4 and DDR5 DRAM chips as main memory. We execute four variants
of the attack code on these machines and observe their traces in the hardware. We use
the PAPI library and perf to periodically read the generated traces from the machines’
hardware performance counters. Finally, we train machine learning models such as logis-
tic regression and decision trees to distinguish attack and no-attack behaviour. Our best
models achieve accuracy above 99.6% and perform the classification of both 50µs and 1ms
samples in software fast enough (less than 0.5µs per sample) to detect the attack before
completion.

1 Introduction

Increasing computer performance had been the main goal of hardware development, but the
development of Dynamic Random Access Memory (DRAM) chips had a side effect of increasing
security risks. DRAM, which commonly serves as main memory in consumer machines, aims
to achieve low latency, high capacity and low cost-per-bit of memory[15][25][35]. As a solution,
manufacturers increased the cell density in modern DRAM chips. Although this improved
performance, it in turn made DRAM prone to disturbance errors, as Kim et al. named this
vulnerability in their 2014 paper [25]. Moreover, the paper presented a user-level program
that can cause bit-flips in modern DRAM chips and exposed the Rowhammer threat1. The
subsequent studies further explained how the Rowhammer attack can be used to gain kernel
privileges [42], overcome memory isolation enforced by virtualisation [44] or undermine the
accuracy of deep neural networks [41]. In the past decade, numerous mitigation techniques

1Although Rowhammer became popular in 2014 after being presented in [25], the vulnerability had been
known in 2012 [10] [22]



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

claiming to defend against the Rowhammer have been developed [23][25][28], as well as the
more and more complex versions of the attack. While it has been advertised that the Target
Row Refresh (TRR) mechanism implemented in DDR4 DRAM chips would ultimately put an
end to Rowhammer [29], studies have shown that DDR4 chips are, in fact, still vulnerable to
Rowhammer attacks [19][22][30][38]. Furthermore, the Rowhammer on DDR5 chips is yet to be
studied. A new mitigation method proposed by France et al. [18] uses Neural-Network models
that can recognise the attack based on hardware event traces on a specific system simulated by
the gem5 simulator (for the processor and caches) and DRAM simulator Ramulator [27]. Their
results show high accuracy, low overhead, and do not require a significant space on the silicon.

In our work, we continue studying machine learning models that can be used as a detection
mechanism for the Rowhammer. We omit the simulators and run the attack code directly on
three different machines. We generate the data by reading their existing hardware performance
counters. Two of our machines are equipped with DDR4 DRAM chips as main memory, while
one of the machines utilises DDR5. The processors on the machines are Intel Skylake, Tiger
Lake and Alder Lake, respectively. All of our machines operate under Linux. We collect the
data from the first two systems by using the PAPI library [4]. The Alder Lake processor on
the third machine is currently not supported by PAPI, so we resort to perf [34] to access the
performance counters. We show that simple models such as Logistic Regression and Decision
Trees can distinguish various attack code from several benchmarks based on only four hardware-
event traces. We make the following contributions:

• We present detection models that take into account diverse implementations of the
Rowhammer attack (namely four attack variants)

• We train our models based on data obtained directly from the hardware performance
counters of three real systems

• We propose highly-accurate models for three real systems, which perform a fast classifi-
cation in software

2 Background

2.1 DRAM and Disturbance Errors

Dynamic Random Access Memory (DRAM) is a hierarchy of DRAM channels, modules, ranks,
chips and banks. Banks are the smallest units that can work in parallel [26]. They are two-
dimensional arrays of cells, where the charges stored in the cells represent logical bits (0 or 1).
Each bank is equipped with a row-buffer, which serves as an intermediary for accessing data
from a DRAM bank row. Commands for accessing DRAM are issued by the memory controller
[25].

Kim et al. [25] performed a large study on DDR3 chips and found that repeated opening
(also called activating) and closing one row - transferring the row into the row-buffer and back,
can cause disturbance errors in nearby DRAM cells - some cells lose their already non-persistent
charge faster than it is automatically restored (refreshed). We observe this behaviour as bit-flips
in those cells.

2.2 The Rowhammer

The goal of the attack is to induce bit-flips in main memory. The attacker’s method, therefore,
is to open and close one row from a DRAM bank sufficiently many times between two refreshes.

2



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

This row is called the aggressor row and the procedure hammering. The rows that are affected
by the attack are called victim rows. An example of code for hammering written in C is given
in Figure 1.

Figure 1: Rowhammer loop (simplified code from [39])

The attack targets main memory and therefore, the attacker has to bypass the cache. Thanks
to the unprivileged CLFLUSH command [21], the attacker can easily invalidate a specific cache
line and access data directly from the DRAM. In some environments, however, the CLFLUSH
command is unavailable. Qiao and Seaborn [40] propose a version of the attack without the
CLFLUSH instruction that is based on non-temporal store instructions such as MOVNTI and
MOVNTDQ. Nevertheless, accessing data from the same address in a loop alone does not
guarantee that one row will be opened and closed repeatedly [25]. When the memory controller
receives consecutive read/write requests to the same row it optimises the access time by issuing
multiple READ/WRITE commands without closing the row. Hence, as we see in Figure 1,
the attacker can force closing the row by accessing two different rows from the same bank one
after the other. This, however, requires bypassing memory translation and making sure that
the two rows belong to the same bank. Some solutions rely on obtaining the memory mapping
from proc/self/pagemap and timing analysis [38], while Seaborn and Dullien [42] suggest a
probabilistic approach and hammering multiple rows to increase the chances of having two
aggressor rows in the same bank.

One way of optimising the attack is to increase the number of useful accesses by choosing
two aggressor rows which are adjacent to the same victim row. This version of the attack is
referred to as the double-sided rowhammer.

2.3 Hardware Performance Counters and Tools

Hardware Performance Counters (HPCs) are special-purpose registers in modern processors
used to count the number of different event occurrences. Their number varies according to the
processor type and it imposes an upper bound on the number of events that can be measured
simultaneously. For example, one could use these counters to obtain the number of cache
hits and misses, processor cycles, the number of instructions, etc. related to some process.
Events that can be counted depend on the processor architecture and the events specific to a
processor are called native events [11] [32]. In our work, we make use of two tools to access the
performance counters: the PAPI library [4] and the perf tool [34].

3



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

2.3.1 The PAPI Library

Performance API (PAPI) is a cross-platform interface that allows instrumenting C and Fortran
code to accurately measure its performance. The native events can be counted using PAPI’s
low-level API. That entails defining an EventSet and specifying the events of interest. The count
begins with a call to the PAPI start function, and the counters can be stopped by calling the
PAPI stop function. Furthermore, this function can be used for obtaining the counters’ values.
The functions PAPI read and PAPI accum store the counters’ values into a provided array
without stopping them. PAPI accum adds the values to the array and resets the counters,
while PAPI read copies the values into the array without modifying the counters. Function
PAPI reset resets the counters [5] [11] [36].

PAPI source code [9] comes with a file papi native avail which can be run to list available
native events on the given platform. Running all native events further tests whether these
events are supported when various flags are provided.

2.3.2 Perf

The perf tool [34] is a part of the Linux kernel and its purpose is using performance counters to
profile programs. It offers some predefined events that can be used to set up the performance
monitoring counters, and the list of those events can be obtained with the perf list command.
In addition, all events available on the architecture can be referenced by their raw encoding.
For our purposes, we use perf with stat option, which runs a command and gathers performance
counter statistics [6][20]. The main difference between PAPI and perf is that with PAPI we
obtain traces of specific portions of code, while perf counts the events generated by the entire
program execution.

2.4 Related Work

Many mitigation techniques for the Rowhammer attack have been developed, but they either
cause a significant performance overhead or cannot easily be implemented in the hardware.
France et al. [18] suggest that a need-based detection mechanism could be a solution. In their
work, they look at the hardware-level events characteristic to the attack execution (for example,
a high number of cache misses) and present neural-network models that can detect the attack
based on its traces on time to prevent its completion. They generate the traces by running
the attack and no-attack code in the gem5 simulator and they use Ramulator [27] to simulate
main memory. Their models give promising results when trained and tested on these data in
software. To obtain an online detection mechanism, the models would have to be implemented
in the hardware and the system architecture might have to be modified to allow them to count
specific hardware-level events. In this paper, we focus on three real systems and run the code
directly on the machines to generate the traces, then use performance monitoring tools to
read their existing hardware performance counters. Our models use system-specific events as
input features, based on their availability on the architectures. Furthermore, unlike the system
simulated by France et al. [18], all our systems have three levels of cache. In addition, we try
to address the diversity of the Rowhammer by using several different implementations of the
attack.

4



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

3 Methodology

Our goal is to obtain machine-specific classification models that can easily be implemented in
the hardware, and which analyse the traces of a process to categorise it as attack or no-attack
behaviour. We also want a short classification time, so that we can trigger a defence mechanism
in case of an attack detection. First step in our method is generating the data sets containing
hardware-event traces of different attack and no-attack programs. Then, we study the data and
train models that can perform a fast and accurate classification.

We start the creation of data sets by taking three different machines to get a variety of
processors and DRAM chips. Then, we study the implementation of the Rowhammer attack
and choose several instances of the attack and no-attack code to run on the machines. We also
try to measure the minimal attack execution time2 on these machines to select the frequency
at which we will read the traces from the HPCs. After we have chosen the features (hardware
events) of interest, we set up the counters, start running the code which generates the traces, and
make periodic readings to the counters while the programs are executing. We use performance
monitoring tools to access the HPCs on our machines. Each reading gives us one sample in
the data set. Once we have the data sets, we train and test different models to make a binary
classification - output the label attack or no-attack, based on the count of hardware-event
traces.

3.1 Machine Specifications

We perform our work on three different machines running Linux. The first machine is Vivo-
Book ASUSLaptop X521EQ S533EQ, with an 8GB DDR4 main memory and an 11th Gen
Intel© Core™ i5-1135G7 @ 2.40GHz × 4 - Tiger Lake processor. It has a Linux Mint 21.2
Cinnamon 5.8.4 installed, and the Linux kernel is 5.15.0-91-generic. The second machine is
LENOVO ThinkPad T470s W10DG, with 8GB DDR4 memory and Intel© Core™ i5-6300U
CPU @ 2.40GHz × 2 - Skylake processor. It is running Linux Mint 21.1 Cinnamon 5.6.5, kernel
version 5.15.0-56-generic. The third machine is DELL Precision 3571 with 16GB DDR5 main
memory and a 12th Gen Intel© Core™ i7-12700H × 14 - Alder Lake processor. It also runs
Linux Mint 21.2 Cinnamon 5.8.4, kernel version 5.15.0-76-generic . All of the machines have
three levels of cache.

We understand that in reality the attack may or may not be running as the only process
on the system, so we obtain our data by running the programs in different load conditions
[18]. For NO LOAD conditions, we try to run the programs as the only process on the system.
We introduce LOAD by executing instances of the STREAM benchmark in parallel with the
program of interest. Specifically, we run two STREAM benchmarks on LENOVO machine, four
on ASUS and eight instances of STREAM on our DELL machine to create LOAD.

3.2 Attack and No-Attack Programs

On our DELL machine, and for the feature-selection purposes, we use four different programs
to simulate the attack and another three to represent the no-attack behaviour. All of the code
(as well as the entire generated data set and graphs) can be found in [2]. The first variant of
the attack is a slightly modified version of the code obtained from the authors of [18], written
for the gem5 simulator. The code’s function attack calls the C function asm to create a loop
for loading values from two addresses belonging to the aggressor rows, and then removing them

2The lowest number of activations needed to cause bit flips on DDR4 is reported to be ten thousand per
aggressor row [24]. We time the code used to generate the samples on all three machines with 10000 toggles.

5



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

from cache by using CLFLUSH. The code for the second version of the attack (using non-
temporal store instructions [40]) and two no-attack functions are derived from it by altering the
attack function. One no-attack code simply removes the CLFLUSH instruction from the loop,
and the second makes random accesses on the pre-initialised buffer from which the aggressor
rows are chosen in the attack code. The different attack (no attack) functions are presented in
Figures 2 and 3.

The third no-attack code is the STREAM benchmark [33], used to test memory performance.
The last two attack programs are the double-sided rowhammer and a simplified rowhammer-
test from Google’s Project Zero rowhammer-test GitHub repository [39]. Our code keeps the
memory initialisation from the rowhammer-test and the hammering function, but it changes
the number of addresses that are hammered in the attack for the sake of diversification of
generated data samples. To address the existence of the Many-sided RowHammer attack [19],
we adjust the code to take four, eight, nine, ten and twenty aggressor addresses. For data
generation on ASUS and LENOVO, we in addition have no-attack code derived from the double-
sided rowhammer and the rowhammer-test by removing the CLFLUSH instruction from their
hammering functions.

(a) Base attack loop (b) Attack loop with non-temporal store instruction

Figure 2: CLFLUSH attack code and the non-temporal store derivation

(a) Loop without CLFLUSH (no-attack code) (b) Random accesses on the buffer (no-attack code)

Figure 3: No-attack loops derived from the basic attack code

6



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

3.3 Sampling with PAPI

We wish to periodically read the counters while our code (attack or no-attack) is running. PAPI
has a function for sampling based on event overflow, but as we are interested in measurements
after equal time intervals, we create our own program for sampling. A timer is configured to
send a signal that interrupts the program periodically after 50µs and we read the counters while
handling the interrupt. This might interfere with our event count [43], hence we place the code
whose traces we are trying to obtain in a separate thread and PAPI is instructed to measure
only the events from that thread. In order to get as precise measurements as possible, we use
signal blocking to make sure that the interrupts are handled from the main thread.

3.4 Sampling with Perf

In order to obtain periodic measurements with perf, it is enough to use one command:

perf stat -e ’events to count’ -I ’sampling interval’ -o ’output file’ ./program

This will produce a file output file with periodic readings of specified counters in sam-
pling interval millisecond intervals. Minimal interval length is 1ms. Events that are counted
can be represented by their raw encoding found at [7]. The counts are generated by running
the specified program.

3.5 Feature Selection

Based on previous work [18], we assume that observing cache events could prove useful. The
essence of the attack is activating a DRAM row, hence it is characterised by a high number
of last-level cache misses. Since we are constantly accessing DRAM, and moreover trying to
access different rows from the same DRAM bank, we also expect a high number of stalled cycles
caused by the attack program [26]. France et al. [18] suggest looking also at the number of
last-level cache (LLC) hits, as they find that their no-attack code produces significantly more
LLC hits than their attack code. However, their simulated system has only two levels of cache,
whereas our machines have three cache levels of larger size. As a consequence, we do not expect
a large number of cache hits at the last level, but rather in level-1 (L1) and level-2 (L2) cache.
Thus, we choose to count L1 and L2 cache hits. To be more specific, L1 cache is divided into
data and instruction cache. In this paper we count the number of L1 data cache load hits and
L2 cache load hits.

The features we select to train our models stem from the hardware events that we gather
from the performance counters on our machines. Therefore, the selection highly depends on the
availability of the events on the system architectures we work with. After some experiments
where we counted the various events available, generated by both the attack and no-attack
code, we finally decided to keep the four events described above. On ASUS and LENOVO
laptops we use the PAPI library, and the native events we selected to count are given in Table
1. The equivalent events for the Alder Lake architecture found on our DELL machine are taken
from [7] and given in Table 2.

3.6 Data Generation

We run the programs introduced in section 3.2 on all three machines in both NO LOAD and
LOAD conditions to generate the data. On ASUS and LENOVO machines, the data is sampled
using the PAPI library and by using the perf tool on our DELL machine. One sample represents

7



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

Event PAPI native event name
LLC (L3 cache) misses ix86arch::LLC MISSES

L2 cache hits L2 RQSTS:DEMAND DATA RD HIT
L1 data cache hits MEM LOAD RETIRED:L1 HIT

Stalled cycles UOPS RETIRED:STALL CYCLES

Table 1: Event selection on ASUS and LENOVO machines

Event Alder Lake event
LLC (L3 cache) misses LONGEST LAT CACHE.MISS

L2 cache hits L2 RQSTS.DEMAND DATA RD HIT
L1 data cache hits MEM LOAD RETIRED.L1 HIT

Stalled cycles UOPS RETIRED.STALLS

Table 2: Event selection on the DELL machines

the event count in a 1ms interval for the data set generated on the DELL machine, while samples
from ASUS and LENOVO data sets stand for 50µs intervals. In total, we have around 1.3 million
samples on LENOVO machine, 2.7 million samples on DELL and 1 million samples on ASUS
machine. Each sample contains nine fields: machine from which the sample is obtained, load
conditions, code that generated it, timestamp, the four features we wish to observe, and the
label specifying whether the code represents an attack or not.

4 Machine Learning

We plot the data from our ASUS machine (LLC misses and L1 cache hits) in both NO LOAD
and LOAD conditions in figures 4 and 5. The graphs representing L2 cache hits and stalled
cycles, as well as the data from the other two machines, can be found in the repository [2]. On
the graphs, we make a distinction between the traces generated by the attack code, our custom
no-attack code and the STREAM benchmark (which is another variant of the no-attack code).
As expected, in NO LOAD conditions, the attack code produces more cache misses, less L1 and
L2 cache hits, and has more stalled cycles than no-attack code. A portion of samples generated
by the attack code has a higher number of L2 cache hits than some of the no-attack code,
however, it can still be distinguished from the no-attack code according to its three other traces
(for example, the LLC misses). The STREAM benchmark is an exception due to its very high
number of last-level cache misses, but it can also easily be classified as no-attack code by its
other traces. While in NO LOAD conditions it seems that separating the attack and no-attack
traces is a simple task, introducing LOAD turns this into a challenge. We thus rely on machine
learning (ML) models to perform the classification.

4.1 Models

We choose to study three different models, adjusting their parameters according to the data
set we are using: Logistic Regression [8], a Decision Tree Classifier [1], and a Category Boost-
ing (CatBoost) Classifier [3]. LogisticRegression and DecisionTreeClassifier models are imple-
mented using the scikit-learn API [14][37] .

8



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

(a) NO LOAD (b) LOAD

Figure 4: Last-level (L3) cache misses on ASUS machine

(a) NO LOAD (b) LOAD

Figure 5: L1 cache hits on ASUS machine

Logistic Regression is a model commonly used for binary classification. The model com-
putes the probability that a linear combination of the input features belongs to a certain cat-
egory using a logistic function. Hence, the model only needs to store the weights used for the
linear transformation (depends on the number of features) and the prediction consists of simple
computations [13] [31].

Decision Trees are binary trees where the leaves yield a class, and the other nodes partition
the input space. The prediction is obtained by traversing the tree from the root to a leaf,
evaluating the input based on conditions given at the nodes. The complexity of the model
grows with the depth of the tree [12] [16] .

Boosting is a technique where multiple weak learners (usually decision trees with a small
number of nodes) are combined to create a strong machine learning model. CatBoost is a new
Gradient Boosting model that appears to outperform its predecessors [17].

4.2 Training and Testing

We stick to the four chosen hardware-event features for training and testing the models. We
do not use load conditions as a feature, but we do create models that are specific to a machine.
We randomly split each data set into a training and testing data set of approximately the same
size. Models are trained on the training data set, and the results we present are obtained based
on the testing data set.

9



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

4.3 Results

In tables 3, 4 and 5 we present the performance (Accuracy, False positives - FP, False negatives
- FN and the average time a model takes to make a classification of one sample - Avg time) of
the three models on each machine. All of our tested models give satisfactory results. They all
have accuracy above 92%. Furthermore, the best model on each machine has accuracy above
99.6%. France et al. [18] achieved an accuracy above 99.8% with neural networks classifying
multiple traces from a time window, while we are able to obtain it with decision trees and
boosting, classifying traces at one time point. This means that our models could classify the
data obtained directly from the HPCs. The models are significantly faster in software, a single
classification on the samples from the test set takes less than 0.5 microseconds on average. It
is worth mentioning that, although the models are faster than the ones presented by France et
al. [18], on our DELL machine we are still performing a classification of traces representing a
1ms interval, while their models use 10µs time windows.

Model Accuracy (%) FP (%) FN (%) Avg time (ns)
Logistic Regression 92.580 6.357 1.063 34.920

Decision Tree 99.606 0.043 0.351 72.023
CatBoost 99.617 0.039 0.344 234.004

Table 3: Performance of the chosen ML models on LENOVO machine

Model Accuracy (%) FP (%) FN (%) Avg time (ns)
Logistic Regression 99.229 0.363 0.408 20.705

Decision Tree 99.972 0.022 0.006 37.870
CatBoost 99.966 0.022 0.012 176.649

Table 4: Performance of the chosen ML models on ASUS machine

Model Accuracy (%) FP (%) FN (%) Avg time (ns)
Logistic Regression 99.899 0.067 0.034 13.604

Decision Tree 99.986 0.013 0.001 26.827
CatBoost 99.908 0.078 0.014 69.030

Table 5: Performance of the chosen ML models on DELL machine

Nevertheless, our models should still detect Rowhammer before it executes on all three
machines. Timing the attack on our machines gives the following results: we observe that on
DELL machine, the attack takes at least 4ms, 0.998ms on ASUS and 1.111 ms to execute on
LENOVO machine (for 10 000 attack-loop iterations). With classification time under 0.5µs,
and assuming the correct prediction, our models are able to detect the attack before it executes.
The small enough intervals needed for collecting the data increase our chances of detecting the
attack before completion even with some false negative predictions. We argue that our models
could easily be integrated in hardware: the Decision Tree model on ASUS machine has depth
five, and the one on DELL has depth four. The CatBoost model on LENOVO is made of fifteen

10



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

decision tree estimators, where each estimator has maximum depth four. We still note that the
less complex Decision Tree model on LENOVO, with maximum depth five, also achieves high
accuracy of 99.6%.

5 Discussion

Our methodology encounters several challenges:

• Sampling frequency and overhead trade-off: We want a small interval for sampling,
so that we are able to detect the attack before it completes even when some traces are
classified as false negatives. However, the overhead increases with the sampling frequency.
By closely examining the timestamps of our samples in the data set, we can already
observe that the counters on ASUS and LENOVO might not be read precisely after 50
microseconds, but after 50 microseconds and some noise. Furthermore, perf imposes a
lower bound of 1ms for the sample interval length.

• Correctly labelling the traces in the data set: With PAPI we are able to instrument
the code and we try to count the events coming only from the hammering functions.
Nevertheless, in many of the programs this includes the traces of memory initialisation
and aggressor rows selection, which do not necessarily indicate an attack. This issue is
amplified with the use of perf, as it counts the events generated from the entire sampled
program.

• Good representation of the problem: We aim to generalise the traces by using several
implementations of the attack and benchmarks code, but we cannot claim with certainty
that our generated traces represent all Rowhammer variants. In our work, we also do not
study whether changing the parameters of the attack (for example the number of toggles)
alters its traces. Representing no-attack behaviour is an even more challenging task.

• Appropriate training data set: We aim to have a good balance of the attack and no-
attack samples in our data sets. The attack traces represent 62% and 38% of the samples
on our ASUS and LENOVO machines, respectively, and they have the majority of 79%
on the DELL machine. We do not know if this difference has an effect on our models’
accuracy.

• Implementation in hardware: The models themselves might be simple enough to
be implemented in hardware, but the question of how many processes can we monitor
simultaneously with existing performance counters remains. We might need to add more
performance counters to be able to implement the entire detection mechanism.

• Will the models classify the attack before it causes bit flips? On our DELL
machine, we work with traces obtained from the entire program, and not just the ham-
mering function. When timing the attack we take this into account and time the entire
program execution. This might lead to false conclusions as we are really only interested
in the time it takes to classify the hammering traces, and the accuracy of classifying those
traces. In addition, we time the attack which performs ten thousand activations as that
is the lowest number of activations reported to cause bit flips on DDR4. Rowhammer on
DDR5 chips is yet to be studied, and this number might differ.

11



Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

6 Conclusion

Rowhammer attack is a security issue which keeps evolving to adapt to current defence mecha-
nisms. A new detection method which is both easy to integrate in hardware and does not incur
a large system overhead uses neural networks to detect the attack and trigger mitigation. In
our work, we continue studying machine learning detection mechanisms on data sets consisting
of event traces obtained from hardware performance counters. We explore methods for data
collection, look for useful hardware-event features and show that fast and simple to implement
decision tree models can recognise various attack code based on its hardware-event traces. Us-
ing only four features - the traces obtained directly from hardware performance counters, our
models appear to be highly accurate classifiers. The accuracy of the Decision Tree and Cat-
Boost models on our LENOVO machine is 99.6%, while the Decision Tree models on our ASUS
and DELL machine achieve the accuracy above 99.9%. More importantly, their performance
in software is sufficiently fast (less than 0.5µs needed to classify one sample) and the time for
attack detection primarily depends on the interval size used for sampling. In the case when
the classification is correct, they should recognise the attack behaviour before it successfully
completes its execution.

References

[1] 1.10. Decision Trees — scikit-learn.org. https://scikit-learn.org/stable/modules/tree.

html#classification. [Accessed 12-03-2024].

[2] GitHub - bogdanaKolic/ROWHAMMER-VULNERABILITY-ASSESSMENT-
PAPER — github.com. https://github.com/bogdanaKolic/

ROWHAMMER-VULNERABILITY-ASSESSMENT-PAPER. [Accessed 30-04-2024].

[3] GitHub - catboost/catboost: A fast, scalable, high performance Gradient Boosting on Decision
Trees library, used for ranking, classification, regression and other machine learning tasks for
Python, R, Java, C++. Supports computation on CPU and GPU. — github.com. https://

github.com/catboost/catboost. [Accessed 12-03-2024].

[4] PAPI official website. https://icl.utk.edu/papi/. [Accessed 09-02-2024].

[5] PAPI wiki page. https://bitbucket.org/icl/papi/wiki/Home. [Accessed 09-02-2024].

[6] perf-stat(1) - Linux manual page — man7.org. https://man7.org/linux/man-pages/man1/

perf-stat.1.html. [Accessed 01-03-2024].

[7] PerfMon Events — perfmon-events.intel.com. https://perfmon-events.intel.com/. [Accessed
01-03-2024].

[8] sklearn.linear model.LogisticRegression — scikit-learn.org. https://scikit-learn.org/stable/

modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_

model.LogisticRegression. [Accessed 12-03-2024].

[9] Innovative Computing Laboratory (ICL) at University of Tennessee Knoxville (UTK). GitHub
- icl-utk-edu/papi — github repository. https://github.com/icl-utk-edu/papi/tree/master.
[Accessed 09-02-2024].

[10] Kuljit S Bains, John B Halbert, Christopher P Mozak, Theodore Z Schoenborn, and Zvika Green-
field. Row hammer refresh command. https://patents.google.com/patent/US9236110B2/en.

[11] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-
face for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl.,
14(3):189–204, aug 2000.

[12] Jason Brownlee. Classification And Regression Trees for Machine Learning - Machine-
LearningMastery.com — machinelearningmastery.com. https://machinelearningmastery.com/

classification-and-regression-trees-for-machine-learning/. [Accessed 12-03-2024].

12

https://scikit-learn.org/stable/modules/tree.html#classification
https://scikit-learn.org/stable/modules/tree.html#classification
https://github.com/bogdanaKolic/ROWHAMMER-VULNERABILITY-ASSESSMENT-PAPER
https://github.com/bogdanaKolic/ROWHAMMER-VULNERABILITY-ASSESSMENT-PAPER
https://github.com/catboost/catboost
https://github.com/catboost/catboost
https://icl.utk.edu/papi/
https://bitbucket.org/icl/papi/wiki/Home
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://perfmon-events.intel.com/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://github.com/icl-utk-edu/papi/tree/master
https://patents.google.com/patent/US9236110B2/en
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/


Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

[13] Jason Brownlee. Logistic Regression for Machine Learning - MachineLearningMas-
tery.com — machinelearningmastery.com. https://machinelearningmastery.com/

logistic-regression-for-machine-learning/. [Accessed 12-03-2024].

[14] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pages 108–122, 2013.

[15] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh, Donghyuk Lee,
Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu. Flexible-latency dram: Under-
standing and exploiting latency variation in modern dram chips, 2018.

[16] Emir Demirović and Peter J. Stuckey. Optimal decision trees for nonlinear metrics, 2021.

[17] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting with
categorical features support, 2018.

[18] Löıc France, Maria Mushtaq, Florent Bruguier, David Novo, and Pascal Benoit. Vulnerability
Assessment of the Rowhammer Attack Using Machine Learning and the gem5 Simulator -Work in
Progress. In SaT-CPS 2021 - ACM Workshop on Secure and Trustworthy Cyber-Physical Systems,
pages 104–109, Virtually, United States, April 2021.

[19] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. TRRespass: Exploiting the Many Sides of Target Row
Refresh. In S&P, May 2020. Best Paper Award, Pwnie Award for Most Innovative Research,
IEEE Micro Top Picks Honorable Mention, DCSR Paper Award.

[20] Brendan Gregg. Linux perf Examples — brendangregg.com. https://www.brendangregg.com/

perf.html. [Accessed 01-03-2024].

[21] R Intel. Intel r 64 and ia-32 architectures software developer’s manual combined volumes: 1, 2a,
2b, 2c, 2d, 3a, 3b, 3c, 3d, and 4, 2023.

[22] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi. Blacksmith:
Scalable rowhammering in the frequency domain. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 716–734, 2022.

[23] Dayeon Kim, Hyungdong Park, Inguk Yeo, Youn Kyu Lee, Youngmin Kim, Hyung-Min Lee, and
Kon-Woo Kwon. Rowhammer attacks in dynamic random-access memory and defense methods.
Sensors, 24(2), 2024.

[24] Jeremie S. Kim, Minesh Patel, Abdullah Giray Yaglikçi, Hasan Hassan, Roknoddin Azizi, Lois
Orosa, and Onur Mutlu. Revisiting rowhammer: An experimental analysis of modern dram devices
and mitigation techniques. 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pages 638–651, 2020.

[25] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson,
Konrad Lai, and Onur Mutlu. Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors. In 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 361–372, 2014.

[26] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. A case for exploit-
ing subarray-level parallelism (salp) in dram. In 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pages 368–379, 2012.

[27] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible dram simulator.
IEEE Computer Architecture Letters, 15(1):45–49, 2016.

[28] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. Twice: Preventing row-
hammering by exploiting time window counters. In 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pages 385–396, 2019.

[29] Jung-Bae Lee. Green memory solution. In Investor’s Forum, Samsung Electronics, 2014.

[30] Moritz Lipp, Misiker Tadesse Aga, Michael Schwarz, Daniel Gruss, Clémentine Maurice, Lukas

13

https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://www.brendangregg.com/perf.html
https://www.brendangregg.com/perf.html


Vulnerability Assessment for the Rowhammer Attack Kolić and Mushtaq

Raab, and Lukas Lamster. Nethammer: Inducing rowhammer faults through network requests.
CoRR, abs/1805.04956, 2018.

[31] Maher Maalouf. Logistic regression in data analysis: An overview. International Journal of Data
Analysis Techniques and Strategies, 3:281–299, 07 2011.

[32] Corey Malone, Mohamed Zahran, and Ramesh Karri. Are hardware performance counters a cost
effective way for integrity checking of programs. In Proceedings of the Sixth ACM Workshop on
Scalable Trusted Computing, STC ’11, page 71–76, New York, NY, USA, 2011. Association for
Computing Machinery.

[33] John D. McCalpin. Memory bandwidth and machine balance in current high performance comput-
ers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter,
pages 19–25, December 1995.

[34] Ingo Molnar. perf: Linux profiling with performance counters, 2009.

[35] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun. A modern primer
on processing in memory, 2022.

[36] University of Tennessee. PAPI User-s Guide, 3.5.0 edition.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[38] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard. DRAMA:
Exploiting DRAM addressing for Cross-CPU attacks. In 25th USENIX Security Symposium
(USENIX Security 16), pages 565–581, Austin, TX, August 2016. USENIX Association.

[39] Project Zero team at Google. GitHub - google/rowhammer-test: Test DRAM for bit flips caused
by the rowhammer problem — github repository. https://github.com/google/rowhammer-test.
[Accessed 09-02-2024].

[40] Rui Qiao and Mark Seaborn. A new approach for rowhammer attacks. In 2016 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 161–166, 2016.

[41] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. Bit-flip attack: Crushing neural network with-
progressive bit search. CoRR, abs/1903.12269, 2019.

[42] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug to gain kernel privileges.

[43] Vincent M Weaver and Jack Dongarra. Can hardware performance counters produce expected,
deterministic results? Atlanta, GA, 2010-12 2010.

[44] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One bit flips, one cloud flops:
Cross-VM row hammer attacks and privilege escalation. In 25th USENIX Security Symposium
(USENIX Security 16), pages 19–35, Austin, TX, August 2016. USENIX Association.

14

https://github.com/google/rowhammer-test

	1 Introduction
	2 Background
	2.1 DRAM and Disturbance Errors
	2.2 The Rowhammer
	2.3 Hardware Performance Counters and Tools
	2.3.1 The PAPI Library
	2.3.2 Perf

	2.4 Related Work

	3 Methodology
	3.1 Machine Specifications
	3.2 Attack and No-Attack Programs
	3.3 Sampling with PAPI
	3.4 Sampling with Perf
	3.5 Feature Selection
	3.6 Data Generation

	4 Machine Learning
	4.1 Models
	4.2 Training and Testing
	4.3 Results

	5 Discussion
	6 Conclusion
	References

