

Modelling the fate of the transformation products generated by the degradation of carbamazepine in various water treatment processes

Jeanne Trognon, Jean-Marc Choubert, Karyn Le Menach, Hélène Budzinski,

Claire Albasi

▶ To cite this version:

Jeanne Trognon, Jean-Marc Choubert, Karyn Le Menach, Hélène Budzinski, Claire Albasi. Modelling the fate of the transformation products generated by the degradation of carbamazepine in various water treatment processes. 13th IWA Micropollutant and Ecohazard Conference, Jun 2024, Taipei, Taiwan. hal-04747601

HAL Id: hal-04747601 https://hal.science/hal-04747601v1

Submitted on 22 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The 13th IWA Micropol and Ecohazard Conference

Taipei, Taiwan, June 16-20, 2024

Modelling the fate of the transformation products generated by the degradation of carbamazepine in various water treatment processes

J. Trognon*, J.M. Choubert**, K. le Menach***, H. Budzinski***, C. Albasi*

* Laboratoire de Génie Chimique, Toulouse, France
** INRAE UR REVERSAAL, Villeurbanne, France
*** Université de Bordeaux 1, EPOC, LPTC, Talence, France

Carbamazepine and water treatment

Carbamazepine (CBZ) = anticonvulsant drug (treatment of epilepsy, bipolar disorder and trigeminal neuralgia)

- Worldwide consumption > 1000 t/year
- Poor removal (< 25%) by conventional secondary processes
- 500-1000 ng.L⁻¹ in WWTP effluents

AOP: radicals attack on CBZ structure

Generation of transformation products (TPs)

.

٠

Various TPs (structures, physico-chemicals

Many **unknown** about the fate and

behavior of such diversity of TPs

characteristics, concentrations)

Partial or complete elimination, cyclisation of NH₂ with C6, methylation

Trognon, Albasi and Choubert, Sci. Tot. Env. (2024)

Computer-based modelling

<u>Computer-based modelling</u> as a promising tool to predict the fate of MPs and their TPs

Control MP release

Risk evaluation (environmental impact assessment)

Processes optimization (operational conditions)

Aim: improve the knowledge on the nature, fate and dynamics of CBZ and its TPs

- 1) Identification of CBZ transformation pathways in various oxidation processes and
- 2) Modelling of CBZ transformation products to improve the knowledge of their dynamics

1) Trognon et al, Sci. Tot. Env., 2024

2) Trognon et al, in prep.

Scientific approach: development of individual models

Scientific approach: development of individual models

Source of data	Process	[CBZ] ₀ (µM)	[oxidant]	Time	Data for the TPs	Reaction scheme	
Jelic et al., 2013	UV/TiO ₂	42.3	100 mg.L ⁻¹	120 min	Normalized peak area (A _{TPs} /A _{CBZ})	CBZ \rightarrow CBZ-10,11-dione CBZ \rightarrow 2OH-CBZ 3OH-CBZ	
Suara et al., 2022	UV/CI	42.3	10 mg.L ⁻¹	10 min	[TPs]	CBZ 10OH-CBZ 2OH-CBZ	
Pan et al., 2017	UV/CI	2.1	5 mg.L ⁻¹	15 min	[TPs]	$CBZ \longrightarrow EP-CBZ \xrightarrow{\bullet} trans DH-diOH-CBZ \xrightarrow{\bullet} ADIN$	
Lu & Hu, 2019	UV/H ₂ O ₂	169	3 g.L⁻¹	30 min	Normalized [TPs]/[CBZ] ₀	CBZ ← EP-CBZ → ADIN 9CHO-CBZ → 2/3OH-9CHO-ADIN	
	 3 different processes Diversity of operational conditions				Challenge :	experimental [TPs]	
The 13th IWA Micropol & Ecohazard Conference							

Scientific approach: development of individual models

The 13th IWA Micropol & Ecohazard Conference

Results: modelling of CBZ degradation

- good adequation between predicted and experimental data ($R^2 > 86\%$)
- k_{CBZ} resulting from model and k_{CBZ} originally calculated in datasets are comparable
- Pseudo-first order equation appropriate for ³/₄ datasets

Results: modelling of TPs formation/degradation

Reference	TPs	R ² _{TPs} (%)	k _{TPs} (min⁻¹)	k _{stoi}
	DH-diOH-CBZ	94.2	0.134	0.54
Jolia et al. 2012	2OH-CBZ	99.9	0.071	0.24
Jenc et al., 2013	3OH-CBZ	90.3	0.053	0.29
	CBZ-10.11-dione	86.0	0.025	0.12
Sucre et al. 2022	100H-CBZ	77.5	0.003	0.009
Suara et al., 2022	2OH-CBZ	94.3	0.001	0.013
	EP-CBZ	98.8	0.161	0.24
	trans-diOH-CBZ	63.1	0.439	1.00
Pan et al., 2017	cis-diOH-CBZ	83.9	1.230	1.00
	ADIN	17.3	1.110	0.19
	EP-CBZ	18.5	1.001	0.12
	9CHO-CBZ	42.8	2.060	0.05
Lu & Hu, 2019	DH-diOH-CBZ	96.1	0.302	1.00
	2/30H-9CHO-ADIN	85.5	0.152	0.96
	ADIN	22.9	2.312	0.32

1

- 11/15 TPs predicted and experimental data fit-well (R² > 63%)
- Quality of the fit decreases for secondary and final TPs (reaction scheme) or lowest concentrations
- Predicted concentrations consistent with the reaction pathway

Results: mass balance calculations

The 13th IWA Micropol & Ecohazard Conference

Scientific approach: development of a global model

Results: modelling of CBZ and TPs

Global model based on an overall reaction scheme – CBZ and TPs results

Mean nRMSE (%) of each TP, calculated using data from all four datasets. Primary, intermediate and final TPs are represented in blue, green and pink, respectively.

Results: modelling of CBZ and TPs

Global model based on an overall reaction scheme – sensitivity analysis

<u>Global model</u> = 12 molecules, 13 differential equations, 23 parameters (kstoi, k)

Which TPs ? Which parameters ?

Help future calibration

Observing the changes in the CBZ and primary TPs prediction upon variations of their parameters

For each parameter studied, 5 different values were used: 0.1, 0.3, 0.5, 0.7 and 0.9 for k_{stoj} , 10⁻⁴, 10⁻³, 10⁻², 10⁻¹ and 10⁰ for *k*

Results: modelling of CBZ and TPs

Global model based on an overall reaction scheme – sensitivity analysis

		Global Model Quality	R ² TPs		
kstoi	EP-CBZ	+++	++		
	2OH-CBZ	+++	++		
	3OH-CBZ	++	+		
	10OH-CBZ	+++	++		Strong influence
	9CHO-CBZ	+++	+	TTT	
	DH-diOH-CBZ	++	+	++	Moderated influence
k (min-1)	CBZ	+	+	+	Low influence
	EP-CBZ	++	++		No influence
	2OH-CBZ	-	++	-	
	3OH-CBZ	-	+		
	10OH-CBZ	-	+		
	9CHO-CBZ	++	+		
	DH-diOH-CBZ	-	++		

- k_{stoi} have more influence on the model quality than k
- 4 Primary TPs appear as important for the overall quality of the model (EP-CBZ, 9CHO-CBZ, 2OH-CBZ and 10OH-CBZ)

Conclusions & Outlooks

- Development of a model resolving ordinary differential equations (ODEs) based on formation/degradation kinetic equations and mass balance approach
- Overall reaction scheme
- Promising results with good correlation between the model predictions and the experimental data for both CBZ and TPs and for both the individual and the global model
- **4 primary TPs** are instrumental for the quality of the predictions: EP-CBZ, 9CHO-CBZ, 2OH-CBZ and 10OH-CBZ. Future model calibrations should focus on the **stoichiometric k**_{stoi} **parameters**, rather than the kinetic constants k.

Outlooks:

Model validation Investigation of the UTP fraction Add more parameters in the model such as macroscopic properties of the TPs (hydrophobicity, ...)

The 13th IWA Micropol & Ecohazard Conference

The 13th IWA Micropol and Ecohazard Conference

Taipei, Taiwan, June 16-20, 2024

Thank you for your attention !